feat(vibevoice): add ASR support (#8222)

* feat(vibevoice): add ASR support

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add tests

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* chore(tests): download voice files

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Small fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Small fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Try to run on bigger runner

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* debug

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* CI can't hold vibevoice

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto
2026-01-27 20:19:22 +01:00
committed by GitHub
parent 93d7e5d4b8
commit ec1598868b
13 changed files with 576 additions and 119 deletions

View File

@@ -2,6 +2,43 @@
vibevoice:
bash install.sh
.PHONY: download-voices
download-voices:
@echo "Downloading voice preset files..."
@mkdir -p voices/streaming_model
@if command -v wget >/dev/null 2>&1; then \
wget -q -O voices/streaming_model/en-Frank_man.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Frank_man.pt && \
wget -q -O voices/streaming_model/en-Grace_woman.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Grace_woman.pt && \
wget -q -O voices/streaming_model/en-Mike_man.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Mike_man.pt && \
wget -q -O voices/streaming_model/en-Emma_woman.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Emma_woman.pt && \
wget -q -O voices/streaming_model/en-Carter_man.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Carter_man.pt && \
wget -q -O voices/streaming_model/en-Davis_man.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Davis_man.pt && \
echo "Voice files downloaded successfully"; \
elif command -v curl >/dev/null 2>&1; then \
curl -sL -o voices/streaming_model/en-Frank_man.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Frank_man.pt && \
curl -sL -o voices/streaming_model/en-Grace_woman.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Grace_woman.pt && \
curl -sL -o voices/streaming_model/en-Mike_man.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Mike_man.pt && \
curl -sL -o voices/streaming_model/en-Emma_woman.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Emma_woman.pt && \
curl -sL -o voices/streaming_model/en-Carter_man.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Carter_man.pt && \
curl -sL -o voices/streaming_model/en-Davis_man.pt \
https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Davis_man.pt && \
echo "Voice files downloaded successfully"; \
else \
echo "Error: Neither wget nor curl found. Cannot download voice files."; \
exit 1; \
fi
.PHONY: run
run: vibevoice
@echo "Running vibevoice..."
@@ -9,7 +46,7 @@ run: vibevoice
@echo "vibevoice run."
.PHONY: test
test: vibevoice
test: vibevoice download-voices
@echo "Testing vibevoice..."
bash test.sh
@echo "vibevoice tested."

