feat(vllm-omni): add new backend (#8188)

* feat(vllm-omni: add new backend

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* default to py3.12

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto
2026-01-24 22:23:30 +01:00
committed by GitHub
parent 05a332cd5f
commit b2a8a63899
14 changed files with 975 additions and 2 deletions

View File

@@ -0,0 +1,23 @@
.PHONY: vllm-omni
vllm-omni:
bash install.sh
.PHONY: run
run: vllm-omni
@echo "Running vllm-omni..."
bash run.sh
@echo "vllm-omni run."
.PHONY: test
test: vllm-omni
@echo "Testing vllm-omni..."
bash test.sh
@echo "vllm-omni tested."
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -0,0 +1,682 @@
#!/usr/bin/env python3
"""
LocalAI vLLM-Omni Backend
This backend provides gRPC access to vllm-omni for multimodal generation:
- Image generation (text-to-image, image editing)
- Video generation (text-to-video, image-to-video)
- Text generation with multimodal inputs (LLM)
- Text-to-speech generation
"""
from concurrent import futures
import traceback
import argparse
import signal
import sys
import time
import os
import base64
import io
from PIL import Image
import torch
import numpy as np
import soundfile as sf
import backend_pb2
import backend_pb2_grpc
import grpc
from vllm_omni.entrypoints.omni import Omni
from vllm_omni.outputs import OmniRequestOutput
from vllm_omni.diffusion.data import DiffusionParallelConfig
from vllm_omni.utils.platform_utils import detect_device_type, is_npu
from vllm import SamplingParams
from diffusers.utils import export_to_video
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
def is_float(s):
"""Check if a string can be converted to float."""
try:
float(s)
return True
except ValueError:
return False
def is_int(s):
"""Check if a string can be converted to int."""
try:
int(s)
return True
except ValueError:
return False
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def _detect_model_type(self, model_name):
"""Detect model type from model name."""
model_lower = model_name.lower()
if "tts" in model_lower or "qwen3-tts" in model_lower:
return "tts"
elif "omni" in model_lower and "qwen3" in model_lower:
return "llm"
elif "wan" in model_lower or "t2v" in model_lower or "i2v" in model_lower:
return "video"
elif "image" in model_lower or "z-image" in model_lower or "qwen-image" in model_lower:
return "image"
else:
# Default to image for diffusion models, llm for others
return "image"
def _detect_tts_task_type(self):
"""Detect TTS task type from model name."""
model_lower = self.model_name.lower()
if "customvoice" in model_lower:
return "CustomVoice"
elif "voicedesign" in model_lower:
return "VoiceDesign"
elif "base" in model_lower:
return "Base"
else:
# Default to CustomVoice
return "CustomVoice"
def _load_image(self, image_path):
"""Load an image from file path or base64 encoded data."""
# Try file path first
if os.path.exists(image_path):
return Image.open(image_path)
# Try base64 decode
try:
image_data = base64.b64decode(image_path)
return Image.open(io.BytesIO(image_data))
except:
return None
def _load_video(self, video_path):
"""Load a video from file path or base64 encoded data."""
from vllm.assets.video import VideoAsset, video_to_ndarrays
if os.path.exists(video_path):
return video_to_ndarrays(video_path, num_frames=16)
# Try base64 decode
try:
timestamp = str(int(time.time() * 1000))
p = f"/tmp/vl-{timestamp}.data"
with open(p, "wb") as f:
f.write(base64.b64decode(video_path))
video = VideoAsset(name=p).np_ndarrays
os.remove(p)
return video
except:
return None
def _load_audio(self, audio_path):
"""Load audio from file path or base64 encoded data."""
import librosa
if os.path.exists(audio_path):
audio_signal, sr = librosa.load(audio_path, sr=16000)
return (audio_signal.astype(np.float32), sr)
# Try base64 decode
try:
audio_data = base64.b64decode(audio_path)
# Save to temp file and load
timestamp = str(int(time.time() * 1000))
p = f"/tmp/audio-{timestamp}.wav"
with open(p, "wb") as f:
f.write(audio_data)
audio_signal, sr = librosa.load(p, sr=16000)
os.remove(p)
return (audio_signal.astype(np.float32), sr)
except:
return None
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
print(f"Loading model {request.Model}...", file=sys.stderr)
print(f"Request {request}", file=sys.stderr)
# Parse options from request.Options (key:value pairs)
self.options = {}
for opt in request.Options:
if ":" not in opt:
continue
key, value = opt.split(":", 1)
# Convert value to appropriate type
if is_float(value):
value = float(value)
elif is_int(value):
value = int(value)
elif value.lower() in ["true", "false"]:
value = value.lower() == "true"
self.options[key] = value
