mirror of
https://github.com/mudler/LocalAI.git
synced 2026-01-30 01:02:37 -05:00
feat(vibevoice): add ASR support (#8222)
* feat(vibevoice): add ASR support Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Add tests Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * fixups Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * chore(tests): download voice files Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Small fixups Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Small fixups Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Try to run on bigger runner Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Fixups Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Fixups Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * Fixups Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * debug Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * CI can't hold vibevoice Signed-off-by: Ettore Di Giacinto <mudler@localai.io> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
committed by
GitHub
parent
93d7e5d4b8
commit
ec1598868b
@@ -2,6 +2,43 @@
|
||||
vibevoice:
|
||||
bash install.sh
|
||||
|
||||
.PHONY: download-voices
|
||||
download-voices:
|
||||
@echo "Downloading voice preset files..."
|
||||
@mkdir -p voices/streaming_model
|
||||
@if command -v wget >/dev/null 2>&1; then \
|
||||
wget -q -O voices/streaming_model/en-Frank_man.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Frank_man.pt && \
|
||||
wget -q -O voices/streaming_model/en-Grace_woman.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Grace_woman.pt && \
|
||||
wget -q -O voices/streaming_model/en-Mike_man.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Mike_man.pt && \
|
||||
wget -q -O voices/streaming_model/en-Emma_woman.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Emma_woman.pt && \
|
||||
wget -q -O voices/streaming_model/en-Carter_man.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Carter_man.pt && \
|
||||
wget -q -O voices/streaming_model/en-Davis_man.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Davis_man.pt && \
|
||||
echo "Voice files downloaded successfully"; \
|
||||
elif command -v curl >/dev/null 2>&1; then \
|
||||
curl -sL -o voices/streaming_model/en-Frank_man.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Frank_man.pt && \
|
||||
curl -sL -o voices/streaming_model/en-Grace_woman.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Grace_woman.pt && \
|
||||
curl -sL -o voices/streaming_model/en-Mike_man.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Mike_man.pt && \
|
||||
curl -sL -o voices/streaming_model/en-Emma_woman.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Emma_woman.pt && \
|
||||
curl -sL -o voices/streaming_model/en-Carter_man.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Carter_man.pt && \
|
||||
curl -sL -o voices/streaming_model/en-Davis_man.pt \
|
||||
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Davis_man.pt && \
|
||||
echo "Voice files downloaded successfully"; \
|
||||
else \
|
||||
echo "Error: Neither wget nor curl found. Cannot download voice files."; \
|
||||
exit 1; \
|
||||
fi
|
||||
|
||||
.PHONY: run
|
||||
run: vibevoice
|
||||
@echo "Running vibevoice..."
|
||||
@@ -9,7 +46,7 @@ run: vibevoice
|
||||
@echo "vibevoice run."
|
||||
|
||||
.PHONY: test
|
||||
test: vibevoice
|
||||
test: vibevoice download-voices
|
||||
@echo "Testing vibevoice..."
|
||||
bash test.sh
|
||||
@echo "vibevoice tested."
|
||||
|
||||
@@ -16,6 +16,8 @@ import backend_pb2_grpc
|
||||
import torch
|
||||
from vibevoice.modular.modeling_vibevoice_streaming_inference import VibeVoiceStreamingForConditionalGenerationInference
|
||||
from vibevoice.processor.vibevoice_streaming_processor import VibeVoiceStreamingProcessor
|
||||
from vibevoice.modular.modeling_vibevoice_asr import VibeVoiceASRForConditionalGeneration
|
||||
from vibevoice.processor.vibevoice_asr_processor import VibeVoiceASRProcessor
|
||||
|
||||
import grpc
|
||||
|
||||
@@ -95,21 +97,72 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
value = value.lower() == "true"
|
||||
self.options[key] = value
|
||||
|
