Compare commits

..

1 Commits

Author SHA1 Message Date
Ettore Di Giacinto
83110891fd fix(go-grpc-server): always close resultChan
By not closing the channel, if a server not implementing PredictStream
receives a client call would hang indefinetly as would wait for
resultChan to be consumed.

If the prediction stream returns we close the channel now and we wait
for the goroutine to finish.

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-10-05 00:07:58 +02:00
513 changed files with 14115 additions and 13231 deletions

View File

@@ -1,11 +0,0 @@
meta {
name: model delete
type: http
seq: 7
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: none
auth: none
}

View File

Binary file not shown.

View File

@@ -1,16 +0,0 @@
meta {
name: transcribe
type: http
seq: 1
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/audio/transcriptions
body: multipartForm
auth: none
}
body:multipart-form {
file: @file(transcription/gb1.ogg)
model: whisper-1
}

View File

@@ -7,7 +7,7 @@ services:
args: args:
- FFMPEG=true - FFMPEG=true
- IMAGE_TYPE=extras - IMAGE_TYPE=extras
- GO_TAGS=p2p tts - GO_TAGS=stablediffusion p2p tts
env_file: env_file:
- ../.env - ../.env
ports: ports:

15
.env
View File

@@ -38,12 +38,12 @@
## Uncomment and set to true to enable rebuilding from source ## Uncomment and set to true to enable rebuilding from source
# REBUILD=true # REBUILD=true
## Enable go tags, available: p2p, tts ## Enable go tags, available: stablediffusion, tts
## p2p: enable distributed inferencing ## stablediffusion: image generation with stablediffusion
## tts: enables text-to-speech with go-piper ## tts: enables text-to-speech with go-piper
## (requires REBUILD=true) ## (requires REBUILD=true)
# #
# GO_TAGS=p2p # GO_TAGS=stablediffusion
## Path where to store generated images ## Path where to store generated images
# LOCALAI_IMAGE_PATH=/tmp/generated/images # LOCALAI_IMAGE_PATH=/tmp/generated/images
@@ -82,15 +82,6 @@
# Enable to allow p2p mode # Enable to allow p2p mode
# LOCALAI_P2P=true # LOCALAI_P2P=true
# Enable to use federated mode
# LOCALAI_FEDERATED=true
# Enable to start federation server
# FEDERATED_SERVER=true
# Define to use federation token
# TOKEN=""
### Watchdog settings ### Watchdog settings
### ###
# Enables watchdog to kill backends that are inactive for too much time # Enables watchdog to kill backends that are inactive for too much time

1
.gitattributes vendored
View File

@@ -1,2 +1 @@
*.sh text eol=lf *.sh text eol=lf
backend/cpp/llama/*.hpp linguist-vendored

View File

@@ -6,7 +6,6 @@ import (
"io/ioutil" "io/ioutil"
"os" "os"
"github.com/microcosm-cc/bluemonday"
"gopkg.in/yaml.v3" "gopkg.in/yaml.v3"
) )
@@ -280,12 +279,6 @@ func main() {
return return
} }
// Ensure that all arbitrary text content is sanitized before display
for i, m := range models {
models[i].Name = bluemonday.StrictPolicy().Sanitize(m.Name)
models[i].Description = bluemonday.StrictPolicy().Sanitize(m.Description)
}
// render the template // render the template
data := struct { data := struct {
Models []*GalleryModel Models []*GalleryModel

View File

@@ -9,8 +9,6 @@ updates:
directory: "/" directory: "/"
schedule: schedule:
interval: "weekly" interval: "weekly"
ignore:
- dependency-name: "github.com/mudler/LocalAI/pkg/grpc/proto"
- package-ecosystem: "github-actions" - package-ecosystem: "github-actions"
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.) # Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
directory: "/" directory: "/"
@@ -81,6 +79,14 @@ updates:
directory: "/backend/python/transformers" directory: "/backend/python/transformers"
schedule: schedule:
interval: "weekly" interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/transformers-musicgen"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/vall-e-x"
schedule:
interval: "weekly"
- package-ecosystem: "pip" - package-ecosystem: "pip"
directory: "/backend/python/vllm" directory: "/backend/python/vllm"
schedule: schedule:

9
.github/labeler.yml vendored
View File

@@ -1,15 +1,6 @@
enhancements: enhancements:
- head-branch: ['^feature', 'feature'] - head-branch: ['^feature', 'feature']
dependencies:
- any:
- changed-files:
- any-glob-to-any-file: 'Makefile'
- changed-files:
- any-glob-to-any-file: '*.mod'
- changed-files:
- any-glob-to-any-file: '*.sum'
kind/documentation: kind/documentation:
- any: - any:
- changed-files: - changed-files:

View File

@@ -12,14 +12,23 @@ jobs:
- repository: "ggerganov/llama.cpp" - repository: "ggerganov/llama.cpp"
variable: "CPPLLAMA_VERSION" variable: "CPPLLAMA_VERSION"
branch: "master" branch: "master"
- repository: "go-skynet/go-ggml-transformers.cpp"
variable: "GOGGMLTRANSFORMERS_VERSION"
branch: "master"
- repository: "donomii/go-rwkv.cpp"
variable: "RWKV_VERSION"
branch: "main"
- repository: "ggerganov/whisper.cpp" - repository: "ggerganov/whisper.cpp"
variable: "WHISPER_CPP_VERSION" variable: "WHISPER_CPP_VERSION"
branch: "master" branch: "master"
- repository: "PABannier/bark.cpp" - repository: "go-skynet/go-bert.cpp"
variable: "BARKCPP_VERSION" variable: "BERT_VERSION"
branch: "master"
- repository: "go-skynet/bloomz.cpp"
variable: "BLOOMZ_VERSION"
branch: "main" branch: "main"
- repository: "leejet/stable-diffusion.cpp" - repository: "mudler/go-ggllm.cpp"
variable: "STABLEDIFFUSION_GGML_VERSION" variable: "GOGGLLM_VERSION"
branch: "master" branch: "master"
- repository: "mudler/go-stable-diffusion" - repository: "mudler/go-stable-diffusion"
variable: "STABLEDIFFUSION_VERSION" variable: "STABLEDIFFUSION_VERSION"

View File

@@ -23,7 +23,7 @@ jobs:
sudo pip install --upgrade pip sudo pip install --upgrade pip
pip install huggingface_hub pip install huggingface_hub
- name: 'Setup yq' - name: 'Setup yq'
uses: dcarbone/install-yq-action@v1.3.1 uses: dcarbone/install-yq-action@v1.1.1
with: with:
version: 'v4.44.2' version: 'v4.44.2'
download-compressed: true download-compressed: true

View File

@@ -33,7 +33,7 @@ jobs:
run: | run: |
CGO_ENABLED=0 make build-api CGO_ENABLED=0 make build-api
- name: rm - name: rm
uses: appleboy/ssh-action@v1.2.0 uses: appleboy/ssh-action@v1.0.3
with: with:
host: ${{ secrets.EXPLORER_SSH_HOST }} host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }} username: ${{ secrets.EXPLORER_SSH_USERNAME }}
@@ -53,7 +53,7 @@ jobs:
rm: true rm: true
target: ./local-ai target: ./local-ai
- name: restarting - name: restarting
uses: appleboy/ssh-action@v1.2.0 uses: appleboy/ssh-action@v1.0.3
with: with:
host: ${{ secrets.EXPLORER_SSH_HOST }} host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }} username: ${{ secrets.EXPLORER_SSH_USERNAME }}

View File

@@ -15,7 +15,7 @@ jobs:
strategy: strategy:
matrix: matrix:
include: include:
- base-image: intel/oneapi-basekit:2025.0.0-0-devel-ubuntu22.04 - base-image: intel/oneapi-basekit:2024.2.0-devel-ubuntu22.04
runs-on: 'ubuntu-latest' runs-on: 'ubuntu-latest'
platforms: 'linux/amd64' platforms: 'linux/amd64'
runs-on: ${{matrix.runs-on}} runs-on: ${{matrix.runs-on}}

View File

@@ -280,7 +280,6 @@ jobs:
makeflags: ${{ matrix.makeflags }} makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }} latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }} latest-image-aio: ${{ matrix.latest-image-aio }}
skip-drivers: ${{ matrix.skip-drivers }}
secrets: secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }} dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }} dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -302,7 +301,6 @@ jobs:
latest-image: 'latest-cpu' latest-image: 'latest-cpu'
latest-image-aio: 'latest-aio-cpu' latest-image-aio: 'latest-aio-cpu'
makeflags: "--jobs=4 --output-sync=target" makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
- build-type: 'cublas' - build-type: 'cublas'
cuda-major-version: "11" cuda-major-version: "11"
cuda-minor-version: "7" cuda-minor-version: "7"
@@ -314,7 +312,6 @@ jobs:
base-image: "ubuntu:22.04" base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set' runs-on: 'arc-runner-set'
makeflags: "--jobs=4 --output-sync=target" makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
- build-type: 'cublas' - build-type: 'cublas'
cuda-major-version: "12" cuda-major-version: "12"
cuda-minor-version: "0" cuda-minor-version: "0"
@@ -326,7 +323,6 @@ jobs:
base-image: "ubuntu:22.04" base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set' runs-on: 'arc-runner-set'
makeflags: "--jobs=4 --output-sync=target" makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
- build-type: 'cublas' - build-type: 'cublas'
cuda-major-version: "11" cuda-major-version: "11"
cuda-minor-version: "7" cuda-minor-version: "7"
@@ -338,7 +334,6 @@ jobs:
runs-on: 'arc-runner-set' runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04" base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target" makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
- build-type: 'cublas' - build-type: 'cublas'
cuda-major-version: "12" cuda-major-version: "12"
cuda-minor-version: "0" cuda-minor-version: "0"
@@ -349,7 +344,6 @@ jobs:
image-type: 'core' image-type: 'core'
runs-on: 'arc-runner-set' runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04" base-image: "ubuntu:22.04"
skip-drivers: 'false'
makeflags: "--jobs=4 --output-sync=target" makeflags: "--jobs=4 --output-sync=target"
- build-type: 'vulkan' - build-type: 'vulkan'
platforms: 'linux/amd64' platforms: 'linux/amd64'
@@ -360,45 +354,4 @@ jobs:
image-type: 'core' image-type: 'core'
runs-on: 'arc-runner-set' runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04" base-image: "ubuntu:22.04"
skip-drivers: 'false'
makeflags: "--jobs=4 --output-sync=target" makeflags: "--jobs=4 --output-sync=target"
gh-runner:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
aio: ${{ matrix.aio }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
skip-drivers: ${{ matrix.skip-drivers }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
matrix:
include:
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'false'
tag-suffix: '-nvidia-l4t-arm64-core'
latest-image: 'latest-nvidia-l4t-arm64-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
runs-on: 'ubuntu-24.04-arm'
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'true'