View File

@@ -16,6 +16,8 @@ import backend_pb2_grpc
import torch
from vibevoice.modular.modeling_vibevoice_streaming_inference import VibeVoiceStreamingForConditionalGenerationInference
from vibevoice.processor.vibevoice_streaming_processor import VibeVoiceStreamingProcessor
from vibevoice.modular.modeling_vibevoice_asr import VibeVoiceASRForConditionalGeneration
from vibevoice.processor.vibevoice_asr_processor import VibeVoiceASRProcessor
import grpc
@@ -95,21 +97,72 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
value = value.lower() == "true"
self.options[key] = value
# Check if ASR mode is enabled
self.asr_mode = self.options.get("asr_mode", False)
if not isinstance(self.asr_mode, bool):
# Handle string "true"/"false" case
self.asr_mode = str(self.asr_mode).lower() == "true"
# Get model path from request
model_path = request.Model
if not model_path:
model_path = "microsoft/VibeVoice-Realtime-0.5B"
if self.asr_mode:
model_path = "microsoft/VibeVoice-ASR" # Default ASR model
else:
model_path = "microsoft/VibeVoice-Realtime-0.5B" # Default TTS model
# Get inference steps from options, default to 5
default_dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
load_dtype = default_dtype
if "torch_dtype" in self.options:
torch_dtype_str = str(self.options["torch_dtype"]).lower()
if torch_dtype_str == "fp16":
load_dtype = torch.float16
elif torch_dtype_str == "bf16":
load_dtype = torch.bfloat16
elif torch_dtype_str == "fp32":
load_dtype = torch.float32
# remove it from options after reading
del self.options["torch_dtype"]
# Get inference steps from options, default to 5 (TTS only)
self.inference_steps = self.options.get("inference_steps", 5)
if not isinstance(self.inference_steps, int) or self.inference_steps <= 0:
self.inference_steps = 5
# Get cfg_scale from options, default to 1.5
# Get cfg_scale from options, default to 1.5 (TTS only)
self.cfg_scale = self.options.get("cfg_scale", 1.5)
if not isinstance(self.cfg_scale, (int, float)) or self.cfg_scale <= 0:
self.cfg_scale = 1.5
# Get ASR generation parameters from options
self.max_new_tokens = self.options.get("max_new_tokens", 512)
if not isinstance(self.max_new_tokens, int) or self.max_new_tokens <= 0:
self.max_new_tokens = 512
self.temperature = self.options.get("temperature", 0.0)
if not isinstance(self.temperature, (int, float)) or self.temperature < 0:
self.temperature = 0.0
self.top_p = self.options.get("top_p", 1.0)
if not isinstance(self.top_p, (int, float)) or self.top_p <= 0:
self.top_p = 1.0
self.do_sample = self.options.get("do_sample", None)
if self.do_sample is None:
# Default: use sampling if temperature > 0
self.do_sample = self.temperature > 0
elif not isinstance(self.do_sample, bool):
self.do_sample = str(self.do_sample).lower() == "true"
self.num_beams = self.options.get("num_beams", 1)
if not isinstance(self.num_beams, int) or self.num_beams < 1:
self.num_beams = 1
self.repetition_penalty = self.options.get("repetition_penalty", 1.0)
if not isinstance(self.repetition_penalty, (int, float)) or self.repetition_penalty <= 0:
self.repetition_penalty = 1.0
# Determine voices directory
# Priority order:
# 1. voices_dir option (explicitly set by user - highest priority)
@@ -163,91 +216,151 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
else:
voices_dir = None
# Initialize voice-related attributes (TTS only)
self.voices_dir = voices_dir
self.voice_presets = {}
self._voice_cache = {}
self.default_voice_key = None
# Load voice presets if directory exists
if self.voices_dir and os.path.exists(self.voices_dir):
self._load_voice_presets()
else:
print(f"Warning: Voices directory not found. Voice presets will not be available.", file=sys.stderr)
# Store AudioPath, ModelFile, and ModelPath from LoadModel request for use in TTS
self.audio_path = request.AudioPath if hasattr(request, 'AudioPath') and request.AudioPath else None
self.model_file = request.ModelFile if hasattr(request, 'ModelFile') and request.ModelFile else None
self.model_path = request.ModelPath if hasattr(request, 'ModelPath') and request.ModelPath else None
# Decide attention implementation and device_map (matching upstream example)
if self.device == "mps":
device_map = None
attn_impl_primary = "sdpa" # flash_attention_2 not supported on MPS
elif self.device == "cuda":
device_map = "cuda"
attn_impl_primary = "flash_attention_2"
else: # cpu
device_map = "cpu" # Match upstream example: use "cpu" for CPU device_map