print(f"Options: {self.options}", file=sys.stderr)
# Detect model type
self.model_name = request.Model
self.model_type = request.Type if request.Type else self._detect_model_type(request.Model)
print(f"Detected model type: {self.model_type}", file=sys.stderr)
# Build DiffusionParallelConfig if diffusion model (image or video)
parallel_config = None
if self.model_type in ["image", "video"]:
parallel_config = DiffusionParallelConfig(
ulysses_degree=self.options.get("ulysses_degree", 1),
ring_degree=self.options.get("ring_degree", 1),
cfg_parallel_size=self.options.get("cfg_parallel_size", 1),
tensor_parallel_size=self.options.get("tensor_parallel_size", 1),
)
# Build cache_config dict if cache_backend specified
cache_backend = self.options.get("cache_backend") # "cache_dit" or "tea_cache"
cache_config = None
if cache_backend == "cache_dit":
cache_config = {
"Fn_compute_blocks": self.options.get("cache_dit_fn_compute_blocks", 1),
"Bn_compute_blocks": self.options.get("cache_dit_bn_compute_blocks", 0),
"max_warmup_steps": self.options.get("cache_dit_max_warmup_steps", 4),
"residual_diff_threshold": self.options.get("cache_dit_residual_diff_threshold", 0.24),
"max_continuous_cached_steps": self.options.get("cache_dit_max_continuous_cached_steps", 3),
"enable_taylorseer": self.options.get("cache_dit_enable_taylorseer", False),
"taylorseer_order": self.options.get("cache_dit_taylorseer_order", 1),
"scm_steps_mask_policy": self.options.get("cache_dit_scm_steps_mask_policy"),
"scm_steps_policy": self.options.get("cache_dit_scm_steps_policy", "dynamic"),
}
elif cache_backend == "tea_cache":
cache_config = {
"rel_l1_thresh": self.options.get("tea_cache_rel_l1_thresh", 0.2),
}
# Base Omni initialization parameters
omni_kwargs = {
"model": request.Model,
}
# Add diffusion-specific parameters (image/video models)
if self.model_type in ["image", "video"]:
omni_kwargs.update({
"vae_use_slicing": is_npu(),
"vae_use_tiling": is_npu(),
"cache_backend": cache_backend,
"cache_config": cache_config,
"parallel_config": parallel_config,
"enforce_eager": self.options.get("enforce_eager", request.EnforceEager),
"enable_cpu_offload": self.options.get("enable_cpu_offload", False),
})
# Video-specific parameters
if self.model_type == "video":
omni_kwargs.update({
"boundary_ratio": self.options.get("boundary_ratio", 0.875),
"flow_shift": self.options.get("flow_shift", 5.0),
})
# Add LLM/TTS-specific parameters
if self.model_type in ["llm", "tts"]:
omni_kwargs.update({
"stage_configs_path": self.options.get("stage_configs_path"),
"log_stats": self.options.get("enable_stats", False),
"stage_init_timeout": self.options.get("stage_init_timeout", 300),
})
# vllm engine options (passed through Omni for LLM/TTS)
if request.GPUMemoryUtilization > 0:
omni_kwargs["gpu_memory_utilization"] = request.GPUMemoryUtilization
if request.TensorParallelSize > 0:
omni_kwargs["tensor_parallel_size"] = request.TensorParallelSize
if request.TrustRemoteCode:
omni_kwargs["trust_remote_code"] = request.TrustRemoteCode
if request.MaxModelLen > 0:
omni_kwargs["max_model_len"] = request.MaxModelLen
self.omni = Omni(**omni_kwargs)
print("Model loaded successfully", file=sys.stderr)
return backend_pb2.Result(message="Model loaded successfully", success=True)
except Exception as err:
print(f"Unexpected {err=}, {type(err)=}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
def GenerateImage(self, request, context):
try:
# Validate model is loaded and is image/diffusion type
if not hasattr(self, 'omni'):
return backend_pb2.Result(success=False, message="Model not loaded. Call LoadModel first.")
if self.model_type not in ["image"]:
return backend_pb2.Result(success=False, message=f"Model type {self.model_type} does not support image generation")
# Extract parameters
prompt = request.positive_prompt
negative_prompt = request.negative_prompt if request.negative_prompt else None
width = request.width if request.width > 0 else 1024
height = request.height if request.height > 0 else 1024
seed = request.seed if request.seed > 0 else None
num_inference_steps = request.step if request.step > 0 else 50
cfg_scale = self.options.get("cfg_scale", 4.0)
guidance_scale = self.options.get("guidance_scale", 1.0)
# Create generator if seed provided
generator = None
if seed:
device = detect_device_type()
generator = torch.Generator(device=device).manual_seed(seed)
# Handle image input for image editing
pil_image = None
if request.src or (request.ref_images and len(request.ref_images) > 0):
image_path = request.ref_images[0] if request.ref_images else request.src
pil_image = self._load_image(image_path)
if pil_image is None:
return backend_pb2.Result(success=False, message=f"Invalid image source: {image_path}")
pil_image = pil_image.convert("RGB")
# Build generate kwargs
generate_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"generator": generator,
"true_cfg_scale": cfg_scale,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
}
if pil_image:
generate_kwargs["pil_image"] = pil_image
# Call omni.generate()
outputs = self.omni.generate(**generate_kwargs)
# Extract images (following example pattern)
if not outputs or len(outputs) == 0:
return backend_pb2.Result(success=False, message="No output generated")
first_output = outputs[0]
if not hasattr(first_output, "request_output") or not first_output.request_output:
return backend_pb2.Result(success=False, message="Invalid output structure")
req_out = first_output.request_output[0]
if not isinstance(req_out, OmniRequestOutput) or not hasattr(req_out, "images"):
return backend_pb2.Result(success=False, message="No images in output")
images = req_out.images
if not images or len(images) == 0:
return backend_pb2.Result(success=False, message="Empty images list")
# Save image
output_image = images[0]
output_image.save(request.dst)
return backend_pb2.Result(message="Image generated successfully", success=True)
except Exception as err:
print(f"Error generating image: {err}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Error generating image: {err}")
def GenerateVideo(self, request, context):
try:
# Validate model is loaded and is video/diffusion type
if not hasattr(self, 'omni'):
return backend_pb2.Result(success=False, message="Model not loaded. Call LoadModel first.")
if self.model_type not in ["video"]:
return backend_pb2.Result(success=False, message=f"Model type {self.model_type} does not support video generation")
# Extract parameters
prompt = request.prompt
negative_prompt = request.negative_prompt if request.negative_prompt else ""
width = request.width if request.width > 0 else 1280
height = request.height if request.height > 0 else 720
num_frames = request.num_frames if request.num_frames > 0 else 81
fps = request.fps if request.fps > 0 else 24
seed = request.seed if request.seed > 0 else None
guidance_scale = request.cfg_scale if request.cfg_scale > 0 else 4.0
guidance_scale_high = self.options.get("guidance_scale_high")
num_inference_steps = request.step if request.step > 0 else 40
# Create generator
generator = None
if seed:
device = detect_device_type()
generator = torch.Generator(device=device).manual_seed(seed)
# Handle image input for image-to-video
pil_image = None
if request.start_image:
pil_image = self._load_image(request.start_image)
if pil_image is None:
return backend_pb2.Result(success=False, message=f"Invalid start_image: {request.start_image}")
pil_image = pil_image.convert("RGB")
# Resize to target dimensions
pil_image = pil_image.resize((width, height), Image.Resampling.LANCZOS)
# Build generate kwargs
generate_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"generator": generator,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"num_frames": num_frames,
}
if pil_image:
generate_kwargs["pil_image"] = pil_image
if guidance_scale_high:
generate_kwargs["guidance_scale_2"] = guidance_scale_high
# Call omni.generate()
frames = self.omni.generate(**generate_kwargs)
# Extract video frames (following example pattern)
if isinstance(frames, list) and len(frames) > 0:
first_item = frames[0]
if hasattr(first_item, "final_output_type"):
if first_item.final_output_type != "image":
return backend_pb2.Result(success=False, message=f"Unexpected output type: {first_item.final_output_type}")
# Pipeline mode: extract from nested request_output
if hasattr(first_item, "is_pipeline_output") and first_item.is_pipeline_output:
if isinstance(first_item.request_output, list) and len(first_item.request_output) > 0:
inner_output = first_item.request_output[0]
if isinstance(inner_output, OmniRequestOutput) and hasattr(inner_output, "images"):
frames = inner_output.images[0] if inner_output.images else None
# Diffusion mode: use direct images field
elif hasattr(first_item, "images") and first_item.images:
frames = first_item.images
else:
return backend_pb2.Result(success=False, message="No video frames found")
if frames is None:
return backend_pb2.Result(success=False, message="No video frames found in output")
# Convert frames to numpy array (following example)
if isinstance(frames, torch.Tensor):
video_tensor = frames.detach().cpu()
# Handle different tensor shapes [B, C, F, H, W] or [B, F, H, W, C]
if video_tensor.dim() == 5:
if video_tensor.shape[1] in (3, 4):
video_tensor = video_tensor[0].permute(1, 2, 3, 0)
else:
video_tensor = video_tensor[0]