View File

@@ -49,10 +49,6 @@ on:
description: 'FFMPEG' description: 'FFMPEG'
default: '' default: ''
type: string type: string
skip-drivers:
description: 'Skip drivers by default'
default: 'false'
type: string
image-type: image-type:
description: 'Image type' description: 'Image type'
default: '' default: ''
@@ -238,7 +234,6 @@ jobs:
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.65.0 GRPC_VERSION=v1.65.0
MAKEFLAGS=${{ inputs.makeflags }} MAKEFLAGS=${{ inputs.makeflags }}
SKIP_DRIVERS=${{ inputs.skip-drivers }}
context: . context: .
file: ./Dockerfile file: ./Dockerfile
cache-from: type=gha cache-from: type=gha
@@ -267,7 +262,6 @@ jobs:
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.65.0 GRPC_VERSION=v1.65.0
MAKEFLAGS=${{ inputs.makeflags }} MAKEFLAGS=${{ inputs.makeflags }}
SKIP_DRIVERS=${{ inputs.skip-drivers }}
context: . context: .
file: ./Dockerfile file: ./Dockerfile
cache-from: type=gha cache-from: type=gha

View File

@@ -79,7 +79,7 @@ jobs:
args: ${{ steps.summarize.outputs.message }} args: ${{ steps.summarize.outputs.message }}
- name: Setup tmate session if fails - name: Setup tmate session if fails
if: ${{ failure() }} if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19 uses: mxschmitt/action-tmate@v3.18
with: with:
detached: true detached: true
connect-timeout-seconds: 180 connect-timeout-seconds: 180
@@ -161,7 +161,7 @@ jobs:
TWITTER_ACCESS_TOKEN_SECRET: ${{ secrets.TWITTER_ACCESS_TOKEN_SECRET }} TWITTER_ACCESS_TOKEN_SECRET: ${{ secrets.TWITTER_ACCESS_TOKEN_SECRET }}
- name: Setup tmate session if fails - name: Setup tmate session if fails
if: ${{ failure() }} if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19 uses: mxschmitt/action-tmate@v3.18
with: with:
detached: true detached: true
connect-timeout-seconds: 180 connect-timeout-seconds: 180

View File

@@ -123,7 +123,7 @@ jobs:
release/* release/*
- name: Setup tmate session if tests fail - name: Setup tmate session if tests fail
if: ${{ failure() }} if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19 uses: mxschmitt/action-tmate@v3.18
with: with:
detached: true detached: true
connect-timeout-seconds: 180 connect-timeout-seconds: 180
@@ -232,12 +232,45 @@ jobs:
release/* release/*
- name: Setup tmate session if tests fail - name: Setup tmate session if tests fail
if: ${{ failure() }} if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19 uses: mxschmitt/action-tmate@v3.18
with: with:
detached: true detached: true
connect-timeout-seconds: 180 connect-timeout-seconds: 180
limit-access-to-actor: true limit-access-to-actor: true
build-stablediffusion:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install -y --no-install-recommends libopencv-dev protobuf-compiler ccache upx-ucl
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
- name: Build stablediffusion
run: |
export PATH=$PATH:$GOPATH/bin
make backend-assets/grpc/stablediffusion
mkdir -p release && cp backend-assets/grpc/stablediffusion release
env:
GO_TAGS: stablediffusion
- uses: actions/upload-artifact@v4
with:
name: stablediffusion
path: release/
- name: Release
uses: softprops/action-gh-release@v2
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
build-macOS-x86_64: build-macOS-x86_64:
runs-on: macos-13 runs-on: macos-13
@@ -275,7 +308,7 @@ jobs:
release/* release/*
- name: Setup tmate session if tests fail - name: Setup tmate session if tests fail
if: ${{ failure() }} if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19 uses: mxschmitt/action-tmate@v3.18
with: with:
detached: true detached: true
connect-timeout-seconds: 180 connect-timeout-seconds: 180
@@ -317,7 +350,7 @@ jobs:
release/* release/*
- name: Setup tmate session if tests fail - name: Setup tmate session if tests fail
if: ${{ failure() }} if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19 uses: mxschmitt/action-tmate@v3.18
with: with:
detached: true detached: true
connect-timeout-seconds: 180 connect-timeout-seconds: 180

View File

@@ -18,7 +18,7 @@ jobs:
if: ${{ github.actor != 'dependabot[bot]' }} if: ${{ github.actor != 'dependabot[bot]' }}
- name: Run Gosec Security Scanner - name: Run Gosec Security Scanner
if: ${{ github.actor != 'dependabot[bot]' }} if: ${{ github.actor != 'dependabot[bot]' }}
uses: securego/gosec@v2.22.0 uses: securego/gosec@v2.21.4
with: with:
# we let the report trigger content trigger a failure using the GitHub Security features. # we let the report trigger content trigger a failure using the GitHub Security features.
args: '-no-fail -fmt sarif -out results.sarif ./...' args: '-no-fail -fmt sarif -out results.sarif ./...'

View File

@@ -35,6 +35,30 @@ jobs:
run: | run: |
make --jobs=5 --output-sync=target -C backend/python/transformers make --jobs=5 --output-sync=target -C backend/python/transformers
make --jobs=5 --output-sync=target -C backend/python/transformers test make --jobs=5 --output-sync=target -C backend/python/transformers test
tests-sentencetransformers:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test sentencetransformers
run: |
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers test
tests-rerankers: tests-rerankers:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
@@ -78,27 +102,71 @@ jobs:
make --jobs=5 --output-sync=target -C backend/python/diffusers make --jobs=5 --output-sync=target -C backend/python/diffusers
make --jobs=5 --output-sync=target -C backend/python/diffusers test make --jobs=5 --output-sync=target -C backend/python/diffusers test
# tests-transformers-musicgen: tests-parler-tts:
# runs-on: ubuntu-latest runs-on: ubuntu-latest
# steps: steps:
# - name: Clone - name: Clone
# uses: actions/checkout@v4 uses: actions/checkout@v4
# with: with:
# submodules: true submodules: true
# - name: Dependencies - name: Dependencies
# run: | run: |
# sudo apt-get update sudo apt-get update
# sudo apt-get install build-essential ffmpeg sudo apt-get install build-essential ffmpeg
# # Install UV # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev sudo apt-get install -y libopencv-dev
# pip install --user --no-cache-dir grpcio-tools==1.64.1 pip install --user --no-cache-dir grpcio-tools==1.64.1
# - name: Test transformers-musicgen - name: Test parler-tts
# run: | run: |
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen make --jobs=5 --output-sync=target -C backend/python/parler-tts
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test make --jobs=5 --output-sync=target -C backend/python/parler-tts test
tests-openvoice:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test openvoice
run: |
make --jobs=5 --output-sync=target -C backend/python/openvoice
make --jobs=5 --output-sync=target -C backend/python/openvoice test
tests-transformers-musicgen:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test transformers-musicgen
run: |
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
# tests-bark: # tests-bark:
# runs-on: ubuntu-latest # runs-on: ubuntu-latest
@@ -185,6 +253,26 @@ jobs:
# run: | # run: |
# make --jobs=5 --output-sync=target -C backend/python/vllm # make --jobs=5 --output-sync=target -C backend/python/vllm
# make --jobs=5 --output-sync=target -C backend/python/vllm test # make --jobs=5 --output-sync=target -C backend/python/vllm test
tests-vallex:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test vall-e-x
run: |
make --jobs=5 --output-sync=target -C backend/python/vall-e-x
make --jobs=5 --output-sync=target -C backend/python/vall-e-x test
tests-coqui: tests-coqui:
runs-on: ubuntu-latest runs-on: ubuntu-latest

View File

@@ -100,12 +100,15 @@ jobs:
# The python3-grpc-tools package in 22.04 is too old # The python3-grpc-tools package in 22.04 is too old
pip install --user grpcio-tools pip install --user grpcio-tools
make -C backend/python/transformers sudo rm -rfv /usr/bin/conda || true
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers
# Pre-build piper before we start tests in order to have shared libraries in place # Pre-build piper before we start tests in order to have shared libraries in place
make sources/go-piper && \ make sources/go-piper && \
GO_TAGS="tts" make -C sources/go-piper piper.o && \ GO_TAGS="tts" make -C sources/go-piper piper.o && \
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ && \
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
env: env:
CUDA_VERSION: 12-4 CUDA_VERSION: 12-4
- name: Cache grpc - name: Cache grpc
@@ -127,10 +130,10 @@ jobs:
cd grpc && cd cmake/build && sudo make --jobs 5 install cd grpc && cd cmake/build && sudo make --jobs 5 install
- name: Test - name: Test
run: | run: |
PATH="$PATH:/root/go/bin" GO_TAGS="tts" make --jobs 5 --output-sync=target test PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
- name: Setup tmate session if tests fail - name: Setup tmate session if tests fail
if: ${{ failure() }} if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19 uses: mxschmitt/action-tmate@v3.18
with: with:
detached: true detached: true
connect-timeout-seconds: 180 connect-timeout-seconds: 180
@@ -194,7 +197,7 @@ jobs:
make run-e2e-aio make run-e2e-aio
- name: Setup tmate session if tests fail - name: Setup tmate session if tests fail
if: ${{ failure() }} if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19 uses: mxschmitt/action-tmate@v3.18
with: with:
detached: true detached: true
connect-timeout-seconds: 180 connect-timeout-seconds: 180
@@ -221,7 +224,7 @@ jobs:
- name: Dependencies - name: Dependencies
run: | run: |
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc libomp llvm brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc libomp llvm
pip install --user --no-cache-dir grpcio-tools pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test - name: Test
run: | run: |
export C_INCLUDE_PATH=/usr/local/include export C_INCLUDE_PATH=/usr/local/include
@@ -232,7 +235,7 @@ jobs:
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DGGML_F16C=OFF -DGGML_AVX512=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF" make --jobs 4 --output-sync=target test BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DGGML_F16C=OFF -DGGML_AVX512=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF" make --jobs 4 --output-sync=target test
- name: Setup tmate session if tests fail - name: Setup tmate session if tests fail
if: ${{ failure() }} if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19 uses: mxschmitt/action-tmate@v3.18
with: with:
detached: true detached: true
connect-timeout-seconds: 180 connect-timeout-seconds: 180