attn_impl_primary = "sdpa"
try:
print(f"Loading processor & model from {model_path}", file=sys.stderr)
self.processor = VibeVoiceStreamingProcessor.from_pretrained(model_path)
if self.asr_mode:
# Load ASR model and processor
print(f"Loading ASR processor & model from {model_path}", file=sys.stderr)
# Load ASR processor
self.processor = VibeVoiceASRProcessor.from_pretrained(
model_path,
language_model_pretrained_name="Qwen/Qwen2.5-7B"
)
# Decide dtype & attention implementation
if self.device == "mps":
load_dtype = torch.float32 # MPS requires float32
device_map = None
attn_impl_primary = "sdpa" # flash_attention_2 not supported on MPS
elif self.device == "cuda":
load_dtype = torch.bfloat16
device_map = "cuda"
attn_impl_primary = "flash_attention_2"
else: # cpu
load_dtype = torch.float32
device_map = "cpu"
attn_impl_primary = "sdpa"
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}", file=sys.stderr)
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}", file=sys.stderr)
# Load model with device-specific logic
try:
if self.device == "mps":
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
# Load ASR model - use device_map=None and move manually to avoid JSON serialization issues
# Load with dtype to ensure all components are in correct dtype from the start
try:
print(f"Using attention implementation: {attn_impl_primary}", file=sys.stderr)
# Load model with dtype to ensure all components are in correct dtype
self.model = VibeVoiceASRForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=load_dtype,
dtype=load_dtype,
device_map=None, # Always use None, move manually to avoid JSON serialization issues
attn_implementation=attn_impl_primary,
device_map=None, # load then move
trust_remote_code=True
)
self.model.to("mps")
elif self.device == "cuda":
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=load_dtype,
device_map="cuda",
attn_implementation=attn_impl_primary,
)
else: # cpu
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=load_dtype,
device_map="cpu",
attn_implementation=attn_impl_primary,
)
except Exception as e:
if attn_impl_primary == 'flash_attention_2':
print(f"[ERROR] : {type(e).__name__}: {e}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.", file=sys.stderr)
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=load_dtype,
device_map=(self.device if self.device in ("cuda", "cpu") else None),
attn_implementation='sdpa'
)
if self.device == "mps":
self.model.to("mps")
else:
raise e
# Move to device manually
self.model = self.model.to(self.device)
except Exception as e:
if attn_impl_primary == 'flash_attention_2':
print(f"[ERROR] : {type(e).__name__}: {e}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print("Error loading the ASR model. Trying to use SDPA.", file=sys.stderr)
self.model = VibeVoiceASRForConditionalGeneration.from_pretrained(
model_path,
dtype=load_dtype,
device_map=None,
attn_implementation='sdpa',
trust_remote_code=True
)
# Move to device manually
self.model = self.model.to(self.device)
else:
raise e
self.model.eval()
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
# Set default voice key
if self.voice_presets:
# Try to get default from environment or use first available
preset_name = os.environ.get("VOICE_PRESET")
self.default_voice_key = self._determine_voice_key(preset_name)
print(f"Default voice preset: {self.default_voice_key}", file=sys.stderr)
self.model.eval()
print(f"ASR model loaded successfully", file=sys.stderr)
else:
print("Warning: No voice presets available. Voice selection will not work.", file=sys.stderr)
# Load TTS model and processor (existing logic)
# Load voice presets if directory exists
if self.voices_dir and os.path.exists(self.voices_dir):
self._load_voice_presets()
else:
print(f"Warning: Voices directory not found. Voice presets will not be available.", file=sys.stderr)
print(f"Loading TTS processor & model from {model_path}", file=sys.stderr)
self.processor = VibeVoiceStreamingProcessor.from_pretrained(model_path)
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}", file=sys.stderr)
# Load model with device-specific logic (matching upstream example exactly)
try:
if self.device == "mps":
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=load_dtype,
attn_implementation=attn_impl_primary,
device_map=None, # load then move
)
self.model.to("mps")
elif self.device == "cuda":
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=load_dtype,