||||
# Check if ASR mode is enabled
|
||||
self.asr_mode = self.options.get("asr_mode", False)
|
||||
if not isinstance(self.asr_mode, bool):
|
||||
# Handle string "true"/"false" case
|
||||
self.asr_mode = str(self.asr_mode).lower() == "true"
|
||||
|
||||
# Get model path from request
|
||||
model_path = request.Model
|
||||
if not model_path:
|
||||
model_path = "microsoft/VibeVoice-Realtime-0.5B"
|
||||
if self.asr_mode:
|
||||
model_path = "microsoft/VibeVoice-ASR" # Default ASR model
|
||||
else:
|
||||
model_path = "microsoft/VibeVoice-Realtime-0.5B" # Default TTS model
|
||||
|
||||
# Get inference steps from options, default to 5
|
||||
default_dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
|
||||
|
||||
load_dtype = default_dtype
|
||||
if "torch_dtype" in self.options:
|
||||
torch_dtype_str = str(self.options["torch_dtype"]).lower()
|
||||
if torch_dtype_str == "fp16":
|
||||
load_dtype = torch.float16
|
||||
elif torch_dtype_str == "bf16":
|
||||
load_dtype = torch.bfloat16
|
||||
elif torch_dtype_str == "fp32":
|
||||
load_dtype = torch.float32
|
||||
# remove it from options after reading
|
||||
del self.options["torch_dtype"]
|
||||
|
||||
# Get inference steps from options, default to 5 (TTS only)
|
||||
self.inference_steps = self.options.get("inference_steps", 5)
|
||||
if not isinstance(self.inference_steps, int) or self.inference_steps <= 0:
|
||||
self.inference_steps = 5
|
||||
|
||||
# Get cfg_scale from options, default to 1.5
|
||||
# Get cfg_scale from options, default to 1.5 (TTS only)
|
||||
self.cfg_scale = self.options.get("cfg_scale", 1.5)
|
||||
if not isinstance(self.cfg_scale, (int, float)) or self.cfg_scale <= 0:
|
||||
self.cfg_scale = 1.5
|
||||
|
||||
# Get ASR generation parameters from options
|
||||
self.max_new_tokens = self.options.get("max_new_tokens", 512)
|
||||
if not isinstance(self.max_new_tokens, int) or self.max_new_tokens <= 0:
|
||||
self.max_new_tokens = 512
|
||||
|
||||
self.temperature = self.options.get("temperature", 0.0)
|
||||
if not isinstance(self.temperature, (int, float)) or self.temperature < 0:
|
||||
self.temperature = 0.0
|
||||
|
||||
self.top_p = self.options.get("top_p", 1.0)
|
||||
if not isinstance(self.top_p, (int, float)) or self.top_p <= 0:
|
||||
self.top_p = 1.0
|
||||
|
||||
self.do_sample = self.options.get("do_sample", None)
|
||||
if self.do_sample is None:
|
||||
# Default: use sampling if temperature > 0
|
||||
self.do_sample = self.temperature > 0
|
||||
elif not isinstance(self.do_sample, bool):
|
||||
self.do_sample = str(self.do_sample).lower() == "true"
|
||||
|
||||
self.num_beams = self.options.get("num_beams", 1)
|
||||
if not isinstance(self.num_beams, int) or self.num_beams < 1:
|
||||
self.num_beams = 1
|
||||
|
||||
self.repetition_penalty = self.options.get("repetition_penalty", 1.0)
|
||||
if not isinstance(self.repetition_penalty, (int, float)) or self.repetition_penalty <= 0:
|
||||
self.repetition_penalty = 1.0
|
||||
|
||||
# Determine voices directory
|
||||
# Priority order:
|
||||
# 1. voices_dir option (explicitly set by user - highest priority)
|
||||
@@ -163,91 +216,151 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
else:
|
||||
voices_dir = None
|
||||
|
||||
# Initialize voice-related attributes (TTS only)
|
||||
self.voices_dir = voices_dir
|
||||
self.voice_presets = {}
|
||||
self._voice_cache = {}
|
||||
self.default_voice_key = None
|
||||
|
||||
# Load voice presets if directory exists
|
||||
if self.voices_dir and os.path.exists(self.voices_dir):
|
||||
self._load_voice_presets()
|
||||
else:
|
||||
print(f"Warning: Voices directory not found. Voice presets will not be available.", file=sys.stderr)
|
||||
|
||||
# Store AudioPath, ModelFile, and ModelPath from LoadModel request for use in TTS
|
||||
self.audio_path = request.AudioPath if hasattr(request, 'AudioPath') and request.AudioPath else None
|
||||
self.model_file = request.ModelFile if hasattr(request, 'ModelFile') and request.ModelFile else None
|
||||
self.model_path = request.ModelPath if hasattr(request, 'ModelPath') and request.ModelPath else None
|
||||
|
||||