2
.gitignore vendored
View File

@@ -2,7 +2,6 @@
/sources/ /sources/
__pycache__/ __pycache__/
*.a *.a
*.o
get-sources get-sources
prepare-sources prepare-sources
/backend/cpp/llama/grpc-server /backend/cpp/llama/grpc-server
@@ -13,6 +12,7 @@ prepare-sources
go-ggml-transformers go-ggml-transformers
go-gpt2 go-gpt2
go-rwkv
whisper.cpp whisper.cpp
/bloomz /bloomz
go-bert go-bert

2
.vscode/launch.json vendored
View File

@@ -26,7 +26,7 @@
"LOCALAI_P2P": "true", "LOCALAI_P2P": "true",
"LOCALAI_FEDERATED": "true" "LOCALAI_FEDERATED": "true"
}, },
"buildFlags": ["-tags", "p2p tts", "-v"], "buildFlags": ["-tags", "stablediffusion p2p tts", "-v"],
"envFile": "${workspaceFolder}/.env", "envFile": "${workspaceFolder}/.env",
"cwd": "${workspaceRoot}" "cwd": "${workspaceRoot}"
} }

View File

@@ -9,38 +9,25 @@ FROM ${BASE_IMAGE} AS requirements-core
USER root USER root
ARG GO_VERSION=1.22.6 ARG GO_VERSION=1.22.6
ARG CMAKE_VERSION=3.26.4
ARG CMAKE_FROM_SOURCE=false
ARG TARGETARCH ARG TARGETARCH
ARG TARGETVARIANT ARG TARGETVARIANT
ENV DEBIAN_FRONTEND=noninteractive ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,transformers:/build/backend/python/transformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,faster-whisper:/build/backend/python/faster-whisper/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vllm:/build/backend/python/vllm/run.sh,exllama2:/build/backend/python/exllama2/run.sh" ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y --no-install-recommends \ apt-get install -y --no-install-recommends \
build-essential \ build-essential \
ccache \ ccache \
ca-certificates \ ca-certificates \
curl libssl-dev \ cmake \
curl \
git \ git \
unzip upx-ucl && \ unzip upx-ucl && \
apt-get clean && \ apt-get clean && \
rm -rf /var/lib/apt/lists/* rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# Install Go # Install Go
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
ENV PATH=$PATH:/root/go/bin:/usr/local/go/bin ENV PATH=$PATH:/root/go/bin:/usr/local/go/bin
@@ -68,10 +55,14 @@ ENV PATH=/opt/rocm/bin:${PATH}
# OpenBLAS requirements and stable diffusion # OpenBLAS requirements and stable diffusion
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y --no-install-recommends \ apt-get install -y --no-install-recommends \
libopenblas-dev && \ libopenblas-dev \
libopencv-dev && \
apt-get clean && \ apt-get clean && \
rm -rf /var/lib/apt/lists/* rm -rf /var/lib/apt/lists/*
# Set up OpenCV
RUN ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
WORKDIR /build WORKDIR /build
################################### ###################################
@@ -80,8 +71,7 @@ WORKDIR /build
# The requirements-extras target is for any builds with IMAGE_TYPE=extras. It should not be placed in this target unless every IMAGE_TYPE=extras build will use it # The requirements-extras target is for any builds with IMAGE_TYPE=extras. It should not be placed in this target unless every IMAGE_TYPE=extras build will use it
FROM requirements-core AS requirements-extras FROM requirements-core AS requirements-extras
# Install uv as a system package RUN curl -LsSf https://astral.sh/uv/install.sh | sh
RUN curl -LsSf https://astral.sh/uv/install.sh | UV_INSTALL_DIR=/usr/bin sh
ENV PATH="/root/.cargo/bin:${PATH}" ENV PATH="/root/.cargo/bin:${PATH}"
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
@@ -110,13 +100,12 @@ FROM requirements-${IMAGE_TYPE} AS requirements-drivers
ARG BUILD_TYPE ARG BUILD_TYPE
ARG CUDA_MAJOR_VERSION=12 ARG CUDA_MAJOR_VERSION=12
ARG CUDA_MINOR_VERSION=0 ARG CUDA_MINOR_VERSION=0
ARG SKIP_DRIVERS=false
ENV BUILD_TYPE=${BUILD_TYPE} ENV BUILD_TYPE=${BUILD_TYPE}
# Vulkan requirements # Vulkan requirements
RUN <<EOT bash RUN <<EOT bash
if [ "${BUILD_TYPE}" = "vulkan" ] && [ "${SKIP_DRIVERS}" = "false" ]; then if [ "${BUILD_TYPE}" = "vulkan" ]; then
apt-get update && \ apt-get update && \
apt-get install -y --no-install-recommends \ apt-get install -y --no-install-recommends \
software-properties-common pciutils wget gpg-agent && \ software-properties-common pciutils wget gpg-agent && \
@@ -132,7 +121,7 @@ EOT
# CuBLAS requirements # CuBLAS requirements
RUN <<EOT bash RUN <<EOT bash
if [ "${BUILD_TYPE}" = "cublas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then if [ "${BUILD_TYPE}" = "cublas" ]; then
apt-get update && \ apt-get update && \
apt-get install -y --no-install-recommends \ apt-get install -y --no-install-recommends \
software-properties-common pciutils software-properties-common pciutils
@@ -158,7 +147,7 @@ RUN <<EOT bash
EOT EOT
# If we are building with clblas support, we need the libraries for the builds # If we are building with clblas support, we need the libraries for the builds
RUN if [ "${BUILD_TYPE}" = "clblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \ RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
apt-get update && \ apt-get update && \
apt-get install -y --no-install-recommends \ apt-get install -y --no-install-recommends \
libclblast-dev && \ libclblast-dev && \
@@ -166,7 +155,7 @@ RUN if [ "${BUILD_TYPE}" = "clblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \
rm -rf /var/lib/apt/lists/* \ rm -rf /var/lib/apt/lists/* \
; fi ; fi
RUN if [ "${BUILD_TYPE}" = "hipblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \ RUN if [ "${BUILD_TYPE}" = "hipblas" ]; then \
apt-get update && \ apt-get update && \
apt-get install -y --no-install-recommends \ apt-get install -y --no-install-recommends \
hipblas-dev \ hipblas-dev \
@@ -199,8 +188,6 @@ FROM ${GRPC_BASE_IMAGE} AS grpc
# This is a bit of a hack, but it's required in order to be able to effectively cache this layer in CI # This is a bit of a hack, but it's required in order to be able to effectively cache this layer in CI
ARG GRPC_MAKEFLAGS="-j4 -Otarget" ARG GRPC_MAKEFLAGS="-j4 -Otarget"
ARG GRPC_VERSION=v1.65.0 ARG GRPC_VERSION=v1.65.0
ARG CMAKE_FROM_SOURCE=false
ARG CMAKE_VERSION=3.26.4
ENV MAKEFLAGS=${GRPC_MAKEFLAGS} ENV MAKEFLAGS=${GRPC_MAKEFLAGS}
@@ -209,24 +196,12 @@ WORKDIR /build
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y --no-install-recommends \ apt-get install -y --no-install-recommends \
ca-certificates \ ca-certificates \
build-essential curl libssl-dev \ build-essential \
cmake \
git && \ git && \
apt-get clean && \ apt-get clean && \
rm -rf /var/lib/apt/lists/* rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# We install GRPC to a different prefix here so that we can copy in only the build artifacts later # We install GRPC to a different prefix here so that we can copy in only the build artifacts later
# saves several hundred MB on the final docker image size vs copying in the entire GRPC source tree # saves several hundred MB on the final docker image size vs copying in the entire GRPC source tree
# and running make install in the target container # and running make install in the target container
@@ -246,7 +221,7 @@ RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shall
FROM requirements-drivers AS builder-base FROM requirements-drivers AS builder-base
ARG GO_TAGS="tts p2p" ARG GO_TAGS="stablediffusion tts p2p"
ARG GRPC_BACKENDS ARG GRPC_BACKENDS
ARG MAKEFLAGS ARG MAKEFLAGS
ARG LD_FLAGS="-s -w" ARG LD_FLAGS="-s -w"
@@ -280,12 +255,35 @@ RUN <<EOT bash
fi fi
EOT EOT
###################################
###################################
# This first portion of builder holds the layers specifically used to build backend-assets/grpc/stablediffusion
# In most cases, builder is the image you should be using - however, this can save build time if one just needs to copy backend-assets/grpc/stablediffusion and nothing else.
FROM builder-base AS builder-sd
# stablediffusion does not tolerate a newer version of abseil, copy only over enough elements to build it
COPY Makefile .
COPY go.mod .
COPY go.sum .
COPY backend/backend.proto ./backend/backend.proto
COPY backend/go/image/stablediffusion ./backend/go/image/stablediffusion
COPY pkg/grpc ./pkg/grpc
COPY pkg/stablediffusion ./pkg/stablediffusion
RUN git init
RUN make sources/go-stable-diffusion
RUN touch prepare-sources
# Actually build the backend
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make backend-assets/grpc/stablediffusion
################################### ###################################
################################### ###################################
# The builder target compiles LocalAI. This target is not the target that will be uploaded to the registry. # The builder target compiles LocalAI. This target is not the target that will be uploaded to the registry.
# Adjustments to the build process should likely be made here. # Adjustments to the build process should likely be made here.
FROM builder-base AS builder FROM builder-sd AS builder
# Install the pre-built GRPC # Install the pre-built GRPC
COPY --from=grpc /opt/grpc /usr/local COPY --from=grpc /opt/grpc /usr/local
@@ -303,7 +301,7 @@ RUN make prepare
## We only leave the most CPU-optimized variant and the fallback for the cublas/hipblas build ## We only leave the most CPU-optimized variant and the fallback for the cublas/hipblas build
## (both will use CUDA or hipblas for the actual computation) ## (both will use CUDA or hipblas for the actual computation)
RUN if [ "${BUILD_TYPE}" = "cublas" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \ RUN if [ "${BUILD_TYPE}" = "cublas" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \
SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx512 backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make build; \ SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make build; \
else \ else \
make build; \ make build; \
fi fi
@@ -325,6 +323,8 @@ ARG FFMPEG
COPY --from=grpc /opt/grpc /usr/local COPY --from=grpc /opt/grpc /usr/local
COPY --from=builder-sd /build/backend-assets/grpc/stablediffusion /build/backend-assets/grpc/stablediffusion
COPY .devcontainer-scripts /.devcontainer-scripts COPY .devcontainer-scripts /.devcontainer-scripts
# Add FFmpeg # Add FFmpeg
@@ -397,28 +397,36 @@ COPY --from=builder /build/local-ai ./
# Copy shared libraries for piper # Copy shared libraries for piper
COPY --from=builder /build/sources/go-piper/piper-phonemize/pi/lib/* /usr/lib/ COPY --from=builder /build/sources/go-piper/piper-phonemize/pi/lib/* /usr/lib/
# do not let stablediffusion rebuild (requires an older version of absl)
COPY --from=builder-sd /build/backend-assets/grpc/stablediffusion ./backend-assets/grpc/stablediffusion
# Change the shell to bash so we can use [[ tests below # Change the shell to bash so we can use [[ tests below
SHELL ["/bin/bash", "-c"] SHELL ["/bin/bash", "-c"]
# We try to strike a balance between individual layer size (as that affects total push time) and total image size # We try to strike a balance between individual layer size (as that affects total push time) and total image size
# Splitting the backends into more groups with fewer items results in a larger image, but a smaller size for the largest layer # Splitting the backends into more groups with fewer items results in a larger image, but a smaller size for the largest layer
# Splitting the backends into fewer groups with more items results in a smaller image, but a larger size for the largest layer # Splitting the backends into fewer groups with more items results in a smaller image, but a larger size for the largest layer
RUN if [[ ( "${IMAGE_TYPE}" == "extras ")]]; then \
apt-get -qq -y install espeak-ng \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/coqui \ make -C backend/python/coqui \
; fi && \ ; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "faster-whisper" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \ if [[ ( "${EXTRA_BACKENDS}" =~ "parler-tts" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/faster-whisper \ make -C backend/python/parler-tts \
; fi && \ ; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "diffusers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \ if [[ ( "${EXTRA_BACKENDS}" =~ "diffusers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/diffusers \ make -C backend/python/diffusers \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "transformers-musicgen" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/transformers-musicgen \
; fi ; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "kokoro" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vall-e-x" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/kokoro \ make -C backend/python/vall-e-x \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "openvoice" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/openvoice \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "sentencetransformers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/sentencetransformers \
; fi && \ ; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "exllama2" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \ if [[ ( "${EXTRA_BACKENDS}" =~ "exllama2" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/exllama2 \ make -C backend/python/exllama2 \
@@ -438,6 +446,9 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vllm" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE
; fi && \ ; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "rerankers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \ if [[ ( "${EXTRA_BACKENDS}" =~ "rerankers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/rerankers \ make -C backend/python/rerankers \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "mamba" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/mamba \
; fi ; fi
# Make sure the models directory exists # Make sure the models directory exists