device_map=device_map,
attn_implementation=attn_impl_primary,
)
else: # cpu
# Match upstream example: use device_map="cpu" for CPU
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=load_dtype,
device_map="cpu",
attn_implementation=attn_impl_primary,
)
except Exception as e:
if attn_impl_primary == 'flash_attention_2':
print(f"[ERROR] : {type(e).__name__}: {e}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.", file=sys.stderr)
# Match upstream example fallback pattern
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=load_dtype,
device_map=(self.device if self.device in ("cuda", "cpu") else None),
attn_implementation='sdpa'
)
if self.device == "mps":
self.model.to("mps")
else:
raise e
self.model.eval()
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
# Set default voice key
if self.voice_presets:
# Try to get default from environment or use first available
preset_name = os.environ.get("VOICE_PRESET")
self.default_voice_key = self._determine_voice_key(preset_name)
print(f"Default voice preset: {self.default_voice_key}", file=sys.stderr)
else:
print("Warning: No voice presets available. Voice selection will not work.", file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Format error message safely, avoiding JSON serialization issues
error_msg = str(err)
error_type = type(err).__name__
# Include traceback for debugging
tb_str = traceback.format_exc()
print(f"[ERROR] LoadModel failed: {error_type}: {error_msg}", file=sys.stderr)
print(tb_str, file=sys.stderr)
return backend_pb2.Result(success=False, message=f"{error_type}: {error_msg}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
@@ -327,14 +440,30 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if not voice_path or not os.path.exists(voice_path):
return None
# Ensure cache exists (should be initialized in LoadModel)
if not hasattr(self, '_voice_cache'):
self._voice_cache = {}
# Use path as cache key
if voice_path not in self._voice_cache:
print(f"Loading prefilled prompt from {voice_path}", file=sys.stderr)
prefilled_outputs = torch.load(
voice_path,
map_location=self._torch_device,
weights_only=False,
)
# Match self-test.py: use string device name for map_location
# Ensure self.device exists (should be set in LoadModel)
try:
if not hasattr(self, 'device'):
# Fallback to CPU if device not set
device_str = "cpu"
else:
device_str = str(self.device)
except AttributeError as e:
print(f"Error accessing self.device: {e}, falling back to CPU", file=sys.stderr)
device_str = "cpu"
if device_str != "cpu":
map_loc = device_str
else:
map_loc = "cpu"
# Call torch.load with explicit arguments
prefilled_outputs = torch.load(voice_path, map_location=map_loc, weights_only=False)
self._voice_cache[voice_path] = prefilled_outputs
return self._voice_cache[voice_path]
@@ -351,17 +480,17 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
voice_path = self._get_voice_path(request.voice)
if voice_path:
voice_key = request.voice
elif request.AudioPath:
# Use AudioPath as voice file
if os.path.isabs(request.AudioPath):
voice_path = request.AudioPath
elif request.ModelFile:
model_file_base = os.path.dirname(request.ModelFile)
voice_path = os.path.join(model_file_base, request.AudioPath)
elif hasattr(request, 'ModelPath') and request.ModelPath:
voice_path = os.path.join(request.ModelPath, request.AudioPath)
elif self.audio_path:
# Use AudioPath from LoadModel as voice file
if os.path.isabs(self.audio_path):
voice_path = self.audio_path
elif self.model_file:
model_file_base = os.path.dirname(self.model_file)
voice_path = os.path.join(model_file_base, self.audio_path)
elif self.model_path:
voice_path = os.path.join(self.model_path, self.audio_path)
else:
voice_path = request.AudioPath
voice_path = self.audio_path
elif self.default_voice_key:
voice_path = self._get_voice_path(self.default_voice_key)
voice_key = self.default_voice_key
@@ -404,8 +533,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return_attention_mask=True,
)
# Move tensors to target device
target_device = self._torch_device
# Move tensors to target device (matching self-test.py exactly)
# Explicitly ensure it's a string to avoid any variable name collisions
target_device = str(self.device) if str(self.device) != "cpu" else "cpu"
for k, v in inputs.items():
if torch.is_tensor(v):
inputs[k] = v.to(target_device)
@@ -447,6 +577,147 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return backend_pb2.Result(success=True)