# Decide attention implementation and device_map (matching upstream example)
|
||||
if self.device == "mps":
|
||||
device_map = None
|
||||
attn_impl_primary = "sdpa" # flash_attention_2 not supported on MPS
|
||||
elif self.device == "cuda":
|
||||
device_map = "cuda"
|
||||
attn_impl_primary = "flash_attention_2"
|
||||
else: # cpu
|
||||
device_map = "cpu" # Match upstream example: use "cpu" for CPU device_map
|
||||
attn_impl_primary = "sdpa"
|
||||
|
||||
try:
|
||||
print(f"Loading processor & model from {model_path}", file=sys.stderr)
|
||||
self.processor = VibeVoiceStreamingProcessor.from_pretrained(model_path)
|
||||
if self.asr_mode:
|
||||
# Load ASR model and processor
|
||||
print(f"Loading ASR processor & model from {model_path}", file=sys.stderr)
|
||||
|
||||
# Load ASR processor
|
||||
self.processor = VibeVoiceASRProcessor.from_pretrained(
|
||||
model_path,
|
||||
language_model_pretrained_name="Qwen/Qwen2.5-7B"
|
||||
)
|
||||
|
||||
# Decide dtype & attention implementation
|
||||
if self.device == "mps":
|
||||
load_dtype = torch.float32 # MPS requires float32
|
||||
device_map = None
|
||||
attn_impl_primary = "sdpa" # flash_attention_2 not supported on MPS
|
||||
elif self.device == "cuda":
|
||||
load_dtype = torch.bfloat16
|
||||
device_map = "cuda"
|
||||
attn_impl_primary = "flash_attention_2"
|
||||
else: # cpu
|
||||
load_dtype = torch.float32
|
||||
device_map = "cpu"
|
||||
attn_impl_primary = "sdpa"
|
||||
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}", file=sys.stderr)
|
||||
|
||||
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}", file=sys.stderr)
|
||||
|
||||
# Load model with device-specific logic
|
||||
try:
|
||||
if self.device == "mps":
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
# Load ASR model - use device_map=None and move manually to avoid JSON serialization issues
|
||||
# Load with dtype to ensure all components are in correct dtype from the start
|
||||
try:
|
||||
print(f"Using attention implementation: {attn_impl_primary}", file=sys.stderr)
|
||||
# Load model with dtype to ensure all components are in correct dtype
|
||||
self.model = VibeVoiceASRForConditionalGeneration.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
dtype=load_dtype,
|
||||
device_map=None, # Always use None, move manually to avoid JSON serialization issues
|
||||
attn_implementation=attn_impl_primary,
|
||||
device_map=None, # load then move
|
||||
trust_remote_code=True
|
||||
)
|
||||
self.model.to("mps")
|
||||
elif self.device == "cuda":
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
device_map="cuda",
|
||||
attn_implementation=attn_impl_primary,
|
||||
)
|
||||
else: # cpu
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
device_map="cpu",
|
||||
attn_implementation=attn_impl_primary,
|
||||
)
|
||||
except Exception as e:
|
||||
if attn_impl_primary == 'flash_attention_2':
|
||||
print(f"[ERROR] : {type(e).__name__}: {e}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.", file=sys.stderr)
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
device_map=(self.device if self.device in ("cuda", "cpu") else None),
|
||||
attn_implementation='sdpa'
|
||||
)
|
||||
if self.device == "mps":
|
||||
self.model.to("mps")
|
||||
else:
|
||||
raise e
|
||||
# Move to device manually
|
||||
self.model = self.model.to(self.device)
|
||||
except Exception as e:
|
||||
if attn_impl_primary == 'flash_attention_2':
|
||||
print(f"[ERROR] : {type(e).__name__}: {e}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print("Error loading the ASR model. Trying to use SDPA.", file=sys.stderr)
|
||||
self.model = VibeVoiceASRForConditionalGeneration.from_pretrained(
|
||||
model_path,
|
||||
dtype=load_dtype,
|
||||
device_map=None,
|
||||
attn_implementation='sdpa',
|
||||
trust_remote_code=True
|
||||
)
|
||||
# Move to device manually
|
||||
self.model = self.model.to(self.device)
|
||||
else:
|
||||
raise e
|
||||
|
||||
self.model.eval()
|
||||
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
||||
|
||||
# Set default voice key
|
||||
if self.voice_presets:
|
||||