326
Makefile
View File

@@ -8,27 +8,31 @@ DETECT_LIBS?=true
# llama.cpp versions # llama.cpp versions
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=6152129d05870cb38162c422c6ba80434e021e9f CPPLLAMA_VERSION?=d5ed2b929d85bbd7dbeecb690880f07d9d7a6077
# go-rwkv version
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
# whisper.cpp version # whisper.cpp version
WHISPER_REPO?=https://github.com/ggerganov/whisper.cpp WHISPER_REPO?=https://github.com/ggerganov/whisper.cpp
WHISPER_CPP_VERSION?=6266a9f9e56a5b925e9892acf650f3eb1245814d WHISPER_CPP_VERSION?=ccc2547210e09e3a1785817383ab770389bb442b
# bert.cpp version
BERT_REPO?=https://github.com/go-skynet/go-bert.cpp
BERT_VERSION?=710044b124545415f555e4260d16b146c725a6e4
# go-piper version # go-piper version
PIPER_REPO?=https://github.com/mudler/go-piper PIPER_REPO?=https://github.com/mudler/go-piper
PIPER_VERSION?=e10ca041a885d4a8f3871d52924b47792d5e5aa0 PIPER_VERSION?=9d0100873a7dbb0824dfea40e8cec70a1b110759
# bark.cpp # stablediffusion version
BARKCPP_REPO?=https://github.com/PABannier/bark.cpp.git STABLEDIFFUSION_REPO?=https://github.com/mudler/go-stable-diffusion
BARKCPP_VERSION?=v1.0.0 STABLEDIFFUSION_VERSION?=4a3cd6aeae6f66ee57eae9a0075f8c58c3a6a38f
# stablediffusion.cpp (ggml) # tinydream version
STABLEDIFFUSION_GGML_REPO?=https://github.com/leejet/stable-diffusion.cpp TINYDREAM_REPO?=https://github.com/M0Rf30/go-tiny-dream
STABLEDIFFUSION_GGML_VERSION?=5eb15ef4d022bef4a391de4f5f6556e81fbb5024 TINYDREAM_VERSION?=c04fa463ace9d9a6464313aa5f9cd0f953b6c057
ONNX_VERSION?=1.20.0
ONNX_ARCH?=x64
ONNX_OS?=linux
export BUILD_TYPE?= export BUILD_TYPE?=
export STABLE_BUILD_TYPE?=$(BUILD_TYPE) export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
@@ -41,7 +45,6 @@ CGO_LDFLAGS_WHISPER+=-lggml
CUDA_LIBPATH?=/usr/local/cuda/lib64/ CUDA_LIBPATH?=/usr/local/cuda/lib64/
GO_TAGS?= GO_TAGS?=
BUILD_ID?= BUILD_ID?=
NATIVE?=false
TEST_DIR=/tmp/test TEST_DIR=/tmp/test
@@ -80,25 +83,7 @@ ifndef UNAME_S
UNAME_S := $(shell uname -s) UNAME_S := $(shell uname -s)
endif endif
# IF native is false, we add -DGGML_NATIVE=OFF to CMAKE_ARGS
ifeq ($(NATIVE),false)
CMAKE_ARGS+=-DGGML_NATIVE=OFF
endif
# Detect if we are running on arm64
ifneq (,$(findstring aarch64,$(shell uname -m)))
ONNX_ARCH=aarch64
endif
ifeq ($(OS),Darwin) ifeq ($(OS),Darwin)
ONNX_OS=osx
ifneq (,$(findstring aarch64,$(shell uname -m)))
ONNX_ARCH=arm64
else ifneq (,$(findstring arm64,$(shell uname -m)))
ONNX_ARCH=arm64
else
ONNX_ARCH=x86_64
endif
ifeq ($(OSX_SIGNING_IDENTITY),) ifeq ($(OSX_SIGNING_IDENTITY),)
OSX_SIGNING_IDENTITY := $(shell security find-identity -v -p codesigning | grep '"' | head -n 1 | sed -E 's/.*"(.*)"/\1/') OSX_SIGNING_IDENTITY := $(shell security find-identity -v -p codesigning | grep '"' | head -n 1 | sed -E 's/.*"(.*)"/\1/')
@@ -153,10 +138,10 @@ ifeq ($(BUILD_TYPE),hipblas)
export CC=$(ROCM_HOME)/llvm/bin/clang export CC=$(ROCM_HOME)/llvm/bin/clang
# llama-ggml has no hipblas support, so override it here. # llama-ggml has no hipblas support, so override it here.
export STABLE_BUILD_TYPE= export STABLE_BUILD_TYPE=
export GGML_HIP=1 export GGML_HIPBLAS=1
GPU_TARGETS ?= gfx900,gfx906,gfx908,gfx940,gfx941,gfx942,gfx90a,gfx1030,gfx1031,gfx1100,gfx1101 GPU_TARGETS ?= gfx900,gfx906,gfx908,gfx940,gfx941,gfx942,gfx90a,gfx1030,gfx1031,gfx1100,gfx1101
AMDGPU_TARGETS ?= "$(GPU_TARGETS)" AMDGPU_TARGETS ?= "$(GPU_TARGETS)"
CMAKE_ARGS+=-DGGML_HIP=ON -DAMDGPU_TARGETS="$(AMDGPU_TARGETS)" -DGPU_TARGETS="$(GPU_TARGETS)" CMAKE_ARGS+=-DGGML_HIPBLAS=ON -DAMDGPU_TARGETS="$(AMDGPU_TARGETS)" -DGPU_TARGETS="$(GPU_TARGETS)"
CGO_LDFLAGS += -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link -L${ROCM_HOME}/lib/llvm/lib CGO_LDFLAGS += -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link -L${ROCM_HOME}/lib/llvm/lib
endif endif
@@ -175,6 +160,16 @@ ifeq ($(STATIC),true)
LD_FLAGS+=-linkmode external -extldflags -static LD_FLAGS+=-linkmode external -extldflags -static
endif endif
ifeq ($(findstring stablediffusion,$(GO_TAGS)),stablediffusion)
# OPTIONAL_TARGETS+=go-stable-diffusion/libstablediffusion.a
OPTIONAL_GRPC+=backend-assets/grpc/stablediffusion
endif
ifeq ($(findstring tinydream,$(GO_TAGS)),tinydream)
# OPTIONAL_TARGETS+=go-tiny-dream/libtinydream.a
OPTIONAL_GRPC+=backend-assets/grpc/tinydream
endif
ifeq ($(findstring tts,$(GO_TAGS)),tts) ifeq ($(findstring tts,$(GO_TAGS)),tts)
# OPTIONAL_TARGETS+=go-piper/libpiper_binding.a # OPTIONAL_TARGETS+=go-piper/libpiper_binding.a
# OPTIONAL_TARGETS+=backend-assets/espeak-ng-data # OPTIONAL_TARGETS+=backend-assets/espeak-ng-data
@@ -184,24 +179,16 @@ ifeq ($(findstring tts,$(GO_TAGS)),tts)
endif endif
ALL_GRPC_BACKENDS=backend-assets/grpc/huggingface ALL_GRPC_BACKENDS=backend-assets/grpc/huggingface
ALL_GRPC_BACKENDS+=backend-assets/grpc/bert-embeddings
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx2 ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx2
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx512
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-fallback ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-fallback
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-grpc ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-grpc
ALL_GRPC_BACKENDS+=backend-assets/util/llama-cpp-rpc-server ALL_GRPC_BACKENDS+=backend-assets/util/llama-cpp-rpc-server
ALL_GRPC_BACKENDS+=backend-assets/grpc/rwkv
ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper
ifeq ($(ONNX_OS),linux)
ifeq ($(ONNX_ARCH),x64)
ALL_GRPC_BACKENDS+=backend-assets/grpc/bark-cpp
ALL_GRPC_BACKENDS+=backend-assets/grpc/stablediffusion-ggml
endif
endif
ALL_GRPC_BACKENDS+=backend-assets/grpc/local-store ALL_GRPC_BACKENDS+=backend-assets/grpc/local-store
ALL_GRPC_BACKENDS+=backend-assets/grpc/silero-vad
ALL_GRPC_BACKENDS+=$(OPTIONAL_GRPC) ALL_GRPC_BACKENDS+=$(OPTIONAL_GRPC)
# Use filter-out to remove the specified backends # Use filter-out to remove the specified backends
ALL_GRPC_BACKENDS := $(filter-out $(SKIP_GRPC_BACKEND),$(ALL_GRPC_BACKENDS)) ALL_GRPC_BACKENDS := $(filter-out $(SKIP_GRPC_BACKEND),$(ALL_GRPC_BACKENDS))
@@ -222,6 +209,19 @@ endif
all: help all: help
## BERT embeddings
sources/go-bert.cpp:
mkdir -p sources/go-bert.cpp
cd sources/go-bert.cpp && \
git init && \
git remote add origin $(BERT_REPO) && \
git fetch origin && \
git checkout $(BERT_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/go-bert.cpp/libgobert.a: sources/go-bert.cpp
$(MAKE) -C sources/go-bert.cpp libgobert.a
## go-llama.cpp ## go-llama.cpp
sources/go-llama.cpp: sources/go-llama.cpp:
mkdir -p sources/go-llama.cpp mkdir -p sources/go-llama.cpp
@@ -235,23 +235,6 @@ sources/go-llama.cpp:
sources/go-llama.cpp/libbinding.a: sources/go-llama.cpp sources/go-llama.cpp/libbinding.a: sources/go-llama.cpp
$(MAKE) -C sources/go-llama.cpp BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a $(MAKE) -C sources/go-llama.cpp BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
## bark.cpp
sources/bark.cpp:
git clone --recursive $(BARKCPP_REPO) sources/bark.cpp && \
cd sources/bark.cpp && \
git checkout $(BARKCPP_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/bark.cpp/build/libbark.a: sources/bark.cpp
cd sources/bark.cpp && \
mkdir -p build && \
cd build && \
cmake $(CMAKE_ARGS) .. && \
cmake --build . --config Release
backend/go/bark/libbark.a: sources/bark.cpp/build/libbark.a
$(MAKE) -C backend/go/bark libbark.a
## go-piper ## go-piper
sources/go-piper: sources/go-piper:
mkdir -p sources/go-piper mkdir -p sources/go-piper
@@ -265,37 +248,45 @@ sources/go-piper:
sources/go-piper/libpiper_binding.a: sources/go-piper sources/go-piper/libpiper_binding.a: sources/go-piper
$(MAKE) -C sources/go-piper libpiper_binding.a example/main piper.o $(MAKE) -C sources/go-piper libpiper_binding.a example/main piper.o
## stablediffusion (ggml)
sources/stablediffusion-ggml.cpp: ## RWKV
git clone --recursive $(STABLEDIFFUSION_GGML_REPO) sources/stablediffusion-ggml.cpp && \ sources/go-rwkv.cpp:
cd sources/stablediffusion-ggml.cpp && \ mkdir -p sources/go-rwkv.cpp
git checkout $(STABLEDIFFUSION_GGML_VERSION) && \ cd sources/go-rwkv.cpp && \
git init && \
git remote add origin $(RWKV_REPO) && \
git fetch origin && \
git checkout $(RWKV_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch git submodule update --init --recursive --depth 1 --single-branch
backend/go/image/stablediffusion-ggml/libsd.a: sources/stablediffusion-ggml.cpp sources/go-rwkv.cpp/librwkv.a: sources/go-rwkv.cpp
$(MAKE) -C backend/go/image/stablediffusion-ggml build/libstable-diffusion.a cd sources/go-rwkv.cpp && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
$(MAKE) -C backend/go/image/stablediffusion-ggml libsd.a
backend-assets/grpc/stablediffusion-ggml: backend/go/image/stablediffusion-ggml/libsd.a backend-assets/grpc ## stable diffusion
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/backend/go/image/stablediffusion-ggml/ LIBRARY_PATH=$(CURDIR)/backend/go/image/stablediffusion-ggml/ \ sources/go-stable-diffusion:
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion-ggml ./backend/go/image/stablediffusion-ggml/ mkdir -p sources/go-stable-diffusion
ifneq ($(UPX),) cd sources/go-stable-diffusion && \
$(UPX) backend-assets/grpc/stablediffusion-ggml git init && \
endif git remote add origin $(STABLEDIFFUSION_REPO) && \
git fetch origin && \
git checkout $(STABLEDIFFUSION_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/onnxruntime: sources/go-stable-diffusion/libstablediffusion.a: sources/go-stable-diffusion
mkdir -p sources/onnxruntime CPATH="$(CPATH):/usr/include/opencv4" $(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
curl -L https://github.com/microsoft/onnxruntime/releases/download/v$(ONNX_VERSION)/onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION).tgz -o sources/onnxruntime/onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION).tgz