elif video_tensor.dim() == 4 and video_tensor.shape[0] in (3, 4):
video_tensor = video_tensor.permute(1, 2, 3, 0)
# Normalize from [-1,1] to [0,1] if float
if video_tensor.is_floating_point():
video_tensor = video_tensor.clamp(-1, 1) * 0.5 + 0.5
video_array = video_tensor.float().numpy()
else:
video_array = frames
if hasattr(video_array, "shape") and video_array.ndim == 5:
video_array = video_array[0]
# Convert 4D array (frames, H, W, C) to list of frames
if isinstance(video_array, np.ndarray) and video_array.ndim == 4:
video_array = list(video_array)
# Save video
export_to_video(video_array, request.dst, fps=fps)
return backend_pb2.Result(message="Video generated successfully", success=True)
except Exception as err:
print(f"Error generating video: {err}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Error generating video: {err}")
def Predict(self, request, context):
"""Non-streaming text generation with multimodal inputs."""
gen = self._predict(request, context, streaming=False)
try:
res = next(gen)
return res
except StopIteration:
return backend_pb2.Reply(message=bytes("", 'utf-8'))
def PredictStream(self, request, context):
"""Streaming text generation with multimodal inputs."""
return self._predict(request, context, streaming=True)
def _predict(self, request, context, streaming=False):
"""Internal method for text generation (streaming and non-streaming)."""
try:
# Validate model is loaded and is LLM type
if not hasattr(self, 'omni'):
yield backend_pb2.Reply(message=bytes("Model not loaded. Call LoadModel first.", 'utf-8'))
return
if self.model_type not in ["llm"]:
yield backend_pb2.Reply(message=bytes(f"Model type {self.model_type} does not support text generation", 'utf-8'))
return
# Extract prompt
if request.Prompt:
prompt = request.Prompt
elif request.Messages and request.UseTokenizerTemplate:
# Build prompt from messages (simplified - would need tokenizer for full template)
prompt = ""
for msg in request.Messages:
role = msg.role
content = msg.content
prompt += f"<|im_start|>{role}\n{content}<|im_end|>\n"
prompt += "<|im_start|>assistant\n"
else:
yield backend_pb2.Reply(message=bytes("", 'utf-8'))
return
# Build multi_modal_data dict
multi_modal_data = {}
# Process images
if request.Images:
image_data = []
for img_path in request.Images:
img = self._load_image(img_path)
if img:
# Convert to format expected by vllm
from vllm.multimodal.image import convert_image_mode
img_data = convert_image_mode(img, "RGB")
image_data.append(img_data)
if image_data:
multi_modal_data["image"] = image_data
# Process videos
if request.Videos:
video_data = []
for video_path in request.Videos:
video = self._load_video(video_path)
if video is not None:
video_data.append(video)
if video_data:
multi_modal_data["video"] = video_data
# Process audio
if request.Audios:
audio_data = []
for audio_path in request.Audios:
audio = self._load_audio(audio_path)
if audio is not None:
audio_data.append(audio)
if audio_data:
multi_modal_data["audio"] = audio_data
# Build inputs dict
inputs = {
"prompt": prompt,
"multi_modal_data": multi_modal_data if multi_modal_data else None,
}
# Build sampling params
sampling_params = SamplingParams(
temperature=request.Temperature if request.Temperature > 0 else 0.7,
top_p=request.TopP if request.TopP > 0 else 0.9,
top_k=request.TopK if request.TopK > 0 else -1,
max_tokens=request.Tokens if request.Tokens > 0 else 200,
presence_penalty=request.PresencePenalty if request.PresencePenalty != 0 else 0.0,
frequency_penalty=request.FrequencyPenalty if request.FrequencyPenalty != 0 else 0.0,
repetition_penalty=request.RepetitionPenalty if request.RepetitionPenalty != 0 else 1.0,
seed=request.Seed if request.Seed > 0 else None,
stop=request.StopPrompts if request.StopPrompts else None,
stop_token_ids=request.StopTokenIds if request.StopTokenIds else None,
ignore_eos=request.IgnoreEOS,
)
sampling_params_list = [sampling_params]
# Call omni.generate() (returns generator for LLM mode)
omni_generator = self.omni.generate([inputs], sampling_params_list)
# Extract text from outputs
generated_text = ""
for stage_outputs in omni_generator:
if stage_outputs.final_output_type == "text":
for output in stage_outputs.request_output:
text_output = output.outputs[0].text
if streaming:
# Remove already sent text (vllm concatenates)
delta_text = text_output.removeprefix(generated_text)
yield backend_pb2.Reply(message=bytes(delta_text, encoding='utf-8'))
generated_text = text_output
if not streaming:
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
except Exception as err:
print(f"Error in Predict: {err}", file=sys.stderr)
traceback.print_exc()