# Try to get default from environment or use first available
|
||||
preset_name = os.environ.get("VOICE_PRESET")
|
||||
self.default_voice_key = self._determine_voice_key(preset_name)
|
||||
print(f"Default voice preset: {self.default_voice_key}", file=sys.stderr)
|
||||
self.model.eval()
|
||||
print(f"ASR model loaded successfully", file=sys.stderr)
|
||||
else:
|
||||
print("Warning: No voice presets available. Voice selection will not work.", file=sys.stderr)
|
||||
# Load TTS model and processor (existing logic)
|
||||
# Load voice presets if directory exists
|
||||
if self.voices_dir and os.path.exists(self.voices_dir):
|
||||
self._load_voice_presets()
|
||||
else:
|
||||
print(f"Warning: Voices directory not found. Voice presets will not be available.", file=sys.stderr)
|
||||
|
||||
print(f"Loading TTS processor & model from {model_path}", file=sys.stderr)
|
||||
self.processor = VibeVoiceStreamingProcessor.from_pretrained(model_path)
|
||||
|
||||
|
||||
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}", file=sys.stderr)
|
||||
|
||||
# Load model with device-specific logic (matching upstream example exactly)
|
||||
try:
|
||||
if self.device == "mps":
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
attn_implementation=attn_impl_primary,
|
||||
device_map=None, # load then move
|
||||
)
|
||||
self.model.to("mps")
|
||||
elif self.device == "cuda":
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
device_map=device_map,
|
||||
attn_implementation=attn_impl_primary,
|
||||
)
|
||||
else: # cpu
|
||||
# Match upstream example: use device_map="cpu" for CPU
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
device_map="cpu",
|
||||
attn_implementation=attn_impl_primary,
|
||||
)
|
||||
except Exception as e:
|
||||
if attn_impl_primary == 'flash_attention_2':
|
||||
print(f"[ERROR] : {type(e).__name__}: {e}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.", file=sys.stderr)
|
||||
# Match upstream example fallback pattern
|
||||
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=load_dtype,
|
||||
device_map=(self.device if self.device in ("cuda", "cpu") else None),
|
||||
attn_implementation='sdpa'
|
||||
)
|
||||
if self.device == "mps":
|
||||
self.model.to("mps")
|
||||
else:
|
||||
raise e
|
||||
|
||||
self.model.eval()
|
||||
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
||||
|
||||
# Set default voice key
|
||||
if self.voice_presets:
|
||||
# Try to get default from environment or use first available
|
||||
preset_name = os.environ.get("VOICE_PRESET")
|
||||
self.default_voice_key = self._determine_voice_key(preset_name)
|
||||
print(f"Default voice preset: {self.default_voice_key}", file=sys.stderr)
|
||||
else:
|
||||
print("Warning: No voice presets available. Voice selection will not work.", file=sys.stderr)
|
||||
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
# Format error message safely, avoiding JSON serialization issues
|
||||
error_msg = str(err)
|
||||
error_type = type(err).__name__
|
||||
# Include traceback for debugging
|
||||
tb_str = traceback.format_exc()
|
||||
print(f"[ERROR] LoadModel failed: {error_type}: {error_msg}", file=sys.stderr)
|
||||
print(tb_str, file=sys.stderr)
|
||||
return backend_pb2.Result(success=False, message=f"{error_type}: {error_msg}")
|
||||
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
@@ -327,14 +440,30 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
if not voice_path or not os.path.exists(voice_path):
|
||||
return None
|
||||
|
||||
# Ensure cache exists (should be initialized in LoadModel)
|
||||
if not hasattr(self, '_voice_cache'):
|
||||
self._voice_cache = {}
|
||||
|
||||
# Use path as cache key
|
||||
if voice_path not in self._voice_cache:
|
||||
print(f"Loading prefilled prompt from {voice_path}", file=sys.stderr)
|
||||
prefilled_outputs = torch.load(
|
||||
voice_path,
|
||||
map_location=self._torch_device,
|
||||
weights_only=False,
|
||||
)
|
||||
# Match self-test.py: use string device name for map_location
|
||||
# Ensure self.device exists (should be set in LoadModel)
|
||||
try:
|
||||
if not hasattr(self, 'device'):
|
||||
# Fallback to CPU if device not set
|