cd sources/onnxruntime && tar -xvf onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION).tgz && rm onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION).tgz
cd sources/onnxruntime && mv onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION)/* ./
backend-assets/lib/libonnxruntime.so.1: backend-assets/lib sources/onnxruntime ## tiny-dream
cp -rfv sources/onnxruntime/lib/* backend-assets/lib/ sources/go-tiny-dream:
ifeq ($(OS),Darwin) mkdir -p sources/go-tiny-dream
mv backend-assets/lib/libonnxruntime.$(ONNX_VERSION).dylib backend-assets/lib/libonnxruntime.dylib cd sources/go-tiny-dream && \
else git init && \
mv backend-assets/lib/libonnxruntime.so.$(ONNX_VERSION) backend-assets/lib/libonnxruntime.so.1 git remote add origin $(TINYDREAM_REPO) && \
endif git fetch origin && \
git checkout $(TINYDREAM_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/go-tiny-dream/libtinydream.a: sources/go-tiny-dream
$(MAKE) -C sources/go-tiny-dream libtinydream.a
## whisper ## whisper
sources/whisper.cpp: sources/whisper.cpp:
@@ -310,18 +301,26 @@ sources/whisper.cpp:
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
cd sources/whisper.cpp && $(MAKE) libwhisper.a libggml.a cd sources/whisper.cpp && $(MAKE) libwhisper.a libggml.a
get-sources: sources/go-llama.cpp sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp backend/cpp/llama/llama.cpp get-sources: sources/go-llama.cpp sources/go-piper sources/go-rwkv.cpp sources/whisper.cpp sources/go-bert.cpp sources/go-stable-diffusion sources/go-tiny-dream backend/cpp/llama/llama.cpp
replace: replace:
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp $(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go $(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(CURDIR)/sources/go-bert.cpp
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(CURDIR)/sources/go-tiny-dream
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper $(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama.cpp $(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama.cpp
dropreplace: dropreplace:
$(GOCMD) mod edit -dropreplace github.com/donomii/go-rwkv.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp $(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go $(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-bert.cpp
$(GOCMD) mod edit -dropreplace github.com/M0Rf30/go-tiny-dream
$(GOCMD) mod edit -dropreplace github.com/mudler/go-piper $(GOCMD) mod edit -dropreplace github.com/mudler/go-piper
$(GOCMD) mod edit -dropreplace github.com/mudler/go-stable-diffusion
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-llama.cpp $(GOCMD) mod edit -dropreplace github.com/go-skynet/go-llama.cpp
prepare-sources: get-sources replace prepare-sources: get-sources replace
@@ -331,8 +330,12 @@ prepare-sources: get-sources replace
rebuild: ## Rebuilds the project rebuild: ## Rebuilds the project
$(GOCMD) clean -cache $(GOCMD) clean -cache
$(MAKE) -C sources/go-llama.cpp clean $(MAKE) -C sources/go-llama.cpp clean
$(MAKE) -C sources/go-rwkv.cpp clean
$(MAKE) -C sources/whisper.cpp clean $(MAKE) -C sources/whisper.cpp clean
$(MAKE) -C sources/go-stable-diffusion clean
$(MAKE) -C sources/go-bert.cpp clean
$(MAKE) -C sources/go-piper clean $(MAKE) -C sources/go-piper clean
$(MAKE) -C sources/go-tiny-dream clean
$(MAKE) build $(MAKE) build
prepare: prepare-sources $(OPTIONAL_TARGETS) prepare: prepare-sources $(OPTIONAL_TARGETS)
@@ -345,9 +348,7 @@ clean: ## Remove build related file
rm -rf release/ rm -rf release/
rm -rf backend-assets/* rm -rf backend-assets/*
$(MAKE) -C backend/cpp/grpc clean $(MAKE) -C backend/cpp/grpc clean
$(MAKE) -C backend/go/bark clean
$(MAKE) -C backend/cpp/llama clean $(MAKE) -C backend/cpp/llama clean
$(MAKE) -C backend/go/image/stablediffusion-ggml clean
rm -rf backend/cpp/llama-* || true rm -rf backend/cpp/llama-* || true
$(MAKE) dropreplace $(MAKE) dropreplace
$(MAKE) protogen-clean $(MAKE) protogen-clean
@@ -438,6 +439,8 @@ test-models/testmodel.ggml:
wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
wget -q https://huggingface.co/mudler/rwkv-4-raven-1.5B-ggml/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%2525-Other1%2525-20230425-ctx4096_Q4_0.bin -O test-models/rwkv
wget -q https://raw.githubusercontent.com/saharNooby/rwkv.cpp/5eb8f09c146ea8124633ab041d9ea0b1f1db4459/rwkv/20B_tokenizer.json -O test-models/rwkv.tokenizer.json
cp tests/models_fixtures/* test-models cp tests/models_fixtures/* test-models
prepare-test: grpcs prepare-test: grpcs
@@ -446,9 +449,9 @@ prepare-test: grpcs
test: prepare test-models/testmodel.ggml grpcs test: prepare test-models/testmodel.ggml grpcs
@echo 'Running tests' @echo 'Running tests'
export GO_TAGS="tts debug" export GO_TAGS="tts stablediffusion debug"
$(MAKE) prepare-test $(MAKE) prepare-test
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/transformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \ HUGGINGFACE_GRPC=$(abspath ./)/backend/python/sentencetransformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS) $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
$(MAKE) test-llama $(MAKE) test-llama
$(MAKE) test-llama-gguf $(MAKE) test-llama-gguf
@@ -467,13 +470,13 @@ run-e2e-image:
run-e2e-aio: protogen-go run-e2e-aio: protogen-go
@echo 'Running e2e AIO tests' @echo 'Running e2e AIO tests'
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e-aio $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
test-e2e: test-e2e:
@echo 'Running e2e tests' @echo 'Running e2e tests'
BUILD_TYPE=$(BUILD_TYPE) \ BUILD_TYPE=$(BUILD_TYPE) \
LOCALAI_API=http://$(E2E_BRIDGE_IP):5390/v1 \ LOCALAI_API=http://$(E2E_BRIDGE_IP):5390/v1 \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e
teardown-e2e: teardown-e2e:
rm -rf $(TEST_DIR) || true rm -rf $(TEST_DIR) || true
@@ -481,24 +484,24 @@ teardown-e2e:
test-llama: prepare-test test-llama: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \ TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS) $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
test-llama-gguf: prepare-test test-llama-gguf: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \ TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS) $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
test-tts: prepare-test test-tts: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \ TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS) $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts 1 -v -r $(TEST_PATHS)
test-stablediffusion: prepare-test test-stablediffusion: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \ TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS) $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r $(TEST_PATHS)
test-stores: backend-assets/grpc/local-store test-stores: backend-assets/grpc/local-store
mkdir -p tests/integration/backend-assets/grpc mkdir -p tests/integration/backend-assets/grpc
cp -f backend-assets/grpc/local-store tests/integration/backend-assets/grpc/ cp -f backend-assets/grpc/local-store tests/integration/backend-assets/grpc/
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stores" --flake-attempts $(TEST_FLAKES) -v -r tests/integration $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stores" --flake-attempts 1 -v -r tests/integration
test-container: test-container:
docker build --target requirements -t local-ai-test-container . docker build --target requirements -t local-ai-test-container .
@@ -534,10 +537,10 @@ protogen-go-clean:
$(RM) bin/* $(RM) bin/*
.PHONY: protogen-python .PHONY: protogen-python
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen rerankers-protogen transformers-protogen kokoro-protogen vllm-protogen faster-whisper-protogen protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
.PHONY: protogen-python-clean .PHONY: protogen-python-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean rerankers-protogen-clean transformers-protogen-clean kokoro-protogen-clean vllm-protogen-clean faster-whisper-protogen-clean protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
.PHONY: autogptq-protogen .PHONY: autogptq-protogen
autogptq-protogen: autogptq-protogen:
@@ -571,14 +574,6 @@ diffusers-protogen:
diffusers-protogen-clean: diffusers-protogen-clean:
$(MAKE) -C backend/python/diffusers protogen-clean $(MAKE) -C backend/python/diffusers protogen-clean
.PHONY: faster-whisper-protogen
faster-whisper-protogen:
$(MAKE) -C backend/python/faster-whisper protogen
.PHONY: faster-whisper-protogen-clean
faster-whisper-protogen-clean:
$(MAKE) -C backend/python/faster-whisper protogen-clean
.PHONY: exllama2-protogen .PHONY: exllama2-protogen
exllama2-protogen: exllama2-protogen:
$(MAKE) -C backend/python/exllama2 protogen $(MAKE) -C backend/python/exllama2 protogen
@@ -587,6 +582,14 @@ exllama2-protogen:
exllama2-protogen-clean: exllama2-protogen-clean:
$(MAKE) -C backend/python/exllama2 protogen-clean $(MAKE) -C backend/python/exllama2 protogen-clean
.PHONY: mamba-protogen
mamba-protogen:
$(MAKE) -C backend/python/mamba protogen
.PHONY: mamba-protogen-clean
mamba-protogen-clean:
$(MAKE) -C backend/python/mamba protogen-clean
.PHONY: rerankers-protogen .PHONY: rerankers-protogen
rerankers-protogen: rerankers-protogen:
$(MAKE) -C backend/python/rerankers protogen $(MAKE) -C backend/python/rerankers protogen
@@ -595,6 +598,14 @@ rerankers-protogen:
rerankers-protogen-clean: rerankers-protogen-clean:
$(MAKE) -C backend/python/rerankers protogen-clean $(MAKE) -C backend/python/rerankers protogen-clean
.PHONY: sentencetransformers-protogen
sentencetransformers-protogen:
$(MAKE) -C backend/python/sentencetransformers protogen
.PHONY: sentencetransformers-protogen-clean