def AudioTranscription(self, request, context):
"""Transcribe audio file to text using ASR model."""
try:
# Validate ASR mode is active
if not self.asr_mode:
return backend_pb2.TranscriptResult(
segments=[],
text="",
)
# Note: We return empty result instead of error to match faster-whisper behavior
# Get audio file path
audio_path = request.dst
if not audio_path or not os.path.exists(audio_path):
print(f"Error: Audio file not found: {audio_path}", file=sys.stderr)
return backend_pb2.TranscriptResult(
segments=[],
text="",
)
print(f"Transcribing audio file: {audio_path}", file=sys.stderr)
# Get context_info from options if available
context_info = self.options.get("context_info", None)
if context_info and isinstance(context_info, str) and context_info.strip():
context_info = context_info.strip()
else:
context_info = None
# Process audio with ASR processor (matching gradio example)
inputs = self.processor(
audio=audio_path,
sampling_rate=None,
return_tensors="pt",
add_generation_prompt=True,
context_info=context_info
)
# Move to device (matching gradio example)
inputs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v
for k, v in inputs.items()}
# Prepare generation config (matching gradio example)
generation_config = {
"max_new_tokens": self.max_new_tokens,
"temperature": self.temperature if self.temperature > 0 else None,
"top_p": self.top_p if self.do_sample else None,
"do_sample": self.do_sample,
"num_beams": self.num_beams,
"repetition_penalty": self.repetition_penalty,
"pad_token_id": self.processor.pad_id,
"eos_token_id": self.processor.tokenizer.eos_token_id,
}
# Remove None values (matching gradio example)
generation_config = {k: v for k, v in generation_config.items() if v is not None}
print(f"Generating transcription with max_new_tokens: {self.max_new_tokens}, temperature: {self.temperature}, do_sample: {self.do_sample}, num_beams: {self.num_beams}, repetition_penalty: {self.repetition_penalty}", file=sys.stderr)
# Generate transcription (matching gradio example)
with torch.no_grad():
output_ids = self.model.generate(
**inputs,
**generation_config
)
# Decode output (matching gradio example)
generated_ids = output_ids[0, inputs['input_ids'].shape[1]:]
generated_text = self.processor.decode(generated_ids, skip_special_tokens=True)
# Parse structured output to get segments
result_segments = []
try:
transcription_segments = self.processor.post_process_transcription(generated_text)
if transcription_segments:
# Map segments to TranscriptSegment format
for idx, seg in enumerate(transcription_segments):
# Extract timing information (if available)
# Handle both dict and object with attributes
if isinstance(seg, dict):
start_time = seg.get('start_time', 0)
end_time = seg.get('end_time', 0)
text = seg.get('text', '')
speaker_id = seg.get('speaker_id', None)
else:
# Handle object with attributes
start_time = getattr(seg, 'start_time', 0)
end_time = getattr(seg, 'end_time', 0)
text = getattr(seg, 'text', '')
speaker_id = getattr(seg, 'speaker_id', None)
# Convert time to milliseconds (assuming seconds)
start_ms = int(start_time * 1000) if isinstance(start_time, (int, float)) else 0
end_ms = int(end_time * 1000) if isinstance(end_time, (int, float)) else 0
# Add speaker info to text if available
if speaker_id is not None:
text = f"[Speaker {speaker_id}] {text}"
result_segments.append(backend_pb2.TranscriptSegment(
id=idx,
start=start_ms,
end=end_ms,
text=text,
tokens=[] # Token IDs not extracted for now
))
except Exception as e:
print(f"Warning: Failed to parse structured output: {e}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
# Fallback: create a single segment with the full text
if generated_text:
result_segments.append(backend_pb2.TranscriptSegment(
id=0,
start=0,
end=0,
text=generated_text,
tokens=[]
))
# Combine all segment texts into full transcription
if result_segments:
full_text = " ".join([seg.text for seg in result_segments])
else:
full_text = generated_text if generated_text else ""
print(f"Transcription completed: {len(result_segments)} segments", file=sys.stderr)
return backend_pb2.TranscriptResult(
segments=result_segments,
text=full_text
)
except Exception as err:
print(f"Error in AudioTranscription: {err}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return backend_pb2.TranscriptResult(
segments=[],
text="",
)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[