||||
device_str = "cpu"
|
||||
else:
|
||||
device_str = str(self.device)
|
||||
except AttributeError as e:
|
||||
print(f"Error accessing self.device: {e}, falling back to CPU", file=sys.stderr)
|
||||
device_str = "cpu"
|
||||
if device_str != "cpu":
|
||||
map_loc = device_str
|
||||
else:
|
||||
map_loc = "cpu"
|
||||
# Call torch.load with explicit arguments
|
||||
prefilled_outputs = torch.load(voice_path, map_location=map_loc, weights_only=False)
|
||||
self._voice_cache[voice_path] = prefilled_outputs
|
||||
|
||||
return self._voice_cache[voice_path]
|
||||
@@ -351,17 +480,17 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
voice_path = self._get_voice_path(request.voice)
|
||||
if voice_path:
|
||||
voice_key = request.voice
|
||||
elif request.AudioPath:
|
||||
# Use AudioPath as voice file
|
||||
if os.path.isabs(request.AudioPath):
|
||||
voice_path = request.AudioPath
|
||||
elif request.ModelFile:
|
||||
model_file_base = os.path.dirname(request.ModelFile)
|
||||
voice_path = os.path.join(model_file_base, request.AudioPath)
|
||||
elif hasattr(request, 'ModelPath') and request.ModelPath:
|
||||
voice_path = os.path.join(request.ModelPath, request.AudioPath)
|
||||
elif self.audio_path:
|
||||
# Use AudioPath from LoadModel as voice file
|
||||
if os.path.isabs(self.audio_path):
|
||||
voice_path = self.audio_path
|
||||
elif self.model_file:
|
||||
model_file_base = os.path.dirname(self.model_file)
|
||||
voice_path = os.path.join(model_file_base, self.audio_path)
|
||||
elif self.model_path:
|
||||
voice_path = os.path.join(self.model_path, self.audio_path)
|
||||
else:
|
||||
voice_path = request.AudioPath
|
||||
voice_path = self.audio_path
|
||||
elif self.default_voice_key:
|
||||
voice_path = self._get_voice_path(self.default_voice_key)
|
||||
voice_key = self.default_voice_key
|
||||
@@ -404,8 +533,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
return_attention_mask=True,
|
||||
)
|
||||
|
||||
# Move tensors to target device
|
||||
target_device = self._torch_device
|
||||
# Move tensors to target device (matching self-test.py exactly)
|
||||
# Explicitly ensure it's a string to avoid any variable name collisions
|
||||
target_device = str(self.device) if str(self.device) != "cpu" else "cpu"
|
||||
for k, v in inputs.items():
|
||||
if torch.is_tensor(v):
|
||||
inputs[k] = v.to(target_device)
|
||||
@@ -447,6 +577,147 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Transcribe audio file to text using ASR model."""
|
||||
try:
|
||||
# Validate ASR mode is active
|
||||
if not self.asr_mode:
|
||||
return backend_pb2.TranscriptResult(
|
||||
segments=[],
|
||||
text="",
|
||||
)
|
||||
# Note: We return empty result instead of error to match faster-whisper behavior
|
||||
|
||||
# Get audio file path
|
||||
audio_path = request.dst
|
||||
if not audio_path or not os.path.exists(audio_path):
|
||||
print(f"Error: Audio file not found: {audio_path}", file=sys.stderr)
|
||||
return backend_pb2.TranscriptResult(
|
||||
segments=[],
|
||||
text="",
|
||||
)
|
||||
|
||||
print(f"Transcribing audio file: {audio_path}", file=sys.stderr)
|
||||
|
||||
# Get context_info from options if available
|
||||
context_info = self.options.get("context_info", None)
|
||||
if context_info and isinstance(context_info, str) and context_info.strip():
|
||||
context_info = context_info.strip()
|
||||
else:
|
||||
context_info = None
|
||||
|
||||
# Process audio with ASR processor (matching gradio example)
|
||||
inputs = self.processor(
|
||||
audio=audio_path,
|
||||
sampling_rate=None,
|
||||
return_tensors="pt",
|
||||
add_generation_prompt=True,
|
||||
context_info=context_info
|
||||
)
|
||||
|
||||
# Move to device (matching gradio example)
|
||||
inputs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v
|
||||
for k, v in inputs.items()}
|
||||
|
||||
# Prepare generation config (matching gradio example)
|
||||
generation_config = {
|
||||
"max_new_tokens": self.max_new_tokens,
|
||||
"temperature": self.temperature if self.temperature > 0 else None,
|
||||
"top_p": self.top_p if self.do_sample else None,
|
||||