sentencetransformers-protogen-clean:
$(MAKE) -C backend/python/sentencetransformers protogen-clean
.PHONY: transformers-protogen .PHONY: transformers-protogen
transformers-protogen: transformers-protogen:
$(MAKE) -C backend/python/transformers protogen $(MAKE) -C backend/python/transformers protogen
@@ -603,13 +614,37 @@ transformers-protogen:
transformers-protogen-clean: transformers-protogen-clean:
$(MAKE) -C backend/python/transformers protogen-clean $(MAKE) -C backend/python/transformers protogen-clean
.PHONY: kokoro-protogen .PHONY: parler-tts-protogen
kokoro-protogen: parler-tts-protogen:
$(MAKE) -C backend/python/kokoro protogen $(MAKE) -C backend/python/parler-tts protogen
.PHONY: kokoro-protogen-clean .PHONY: parler-tts-protogen-clean
kokoro-protogen-clean: parler-tts-protogen-clean:
$(MAKE) -C backend/python/kokoro protogen-clean $(MAKE) -C backend/python/parler-tts protogen-clean
.PHONY: transformers-musicgen-protogen
transformers-musicgen-protogen:
$(MAKE) -C backend/python/transformers-musicgen protogen
.PHONY: transformers-musicgen-protogen-clean
transformers-musicgen-protogen-clean:
$(MAKE) -C backend/python/transformers-musicgen protogen-clean
.PHONY: vall-e-x-protogen
vall-e-x-protogen:
$(MAKE) -C backend/python/vall-e-x protogen
.PHONY: vall-e-x-protogen-clean
vall-e-x-protogen-clean:
$(MAKE) -C backend/python/vall-e-x protogen-clean
.PHONY: openvoice-protogen
openvoice-protogen:
$(MAKE) -C backend/python/openvoice protogen
.PHONY: openvoice-protogen-clean
openvoice-protogen-clean:
$(MAKE) -C backend/python/openvoice protogen-clean
.PHONY: vllm-protogen .PHONY: vllm-protogen
vllm-protogen: vllm-protogen:
@@ -626,11 +661,15 @@ prepare-extra-conda-environments: protogen-python
$(MAKE) -C backend/python/bark $(MAKE) -C backend/python/bark
$(MAKE) -C backend/python/coqui $(MAKE) -C backend/python/coqui
$(MAKE) -C backend/python/diffusers $(MAKE) -C backend/python/diffusers
$(MAKE) -C backend/python/faster-whisper
$(MAKE) -C backend/python/vllm $(MAKE) -C backend/python/vllm
$(MAKE) -C backend/python/mamba
$(MAKE) -C backend/python/sentencetransformers
$(MAKE) -C backend/python/rerankers $(MAKE) -C backend/python/rerankers
$(MAKE) -C backend/python/transformers $(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/kokoro $(MAKE) -C backend/python/transformers-musicgen
$(MAKE) -C backend/python/parler-tts
$(MAKE) -C backend/python/vall-e-x
$(MAKE) -C backend/python/openvoice
$(MAKE) -C backend/python/exllama2 $(MAKE) -C backend/python/exllama2
prepare-test-extra: protogen-python prepare-test-extra: protogen-python
@@ -654,6 +693,13 @@ backend-assets/espeak-ng-data: sources/go-piper sources/go-piper/libpiper_bindin
backend-assets/grpc: protogen-go replace backend-assets/grpc: protogen-go replace
mkdir -p backend-assets/grpc mkdir -p backend-assets/grpc
backend-assets/grpc/bert-embeddings: sources/go-bert.cpp sources/go-bert.cpp/libgobert.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert.cpp LIBRARY_PATH=$(CURDIR)/sources/go-bert.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./backend/go/llm/bert/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/bert-embeddings
endif
backend-assets/grpc/huggingface: backend-assets/grpc backend-assets/grpc/huggingface: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/huggingface ./backend/go/llm/langchain/ $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/huggingface ./backend/go/llm/langchain/
ifneq ($(UPX),) ifneq ($(UPX),)
@@ -700,13 +746,6 @@ backend-assets/grpc/llama-cpp-avx2: backend-assets/grpc backend/cpp/llama/llama.
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on" $(MAKE) VARIANT="llama-avx2" build-llama-cpp-grpc-server CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on" $(MAKE) VARIANT="llama-avx2" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-avx2/grpc-server backend-assets/grpc/llama-cpp-avx2 cp -rfv backend/cpp/llama-avx2/grpc-server backend-assets/grpc/llama-cpp-avx2
backend-assets/grpc/llama-cpp-avx512: backend-assets/grpc backend/cpp/llama/llama.cpp
cp -rf backend/cpp/llama backend/cpp/llama-avx512
$(MAKE) -C backend/cpp/llama-avx512 purge
$(info ${GREEN}I llama-cpp build info:avx512${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=on -DGGML_FMA=on -DGGML_F16C=on" $(MAKE) VARIANT="llama-avx512" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-avx512/grpc-server backend-assets/grpc/llama-cpp-avx512
backend-assets/grpc/llama-cpp-avx: backend-assets/grpc backend/cpp/llama/llama.cpp backend-assets/grpc/llama-cpp-avx: backend-assets/grpc backend/cpp/llama/llama.cpp
cp -rf backend/cpp/llama backend/cpp/llama-avx cp -rf backend/cpp/llama backend/cpp/llama-avx
$(MAKE) -C backend/cpp/llama-avx purge $(MAKE) -C backend/cpp/llama-avx purge
@@ -720,6 +759,10 @@ backend-assets/grpc/llama-cpp-fallback: backend-assets/grpc backend/cpp/llama/ll
$(info ${GREEN}I llama-cpp build info:fallback${RESET}) $(info ${GREEN}I llama-cpp build info:fallback${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off" $(MAKE) VARIANT="llama-fallback" build-llama-cpp-grpc-server CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off" $(MAKE) VARIANT="llama-fallback" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-fallback/grpc-server backend-assets/grpc/llama-cpp-fallback cp -rfv backend/cpp/llama-fallback/grpc-server backend-assets/grpc/llama-cpp-fallback
# TODO: every binary should have its own folder instead, so can have different metal implementations
ifeq ($(BUILD_TYPE),metal)
cp backend/cpp/llama-fallback/llama.cpp/build/bin/default.metallib backend-assets/grpc/
endif
backend-assets/grpc/llama-cpp-cuda: backend-assets/grpc backend/cpp/llama/llama.cpp backend-assets/grpc/llama-cpp-cuda: backend-assets/grpc backend/cpp/llama/llama.cpp
cp -rf backend/cpp/llama backend/cpp/llama-cuda cp -rf backend/cpp/llama backend/cpp/llama-cuda
@@ -732,7 +775,7 @@ backend-assets/grpc/llama-cpp-hipblas: backend-assets/grpc backend/cpp/llama/lla
cp -rf backend/cpp/llama backend/cpp/llama-hipblas cp -rf backend/cpp/llama backend/cpp/llama-hipblas
$(MAKE) -C backend/cpp/llama-hipblas purge $(MAKE) -C backend/cpp/llama-hipblas purge
$(info ${GREEN}I llama-cpp build info:hipblas${RESET}) $(info ${GREEN}I llama-cpp build info:hipblas${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off" BUILD_TYPE="hipblas" $(MAKE) VARIANT="llama-hipblas" build-llama-cpp-grpc-server BUILD_TYPE="hipblas" $(MAKE) VARIANT="llama-hipblas" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-hipblas/grpc-server backend-assets/grpc/llama-cpp-hipblas cp -rfv backend/cpp/llama-hipblas/grpc-server backend-assets/grpc/llama-cpp-hipblas
backend-assets/grpc/llama-cpp-sycl_f16: backend-assets/grpc backend/cpp/llama/llama.cpp backend-assets/grpc/llama-cpp-sycl_f16: backend-assets/grpc backend/cpp/llama/llama.cpp
@@ -767,13 +810,6 @@ ifneq ($(UPX),)
$(UPX) backend-assets/grpc/llama-ggml $(UPX) backend-assets/grpc/llama-ggml
endif endif
backend-assets/grpc/bark-cpp: backend/go/bark/libbark.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/backend/go/bark/ LIBRARY_PATH=$(CURDIR)/backend/go/bark/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bark-cpp ./backend/go/bark/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/bark-cpp
endif
backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \ CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/ $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
@@ -781,11 +817,25 @@ ifneq ($(UPX),)
$(UPX) backend-assets/grpc/piper $(UPX) backend-assets/grpc/piper
endif endif
backend-assets/grpc/silero-vad: backend-assets/grpc backend-assets/lib/libonnxruntime.so.1 backend-assets/grpc/rwkv: sources/go-rwkv.cpp sources/go-rwkv.cpp/librwkv.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" CPATH="$(CPATH):$(CURDIR)/sources/onnxruntime/include/" LIBRARY_PATH=$(CURDIR)/backend-assets/lib \ CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv.cpp LIBRARY_PATH=$(CURDIR)/sources/go-rwkv.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/silero-vad ./backend/go/vad/silero $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
ifneq ($(UPX),) ifneq ($(UPX),)
$(UPX) backend-assets/grpc/silero-vad $(UPX) backend-assets/grpc/rwkv
endif
backend-assets/grpc/stablediffusion: sources/go-stable-diffusion sources/go-stable-diffusion/libstablediffusion.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" CPATH="$(CPATH):$(CURDIR)/sources/go-stable-diffusion/:/usr/include/opencv4" LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/stablediffusion
endif
backend-assets/grpc/tinydream: sources/go-tiny-dream sources/go-tiny-dream/libtinydream.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/tinydream
endif endif
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
@@ -841,7 +891,7 @@ docker-aio-all:
docker-image-intel: docker-image-intel:
docker build \ docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2025.0.0-0-devel-ubuntu22.04 \ --build-arg BASE_IMAGE=intel/oneapi-basekit:2024.2.0-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \ --build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \ --build-arg GO_TAGS="none" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \ --build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
@@ -849,7 +899,7 @@ docker-image-intel:
docker-image-intel-xpu: docker-image-intel-xpu:
docker build \ docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2025.0.0-0-devel-ubuntu22.04 \ --build-arg BASE_IMAGE=intel/oneapi-basekit:2024.2.0-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \ --build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \ --build-arg GO_TAGS="none" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \ --build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \

View File

@@ -38,13 +38,9 @@
</a> </a>
</p> </p>
<p align="center">
<a href="https://trendshift.io/repositories/5539" target="_blank"><img src="https://trendshift.io/api/badge/repositories/5539" alt="mudler%2FLocalAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/) > :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
> >
> [💻 Quickstart](https://localai.io/basics/getting_started/) [🖼️ Models](https://models.localai.io/) [🚀 Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) [🥽 Demo](https://demo.localai.io) [🌍 Explorer](https://explorer.localai.io) [🛫 Examples](https://github.com/mudler/LocalAI-examples) > [💻 Quickstart](https://localai.io/basics/getting_started/) [🖼️ Models](https://models.localai.io/) [🚀 Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) [🥽 Demo](https://demo.localai.io) [🌍 Explorer](https://explorer.localai.io) [🛫 Examples](https://github.com/go-skynet/LocalAI/tree/master/examples/)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai) [![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
@@ -60,47 +56,29 @@ curl https://localai.io/install.sh | sh
Or run with docker: Or run with docker:
```bash ```bash
# CPU only image:
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-cpu
# Nvidia GPU:
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12
# CPU and GPU image (bigger size):
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
# AIO images (it will pre-download a set of models ready for use, see https://localai.io/basics/container/)
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
``` # Alternative images:
# - if you have an Nvidia GPU:
To load models: # docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-12
# - without preconfigured models
```bash # docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
# From the model gallery (see available models with `local-ai models list`, in the WebUI from the model tab, or visiting https://models.localai.io) # - without preconfigured models for Nvidia GPUs
local-ai run llama-3.2-1b-instruct:q4_k_m # docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12
# Start LocalAI with the phi-2 model directly from huggingface
local-ai run huggingface://TheBloke/phi-2-GGUF/phi-2.Q8_0.gguf
# Install and run a model from the Ollama OCI registry
local-ai run ollama://gemma:2b
# Run a model from a configuration file
local-ai run https://gist.githubusercontent.com/.../phi-2.yaml
# Install and run a model from a standard OCI registry (e.g., Docker Hub)
local-ai run oci://localai/phi-2:latest
``` ```
[💻 Getting started](https://localai.io/basics/getting_started/index.html) [💻 Getting started](https://localai.io/basics/getting_started/index.html)
## 📰 Latest project news ## 📰 Latest project news
- Jan 2025: LocalAI model release: https://huggingface.co/mudler/LocalAI-functioncall-phi-4-v0.3, SANA support in diffusers: https://github.com/mudler/LocalAI/pull/4603
- Dec 2024: stablediffusion.cpp backend (ggml) added ( https://github.com/mudler/LocalAI/pull/4289 )
- Nov 2024: Bark.cpp backend added ( https://github.com/mudler/LocalAI/pull/4287 )
- Nov 2024: Voice activity detection models (**VAD**) added to the API: https://github.com/mudler/LocalAI/pull/4204
- Oct 2024: examples moved to [LocalAI-examples](https://github.com/mudler/LocalAI-examples)
- Aug 2024: 🆕 FLUX-1, [P2P Explorer](https://explorer.localai.io) - Aug 2024: 🆕 FLUX-1, [P2P Explorer](https://explorer.localai.io)
- July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723. P2P Global community pools: https://github.com/mudler/LocalAI/issues/3113 - July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723
- June 2024: 🆕 You can browse now the model gallery without LocalAI! Check out https://models.localai.io
- June 2024: Support for models from OCI registries: https://github.com/mudler/LocalAI/pull/2628
- May 2024: 🔥🔥 Decentralized P2P llama.cpp: https://github.com/mudler/LocalAI/pull/2343 (peer2peer llama.cpp!) 👉 Docs https://localai.io/features/distribute/ - May 2024: 🔥🔥 Decentralized P2P llama.cpp: https://github.com/mudler/LocalAI/pull/2343 (peer2peer llama.cpp!) 👉 Docs https://localai.io/features/distribute/
- May 2024: 🔥🔥 Openvoice: https://github.com/mudler/LocalAI/pull/2334
- May 2024: 🆕 Function calls without grammars and mixed mode: https://github.com/mudler/LocalAI/pull/2328
- May 2024: 🔥🔥 Distributed inferencing: https://github.com/mudler/LocalAI/pull/2324 - May 2024: 🔥🔥 Distributed inferencing: https://github.com/mudler/LocalAI/pull/2324
- May 2024: Chat, TTS, and Image generation in the WebUI: https://github.com/mudler/LocalAI/pull/2222
- April 2024: Reranker API: https://github.com/mudler/LocalAI/pull/2121 - April 2024: Reranker API: https://github.com/mudler/LocalAI/pull/2121
Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
@@ -109,10 +87,12 @@ Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3A
- Multimodal with vLLM and Video understanding: https://github.com/mudler/LocalAI/pull/3729 - Multimodal with vLLM and Video understanding: https://github.com/mudler/LocalAI/pull/3729
- Realtime API https://github.com/mudler/LocalAI/issues/3714 - Realtime API https://github.com/mudler/LocalAI/issues/3714
- 🔥🔥 Distributed, P2P Global community pools: https://github.com/mudler/LocalAI/issues/3113
- WebUI improvements: https://github.com/mudler/LocalAI/issues/2156 - WebUI improvements: https://github.com/mudler/LocalAI/issues/2156
- Backends v2: https://github.com/mudler/LocalAI/issues/1126 - Backends v2: https://github.com/mudler/LocalAI/issues/1126
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373 - Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
- Assistant API: https://github.com/mudler/LocalAI/issues/1273 - Assistant API: https://github.com/mudler/LocalAI/issues/1273
- Moderation endpoint: https://github.com/mudler/LocalAI/issues/999
- Vulkan: https://github.com/mudler/LocalAI/issues/1647 - Vulkan: https://github.com/mudler/LocalAI/issues/1647
- Anthropic API: https://github.com/mudler/LocalAI/issues/1808 - Anthropic API: https://github.com/mudler/LocalAI/issues/1808
@@ -120,10 +100,10 @@ If you want to help and contribute, issues up for grabs: https://github.com/mudl
## 🚀 [Features](https://localai.io/features/) ## 🚀 [Features](https://localai.io/features/)
- 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `transformers`, `vllm` ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table)) - 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `gpt4all.cpp`, ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table))
- 🗣 [Text to Audio](https://localai.io/features/text-to-audio/) - 🗣 [Text to Audio](https://localai.io/features/text-to-audio/)
- 🔈 [Audio to Text](https://localai.io/features/audio-to-text/) (Audio transcription with `whisper.cpp`) - 🔈 [Audio to Text](https://localai.io/features/audio-to-text/) (Audio transcription with `whisper.cpp`)
- 🎨 [Image generation](https://localai.io/features/image-generation) - 🎨 [Image generation with stable diffusion](https://localai.io/features/image-generation)
- 🔥 [OpenAI-alike tools API](https://localai.io/features/openai-functions/) - 🔥 [OpenAI-alike tools API](https://localai.io/features/openai-functions/)
- 🧠 [Embeddings generation for vector databases](https://localai.io/features/embeddings/) - 🧠 [Embeddings generation for vector databases](https://localai.io/features/embeddings/)
- ✍️ [Constrained grammars](https://localai.io/features/constrained_grammars/) - ✍️ [Constrained grammars](https://localai.io/features/constrained_grammars/)
@@ -131,7 +111,6 @@ If you want to help and contribute, issues up for grabs: https://github.com/mudl
- 🥽 [Vision API](https://localai.io/features/gpt-vision/) - 🥽 [Vision API](https://localai.io/features/gpt-vision/)
- 📈 [Reranker API](https://localai.io/features/reranker/) - 📈 [Reranker API](https://localai.io/features/reranker/)
- 🆕🖧 [P2P Inferencing](https://localai.io/features/distribute/) - 🆕🖧 [P2P Inferencing](https://localai.io/features/distribute/)
- 🔊 Voice activity detection (Silero-VAD support)
- 🌍 Integrated WebUI! - 🌍 Integrated WebUI!
## 💻 Usage ## 💻 Usage
@@ -154,7 +133,6 @@ Model galleries
Other: Other:
- Helm chart https://github.com/go-skynet/helm-charts - Helm chart https://github.com/go-skynet/helm-charts
- VSCode extension https://github.com/badgooooor/localai-vscode-plugin - VSCode extension https://github.com/badgooooor/localai-vscode-plugin
- Langchain: https://python.langchain.com/docs/integrations/providers/localai/
- Terminal utility https://github.com/djcopley/ShellOracle - Terminal utility https://github.com/djcopley/ShellOracle
- Local Smart assistant https://github.com/mudler/LocalAGI - Local Smart assistant https://github.com/mudler/LocalAGI
- Home Assistant https://github.com/sammcj/homeassistant-localai / https://github.com/drndos/hass-openai-custom-conversation / https://github.com/valentinfrlch/ha-gpt4vision - Home Assistant https://github.com/sammcj/homeassistant-localai / https://github.com/drndos/hass-openai-custom-conversation / https://github.com/valentinfrlch/ha-gpt4vision
@@ -162,9 +140,6 @@ Other:
- Slack bot https://github.com/mudler/LocalAGI/tree/main/examples/slack - Slack bot https://github.com/mudler/LocalAGI/tree/main/examples/slack
- Shell-Pilot(Interact with LLM using LocalAI models via pure shell scripts on your Linux or MacOS system) https://github.com/reid41/shell-pilot - Shell-Pilot(Interact with LLM using LocalAI models via pure shell scripts on your Linux or MacOS system) https://github.com/reid41/shell-pilot
- Telegram bot https://github.com/mudler/LocalAI/tree/master/examples/telegram-bot - Telegram bot https://github.com/mudler/LocalAI/tree/master/examples/telegram-bot
- Another Telegram Bot https://github.com/JackBekket/Hellper
- Auto-documentation https://github.com/JackBekket/Reflexia
- Github bot which answer on issues, with code and documentation as context https://github.com/JackBekket/GitHelper
- Github Actions: https://github.com/marketplace/actions/start-localai - Github Actions: https://github.com/marketplace/actions/start-localai
- Examples: https://github.com/mudler/LocalAI/tree/master/examples/ - Examples: https://github.com/mudler/LocalAI/tree/master/examples/
@@ -239,6 +214,7 @@ LocalAI couldn't have been built without the help of great software already avai
- https://github.com/antimatter15/alpaca.cpp - https://github.com/antimatter15/alpaca.cpp
- https://github.com/EdVince/Stable-Diffusion-NCNN - https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/ggerganov/whisper.cpp - https://github.com/ggerganov/whisper.cpp
- https://github.com/saharNooby/rwkv.cpp
- https://github.com/rhasspy/piper - https://github.com/rhasspy/piper
## 🤗 Contributors ## 🤗 Contributors