View File

@@ -29,11 +29,13 @@ fi
installRequirements
git clone https://github.com/microsoft/VibeVoice.git
cd VibeVoice/
if [ ! -d VibeVoice ]; then
git clone https://github.com/microsoft/VibeVoice.git
cd VibeVoice/
if [ "x${USE_PIP}" == "xtrue" ]; then
pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
else
uv pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
if [ "x${USE_PIP}" == "xtrue" ]; then
pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
else
uv pip install ${EXTRA_PIP_INSTALL_FLAGS:-} .
fi
fi

View File

@@ -1,7 +1,7 @@
--extra-index-url https://download.pytorch.org/whl/cpu
git+https://github.com/huggingface/diffusers
opencv-python
transformers==4.51.3
transformers>=4.51.3,<5.0.0
torchvision==0.22.1
accelerate
compel

View File

@@ -1,7 +1,7 @@
--extra-index-url https://download.pytorch.org/whl/cu121
git+https://github.com/huggingface/diffusers
opencv-python
transformers==4.51.3
transformers>=4.51.3,<5.0.0
torchvision
accelerate
compel

View File

@@ -1,7 +1,7 @@
--extra-index-url https://download.pytorch.org/whl/cu130
git+https://github.com/huggingface/diffusers
opencv-python
transformers==4.51.3
transformers>=4.51.3,<5.0.0
torchvision
accelerate
compel

View File

@@ -3,7 +3,7 @@ torch==2.7.1+rocm6.3
torchvision==0.22.1+rocm6.3
git+https://github.com/huggingface/diffusers
opencv-python
transformers==4.51.3
transformers>=4.51.3,<5.0.0
accelerate
compel
peft

View File

@@ -5,7 +5,7 @@ optimum[openvino]
setuptools
git+https://github.com/huggingface/diffusers
opencv-python
transformers==4.51.3
transformers>=4.51.3,<5.0.0
accelerate
compel
peft

View File

@@ -1,7 +1,7 @@
--extra-index-url https://pypi.jetson-ai-lab.io/jp6/cu129/
torch
git+https://github.com/huggingface/diffusers
transformers==4.51.3
transformers>=4.51.3,<5.0.0
accelerate
compel
peft

View File

@@ -1,7 +1,7 @@
--extra-index-url https://download.pytorch.org/whl/cu130
torch
git+https://github.com/huggingface/diffusers
transformers==4.51.3
transformers>=4.51.3,<5.0.0
accelerate
compel
peft

View File

@@ -2,7 +2,7 @@ torch==2.7.1
torchvision==0.22.1
git+https://github.com/huggingface/diffusers
opencv-python
transformers==4.51.3
transformers>=4.51.3,<5.0.0
accelerate
compel
peft