"do_sample": self.do_sample,
|
||||
"num_beams": self.num_beams,
|
||||
"repetition_penalty": self.repetition_penalty,
|
||||
"pad_token_id": self.processor.pad_id,
|
||||
"eos_token_id": self.processor.tokenizer.eos_token_id,
|
||||
}
|
||||
|
||||
# Remove None values (matching gradio example)
|
||||
generation_config = {k: v for k, v in generation_config.items() if v is not None}
|
||||
|
||||
print(f"Generating transcription with max_new_tokens: {self.max_new_tokens}, temperature: {self.temperature}, do_sample: {self.do_sample}, num_beams: {self.num_beams}, repetition_penalty: {self.repetition_penalty}", file=sys.stderr)
|
||||
|
||||
# Generate transcription (matching gradio example)
|
||||
with torch.no_grad():
|
||||
output_ids = self.model.generate(
|
||||
**inputs,
|
||||
**generation_config
|
||||
)
|
||||
|
||||
# Decode output (matching gradio example)
|
||||
generated_ids = output_ids[0, inputs['input_ids'].shape[1]:]
|
||||
generated_text = self.processor.decode(generated_ids, skip_special_tokens=True)
|
||||
|
||||
# Parse structured output to get segments
|
||||
result_segments = []
|
||||
try:
|
||||
transcription_segments = self.processor.post_process_transcription(generated_text)
|
||||
|
||||
if transcription_segments:
|
||||
# Map segments to TranscriptSegment format
|
||||
for idx, seg in enumerate(transcription_segments):
|
||||
# Extract timing information (if available)
|
||||
# Handle both dict and object with attributes
|
||||
if isinstance(seg, dict):
|
||||
start_time = seg.get('start_time', 0)
|
||||
end_time = seg.get('end_time', 0)
|
||||
text = seg.get('text', '')
|
||||
speaker_id = seg.get('speaker_id', None)
|
||||
else:
|
||||
# Handle object with attributes
|
||||
start_time = getattr(seg, 'start_time', 0)
|
||||
end_time = getattr(seg, 'end_time', 0)
|
||||
text = getattr(seg, 'text', '')
|
||||
speaker_id = getattr(seg, 'speaker_id', None)
|
||||
|
||||
# Convert time to milliseconds (assuming seconds)
|
||||
start_ms = int(start_time * 1000) if isinstance(start_time, (int, float)) else 0
|
||||
end_ms = int(end_time * 1000) if isinstance(end_time, (int, float)) else 0
|
||||
|
||||
# Add speaker info to text if available
|
||||
if speaker_id is not None:
|
||||
text = f"[Speaker {speaker_id}] {text}"
|
||||
|
||||
result_segments.append(backend_pb2.TranscriptSegment(
|
||||
id=idx,
|
||||
start=start_ms,
|
||||
end=end_ms,
|
||||
text=text,
|
||||
tokens=[] # Token IDs not extracted for now
|
||||
))
|
||||
except Exception as e:
|
||||
print(f"Warning: Failed to parse structured output: {e}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
# Fallback: create a single segment with the full text
|
||||
if generated_text:
|
||||
result_segments.append(backend_pb2.TranscriptSegment(
|
||||
id=0,
|
||||
start=0,
|
||||
end=0,
|
||||
text=generated_text,
|
||||
tokens=[]
|
||||
))
|
||||
|
||||
# Combine all segment texts into full transcription
|
||||
if result_segments:
|
||||
full_text = " ".join([seg.text for seg in result_segments])
|
||||
else:
|
||||
full_text = generated_text if generated_text else ""
|
||||
|
||||
print(f"Transcription completed: {len(result_segments)} segments", file=sys.stderr)
|
||||
|
||||
return backend_pb2.TranscriptResult(
|
||||
segments=result_segments,
|
||||
text=full_text
|
||||
)
|
||||
|
||||
except Exception as err:
|
||||
print(f"Error in AudioTranscription: {err}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
return backend_pb2.TranscriptResult(
|
||||
segments=[],
|
||||
text="",
|
||||
)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
|
||||
options=[
|
||||
|
||||
@@ -29,11 +29,13 @@ fi
|
||||
|
||||
installRequirements
|
||||
|
||||
git clone https://github.com/microsoft/VibeVoice.git
|
||||
cd VibeVoice/
|
||||
if [ ! -d VibeVoice ]; then
|
||||
git clone https://github.com/microsoft/VibeVoice.git
|
||||
cd VibeVoice/
|
||||
|
||||
if [ "x${USE_PIP}" == "xtrue" ]; then
|
||||
pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
|
||||
else
|
||||
uv pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
|
||||
if [ "x${USE_PIP}" == "xtrue" ]; then
|
||||
pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
|
||||
else
|
||||
uv pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
|
||||
fi
|
||||
fi
|
||||
@@ -1,7 +1,7 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
transformers>=4.51.3,<5.0.0
|
||||
torchvision==0.22.1
|
||||
accelerate
|
||||
compel
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu121
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
transformers>=4.51.3,<5.0.0
|
||||
torchvision
|
||||
accelerate
|
||||
compel
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu130
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
transformers>=4.51.3,<5.0.0
|
||||
torchvision
|
||||
accelerate
|
||||
compel
|
||||
|
||||
@@ -3,7 +3,7 @@ torch==2.7.1+rocm6.3
|
||||
torchvision==0.22.1+rocm6.3
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
transformers>=4.51.3,<5.0.0
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
|
||||
@@ -5,7 +5,7 @@ optimum[openvino]
|
||||
setuptools
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
transformers>=4.51.3,<5.0.0
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
--extra-index-url https://pypi.jetson-ai-lab.io/jp6/cu129/
|
||||
torch
|
||||
git+https://github.com/huggingface/diffusers
|
||||
transformers==4.51.3
|
||||
transformers>=4.51.3,<5.0.0
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu130
|
||||
torch
|
||||
git+https://github.com/huggingface/diffusers
|
||||
transformers==4.51.3
|
||||
transformers>=4.51.3,<5.0.0
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
|
||||
@@ -2,7 +2,7 @@ torch==2.7.1
|
||||
torchvision==0.22.1
|
||||
git+https://github.com/huggingface/diffusers
|
||||
opencv-python
|
||||
transformers==4.51.3
|
||||
transformers>=4.51.3,<5.0.0
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
|
||||
@@ -1,14 +1,21 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
A test script to test the gRPC service for VibeVoice TTS and ASR
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import os
|
||||
import tempfile
|
||||
import shutil
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
# Check if we should skip ASR tests (they require large models ~14B parameters total)
|
||||
# Skip in CI or if explicitly disabled
|
||||
SKIP_ASR_TESTS = os.environ.get("SKIP_ASR_TESTS", "false").lower() == "true"
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
@@ -44,15 +51,15 @@ class TestBackendServicer(unittest.TestCase):
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
def test_load_tts_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
This method tests if the TTS model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="microsoft/VibeVoice-Realtime-0.5B"))
|
||||
print(response)
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
@@ -62,21 +69,142 @@ class TestBackendServicer(unittest.TestCase):
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_tts(self):
|
||||
@unittest.skipIf(SKIP_ASR_TESTS, "ASR tests require large models (~14B parameters) and are skipped in CI")
|
||||
def test_load_asr_model(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
This method tests if the ASR model is loaded successfully with asr_mode option
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(
|
||||
Model="microsoft/VibeVoice-ASR",
|
||||
Options=["asr_mode:true"]
|
||||
))
|
||||
print(f"LoadModel response: {response}")
|
||||
if not response.success:
|
||||
print(f"LoadModel failed with message: {response.message}")
|
||||
self.assertTrue(response.success, f"LoadModel failed: {response.message}")
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(f"Exception during LoadModel: {err}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
self.fail("LoadModel service failed for ASR mode")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_tts(self):
|
||||
"""
|
||||
This method tests if TTS generation works successfully
|
||||
"""
|
||||
# Create a temporary directory for the output audio file
|
||||
temp_dir = tempfile.mkdtemp()
|
||||
output_file = os.path.join(temp_dir, 'output.wav')
|
||||
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