yield backend_pb2.Reply(message=bytes(f"Error: {err}", encoding='utf-8'))
def TTS(self, request, context):
try:
# Validate model is loaded and is TTS type
if not hasattr(self, 'omni'):
return backend_pb2.Result(success=False, message="Model not loaded. Call LoadModel first.")
if self.model_type not in ["tts"]:
return backend_pb2.Result(success=False, message=f"Model type {self.model_type} does not support TTS")
# Extract parameters
text = request.text
language = request.language if request.language else "Auto"
voice = request.voice if request.voice else None
task_type = self._detect_tts_task_type()
# Build prompt with chat template
# TODO: for now vllm-omni supports only qwen3-tts, so we hardcode it, however, we want to support other models in the future.
# and we might need to use the chat template here
prompt = f"<|im_start|>assistant\n{text}<|im_end|>\n<|im_start|>assistant\n"
# Build inputs dict
inputs = {
"prompt": prompt,
"additional_information": {
"task_type": [task_type],
"text": [text],
"language": [language],
"max_new_tokens": [2048],
}
}
# Add task-specific fields
if task_type == "CustomVoice":
if voice:
inputs["additional_information"]["speaker"] = [voice]
# Add instruct if provided in options
if "instruct" in self.options:
inputs["additional_information"]["instruct"] = [self.options["instruct"]]
elif task_type == "VoiceDesign":
if "instruct" in self.options:
inputs["additional_information"]["instruct"] = [self.options["instruct"]]
inputs["additional_information"]["non_streaming_mode"] = [True]
elif task_type == "Base":
# Voice cloning requires ref_audio and ref_text
if "ref_audio" in self.options:
inputs["additional_information"]["ref_audio"] = [self.options["ref_audio"]]
if "ref_text" in self.options:
inputs["additional_information"]["ref_text"] = [self.options["ref_text"]]
if "x_vector_only_mode" in self.options:
inputs["additional_information"]["x_vector_only_mode"] = [self.options["x_vector_only_mode"]]
# Build sampling params
sampling_params = SamplingParams(
temperature=0.9,
top_p=1.0,
top_k=50,
max_tokens=2048,
seed=42,
detokenize=False,
repetition_penalty=1.05,
)
sampling_params_list = [sampling_params]
# Call omni.generate()
omni_generator = self.omni.generate(inputs, sampling_params_list)
# Extract audio (following TTS example)
for stage_outputs in omni_generator:
for output in stage_outputs.request_output:
if "audio" in output.multimodal_output:
audio_tensor = output.multimodal_output["audio"]
audio_samplerate = output.multimodal_output["sr"].item()
# Convert to numpy
audio_numpy = audio_tensor.float().detach().cpu().numpy()
if audio_numpy.ndim > 1:
audio_numpy = audio_numpy.flatten()
# Save audio file
sf.write(request.dst, audio_numpy, samplerate=audio_samplerate, format="WAV")
return backend_pb2.Result(message="TTS audio generated successfully", success=True)
return backend_pb2.Result(success=False, message="No audio output generated")
except Exception as err:
print(f"Error generating TTS: {err}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Error generating TTS: {err}")
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024),
('grpc.max_receive_message_length', 50 * 1024 * 1024),
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Signal handlers for graceful shutdown
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -0,0 +1,62 @@
#!/bin/bash
set -e
PYTHON_VERSION="3.12"
PYTHON_PATCH="12"
PY_STANDALONE_TAG="20251120"
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
# Handle l4t build profiles (Python 3.12, pip fallback) if needed
if [ "x${BUILD_PROFILE}" == "xl4t13" ]; then
PYTHON_VERSION="3.12"
PYTHON_PATCH="12"
PY_STANDALONE_TAG="20251120"
fi
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
# Install base requirements first
installRequirements
# Install vllm based on build type
if [ "x${BUILD_TYPE}" == "xhipblas" ]; then
# ROCm
if [ "x${USE_PIP}" == "xtrue" ]; then
pip install vllm==0.14.0 --extra-index-url https://wheels.vllm.ai/rocm/0.14.0/rocm700
else
uv pip install vllm==0.14.0 --extra-index-url https://wheels.vllm.ai/rocm/0.14.0/rocm700
fi
elif [ "x${BUILD_TYPE}" == "xcublas" ] || [ "x${BUILD_TYPE}" == "x" ]; then
# CUDA (default) or CPU
if [ "x${USE_PIP}" == "xtrue" ]; then
pip install vllm==0.14.0 --torch-backend=auto
else
uv pip install vllm==0.14.0 --torch-backend=auto
fi
else
echo "Unsupported build type: ${BUILD_TYPE}" >&2
exit 1
fi
# Clone and install vllm-omni from source
if [ ! -d vllm-omni ]; then
git clone https://github.com/vllm-project/vllm-omni.git
fi
cd vllm-omni/
if [ "x${USE_PIP}" == "xtrue" ]; then
pip install ${EXTRA_PIP_INSTALL_FLAGS:-} -e .
else
uv pip install ${EXTRA_PIP_INSTALL_FLAGS:-} -e .
fi
cd ..