View File

@@ -1,14 +1,21 @@
"""
A test script to test the gRPC service
A test script to test the gRPC service for VibeVoice TTS and ASR
"""
import unittest
import subprocess
import time
import os
import tempfile
import shutil
import backend_pb2
import backend_pb2_grpc
import grpc
# Check if we should skip ASR tests (they require large models ~14B parameters total)
# Skip in CI or if explicitly disabled
SKIP_ASR_TESTS = os.environ.get("SKIP_ASR_TESTS", "false").lower() == "true"
class TestBackendServicer(unittest.TestCase):
"""
@@ -44,15 +51,15 @@ class TestBackendServicer(unittest.TestCase):
finally:
self.tearDown()
def test_load_model(self):
def test_load_tts_model(self):
"""
This method tests if the model is loaded successfully
This method tests if the TTS model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
response = stub.LoadModel(backend_pb2.ModelOptions(Model="microsoft/VibeVoice-Realtime-0.5B"))
print(response)
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
@@ -62,21 +69,142 @@ class TestBackendServicer(unittest.TestCase):
finally:
self.tearDown()
def test_tts(self):
@unittest.skipIf(SKIP_ASR_TESTS, "ASR tests require large models (~14B parameters) and are skipped in CI")
def test_load_asr_model(self):
"""
This method tests if the embeddings are generated successfully
This method tests if the ASR model is loaded successfully with asr_mode option
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
response = stub.LoadModel(backend_pb2.ModelOptions(
Model="microsoft/VibeVoice-ASR",
Options=["asr_mode:true"]
))
print(f"LoadModel response: {response}")
if not response.success:
print(f"LoadModel failed with message: {response.message}")
self.assertTrue(response.success, f"LoadModel failed: {response.message}")
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(f"Exception during LoadModel: {err}")
import traceback
traceback.print_exc()
self.fail("LoadModel service failed for ASR mode")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if TTS generation works successfully
"""
# Create a temporary directory for the output audio file
temp_dir = tempfile.mkdtemp()
output_file = os.path.join(temp_dir, 'output.wav')
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
# Load TTS model
response = stub.LoadModel(backend_pb2.ModelOptions(Model="microsoft/VibeVoice-Realtime-0.5B"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
# Generate TTS
tts_request = backend_pb2.TTSRequest(
text="Hello, this is a test of the VibeVoice text to speech system.",
dst=output_file
)
tts_response = stub.TTS(tts_request)
# Verify response
self.assertIsNotNone(tts_response)
self.assertTrue(tts_response.success)
# Verify output file was created
self.assertTrue(os.path.exists(output_file), f"Output file was not created: {output_file}")
self.assertGreater(os.path.getsize(output_file), 0, "Output file is empty")
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()
self.tearDown()
# Clean up the temporary directory
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
@unittest.skipIf(SKIP_ASR_TESTS, "ASR tests require large models (~14B parameters) and are skipped in CI")
def test_audio_transcription(self):
"""
This method tests if audio transcription works successfully
"""
# Create a temporary directory for the audio file
temp_dir = tempfile.mkdtemp()
audio_file = os.path.join(temp_dir, 'audio.wav')
try:
# Download the audio file to the temporary directory
print(f"Downloading audio file to {audio_file}...")
url = "https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav"
result = subprocess.run(
["wget", "-q", url, "-O", audio_file],
capture_output=True,
text=True
)
if result.returncode != 0:
self.fail(f"Failed to download audio file: {result.stderr}")
# Verify the file was downloaded
if not os.path.exists(audio_file):
self.fail(f"Audio file was not downloaded to {audio_file}")
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
# Load the ASR model first
load_response = stub.LoadModel(backend_pb2.ModelOptions(
Model="microsoft/VibeVoice-ASR",
Options=["asr_mode:true"]
))
print(f"LoadModel response: {load_response}")
if not load_response.success:
print(f"LoadModel failed with message: {load_response.message}")
self.assertTrue(load_response.success, f"LoadModel failed: {load_response.message}")
# Perform transcription
transcript_request = backend_pb2.TranscriptRequest(dst=audio_file)
transcript_response = stub.AudioTranscription(transcript_request)
# Print the transcribed text for debugging
print(f"Transcribed text: {transcript_response.text}")
print(f"Number of segments: {len(transcript_response.segments)}")
# Verify response structure
self.assertIsNotNone(transcript_response)
self.assertIsNotNone(transcript_response.text)
# Protobuf repeated fields return a sequence, not a list
self.assertIsNotNone(transcript_response.segments)
# Check if segments is iterable (has length)
self.assertGreaterEqual(len(transcript_response.segments), 0)
# Verify the transcription contains some text
self.assertGreater(len(transcript_response.text), 0, "Transcription should not be empty")
# If we got segments, verify they have the expected structure
if len(transcript_response.segments) > 0:
segment = transcript_response.segments[0]
self.assertIsNotNone(segment.text)
self.assertIsInstance(segment.id, int)
else:
# Even if no segments, we should have text
self.assertIsNotNone(transcript_response.text)
self.assertGreater(len(transcript_response.text), 0)
except Exception as err:
print(err)
self.fail("AudioTranscription service failed")
finally:
self.tearDown()
# Clean up the temporary directory
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)