# Load TTS model
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="microsoft/VibeVoice-Realtime-0.5B"))
|
||||
self.assertTrue(response.success)
|
||||
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
|
||||
|
||||
# Generate TTS
|
||||
tts_request = backend_pb2.TTSRequest(
|
||||
text="Hello, this is a test of the VibeVoice text to speech system.",
|
||||
dst=output_file
|
||||
)
|
||||
tts_response = stub.TTS(tts_request)
|
||||
|
||||
# Verify response
|
||||
self.assertIsNotNone(tts_response)
|
||||
self.assertTrue(tts_response.success)
|
||||
|
||||
# Verify output file was created
|
||||
self.assertTrue(os.path.exists(output_file), f"Output file was not created: {output_file}")
|
||||
self.assertGreater(os.path.getsize(output_file), 0, "Output file is empty")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("TTS service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
self.tearDown()
|
||||
# Clean up the temporary directory
|
||||
if os.path.exists(temp_dir):
|
||||
shutil.rmtree(temp_dir)
|
||||
|
||||
@unittest.skipIf(SKIP_ASR_TESTS, "ASR tests require large models (~14B parameters) and are skipped in CI")
|
||||
def test_audio_transcription(self):
|
||||
"""
|
||||
This method tests if audio transcription works successfully
|
||||
"""
|
||||
# Create a temporary directory for the audio file
|
||||
temp_dir = tempfile.mkdtemp()
|
||||
audio_file = os.path.join(temp_dir, 'audio.wav')
|
||||
|
||||
try:
|
||||
# Download the audio file to the temporary directory
|
||||
print(f"Downloading audio file to {audio_file}...")
|
||||
url = "https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav"
|
||||
result = subprocess.run(
|
||||
["wget", "-q", url, "-O", audio_file],
|
||||
capture_output=True,
|
||||
text=True
|
||||
)
|
||||
if result.returncode != 0:
|
||||
self.fail(f"Failed to download audio file: {result.stderr}")
|
||||
|
||||
# Verify the file was downloaded
|
||||
if not os.path.exists(audio_file):
|
||||
self.fail(f"Audio file was not downloaded to {audio_file}")
|
||||
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
# Load the ASR model first
|
||||
load_response = stub.LoadModel(backend_pb2.ModelOptions(
|
||||
Model="microsoft/VibeVoice-ASR",
|
||||
Options=["asr_mode:true"]
|
||||
))
|
||||
print(f"LoadModel response: {load_response}")
|
||||
if not load_response.success:
|
||||
print(f"LoadModel failed with message: {load_response.message}")
|
||||
self.assertTrue(load_response.success, f"LoadModel failed: {load_response.message}")
|
||||
|
||||
# Perform transcription
|
||||
transcript_request = backend_pb2.TranscriptRequest(dst=audio_file)
|
||||
transcript_response = stub.AudioTranscription(transcript_request)
|
||||
|
||||
# Print the transcribed text for debugging
|
||||
print(f"Transcribed text: {transcript_response.text}")
|
||||
print(f"Number of segments: {len(transcript_response.segments)}")
|
||||
|
||||
# Verify response structure
|
||||
self.assertIsNotNone(transcript_response)
|
||||
self.assertIsNotNone(transcript_response.text)
|
||||
# Protobuf repeated fields return a sequence, not a list
|
||||
self.assertIsNotNone(transcript_response.segments)
|
||||
# Check if segments is iterable (has length)
|
||||
self.assertGreaterEqual(len(transcript_response.segments), 0)
|
||||
|
||||
# Verify the transcription contains some text
|
||||
self.assertGreater(len(transcript_response.text), 0, "Transcription should not be empty")
|
||||
|
||||
# If we got segments, verify they have the expected structure
|
||||
if len(transcript_response.segments) > 0:
|
||||
segment = transcript_response.segments[0]
|
||||
self.assertIsNotNone(segment.text)
|
||||
self.assertIsInstance(segment.id, int)
|
||||
else:
|
||||
# Even if no segments, we should have text
|
||||
self.assertIsNotNone(transcript_response.text)
|
||||
self.assertGreater(len(transcript_response.text), 0)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("AudioTranscription service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
# Clean up the temporary directory
|
||||
if os.path.exists(temp_dir):
|
||||
shutil.rmtree(temp_dir)
|
||||
Reference in New Issue
Block a user