View File

@@ -0,0 +1,2 @@
diffusers
librosa

View File

@@ -0,0 +1 @@
https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu12torch2.7cxx11abiTRUE-cp310-cp310-linux_x86_64.whl

View File

@@ -0,0 +1,4 @@
accelerate
torch==2.7.0
transformers
bitsandbytes

View File

@@ -0,0 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/nightly/rocm6.4
accelerate
torch
transformers
bitsandbytes

View File

@@ -0,0 +1,7 @@
grpcio==1.76.0
protobuf
certifi
setuptools
pillow
numpy
soundfile

11
backend/python/vllm-omni/run.sh Executable file
View File

@@ -0,0 +1,11 @@
#!/bin/bash
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
startBackend $@

View File

@@ -0,0 +1,82 @@
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service.
This class contains methods to test the startup and shutdown of the gRPC service.
"""
def setUp(self):
self.service = subprocess.Popen(["python", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
self.service.terminate()
self.service.wait()
def test_server_startup(self):
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
# Use a small image generation model for testing
response = stub.LoadModel(backend_pb2.ModelOptions(Model="Tongyi-MAI/Z-Image-Turbo"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_generate_image(self):
"""
This method tests if image generation works
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="Tongyi-MAI/Z-Image-Turbo"))
self.assertTrue(response.success)
req = backend_pb2.GenerateImageRequest(
positive_prompt="a cup of coffee on the table",
dst="/tmp/test_output.png",
width=512,
height=512,
step=20,
seed=42additional_information
)
resp = stub.GenerateImage(req)
self.assertTrue(resp.success)
except Exception as err:
print(err)
self.fail("GenerateImage service failed")
finally:
self.tearDown()
additional_information
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,12 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
runUnittests