View File

@@ -1,7 +1,7 @@
name: text-embedding-ada-002 name: text-embedding-ada-002
embeddings: true backend: bert-embeddings
parameters: parameters:
model: huggingface://hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF/llama-3.2-1b-instruct-q4_k_m.gguf model: huggingface://mudler/all-MiniLM-L6-v2/ggml-model-q4_0.bin
usage: | usage: |
You can test this model with curl like this: You can test this model with curl like this:

View File

@@ -1,17 +1,56 @@
name: stablediffusion name: stablediffusion
backend: stablediffusion-ggml backend: stablediffusion
cfg_scale: 4.5
options:
- sampler:euler
parameters: parameters:
model: stable-diffusion-v1-5-pruned-emaonly-Q4_0.gguf model: stablediffusion_assets
step: 25
license: "BSD-3"
urls:
- https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/EdVince/Stable-Diffusion-NCNN/blob/main/LICENSE
description: |
Stable Diffusion in NCNN with c++, supported txt2img and img2img
download_files: download_files:
- filename: "stable-diffusion-v1-5-pruned-emaonly-Q4_0.gguf" - filename: "stablediffusion_assets/AutoencoderKL-256-256-fp16-opt.param"
sha256: "b8944e9fe0b69b36ae1b5bb0185b3a7b8ef14347fe0fa9af6c64c4829022261f" sha256: "18ca4b66685e21406bcf64c484b3b680b4949900415536d599cc876579c85c82"
uri: "huggingface://second-state/stable-diffusion-v1-5-GGUF/stable-diffusion-v1-5-pruned-emaonly-Q4_0.gguf" uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-256-256-fp16-opt.param"
- filename: "stablediffusion_assets/AutoencoderKL-512-512-fp16-opt.param"
sha256: "cf45f63aacf3dbbab0f59ed92a6f2c14d9a1801314631cd3abe91e3c85639a20"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-512-512-fp16-opt.param"
- filename: "stablediffusion_assets/AutoencoderKL-base-fp16.param"
sha256: "0254a056dce61b0c27dc9ec1b78b53bcf55315c540f55f051eb841aa992701ba"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-base-fp16.param"
- filename: "stablediffusion_assets/AutoencoderKL-encoder-512-512-fp16.bin"
sha256: "ddcb79a9951b9f91e05e087739ed69da2c1c4ae30ba4168cce350b49d617c9fa"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-encoder-512-512-fp16.bin"
- filename: "stablediffusion_assets/AutoencoderKL-fp16.bin"
sha256: "f02e71f80e70252734724bbfaed5c4ddd3a8ed7e61bb2175ff5f53099f0e35dd"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-fp16.bin"
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.bin"
sha256: "1c9a12f4e1dd1b295a388045f7f28a2352a4d70c3dc96a542189a3dd7051fdd6"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/FrozenCLIPEmbedder-fp16.bin"
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.param"
sha256: "471afbe678dd1fd3fe764ef9c6eccaccb0a7d7e601f27b462aa926b20eb368c9"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/FrozenCLIPEmbedder-fp16.param"
- filename: "stablediffusion_assets/log_sigmas.bin"
sha256: "a2089f8aa4c61f9c200feaec541ab3f5c94233b28deb6d5e8bcd974fa79b68ac"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/raw/main/x86/linux/assets/log_sigmas.bin"
- filename: "stablediffusion_assets/UNetModel-256-256-MHA-fp16-opt.param"
sha256: "a58c380229f09491776df837b7aa7adffc0a87821dc4708b34535da2e36e3da1"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-256-256-MHA-fp16-opt.param"
- filename: "stablediffusion_assets/UNetModel-512-512-MHA-fp16-opt.param"
sha256: "f12034067062827bd7f43d1d21888d1f03905401acf6c6eea22be23c259636fa"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-512-512-MHA-fp16-opt.param"
- filename: "stablediffusion_assets/UNetModel-base-MHA-fp16.param"
sha256: "696f6975de49f4325b53ce32aff81861a6d6c07cd9ce3f0aae2cc405350af38d"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-base-MHA-fp16.param"
- filename: "stablediffusion_assets/UNetModel-MHA-fp16.bin"
sha256: "d618918d011bfc1f644c0f2a33bf84931bd53b28a98492b0a8ed6f3a818852c3"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/UNetModel-MHA-fp16.bin"
- filename: "stablediffusion_assets/vocab.txt"
sha256: "e30e57b6f1e47616982ef898d8922be24e535b4fa3d0110477b3a6f02ebbae7d"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/vocab.txt"
usage: | usage: |
curl http://localhost:8080/v1/images/generations \ curl http://localhost:8080/v1/images/generations \

View File

@@ -28,8 +28,6 @@ service Backend {
rpc Rerank(RerankRequest) returns (RerankResult) {} rpc Rerank(RerankRequest) returns (RerankResult) {}
rpc GetMetrics(MetricsRequest) returns (MetricsResponse); rpc GetMetrics(MetricsRequest) returns (MetricsResponse);
rpc VAD(VADRequest) returns (VADResponse) {}
} }
// Define the empty request // Define the empty request
@@ -159,8 +157,6 @@ message Reply {
bytes message = 1; bytes message = 1;
int32 tokens = 2; int32 tokens = 2;
int32 prompt_tokens = 3; int32 prompt_tokens = 3;
double timing_prompt_processing = 4;
double timing_token_generation = 5;
} }
message ModelOptions { message ModelOptions {
@@ -223,7 +219,6 @@ message ModelOptions {
int32 SwapSpace = 53; int32 SwapSpace = 53;
int32 MaxModelLen = 54; int32 MaxModelLen = 54;
int32 TensorParallelSize = 55; int32 TensorParallelSize = 55;
string LoadFormat = 58;
string MMProj = 41; string MMProj = 41;
@@ -237,16 +232,6 @@ message ModelOptions {
bool FlashAttention = 56; bool FlashAttention = 56;
bool NoKVOffload = 57; bool NoKVOffload = 57;
string ModelPath = 59;
repeated string LoraAdapters = 60;
repeated float LoraScales = 61;
repeated string Options = 62;
string CacheTypeKey = 63;
string CacheTypeValue = 64;
} }
message Result { message Result {
@@ -302,19 +287,6 @@ message TTSRequest {
optional string language = 5; optional string language = 5;
} }
message VADRequest {
repeated float audio = 1;
}
message VADSegment {
float start = 1;
float end = 2;
}
message VADResponse {
repeated VADSegment segments = 1;
}
message SoundGenerationRequest { message SoundGenerationRequest {
string text = 1; string text = 1;
string model = 2; string model = 2;
@@ -350,4 +322,4 @@ message StatusResponse {
message Message { message Message {
string role = 1; string role = 1;
string content = 2; string content = 2;
} }

View File

@@ -22,7 +22,7 @@ else ifeq ($(BUILD_TYPE),clblas)
CMAKE_ARGS+=-DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path CMAKE_ARGS+=-DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ # If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
else ifeq ($(BUILD_TYPE),hipblas) else ifeq ($(BUILD_TYPE),hipblas)
CMAKE_ARGS+=-DGGML_HIP=ON CMAKE_ARGS+=-DGGML_HIPBLAS=ON
# If it's OSX, DO NOT embed the metal library - -DGGML_METAL_EMBED_LIBRARY=ON requires further investigation # If it's OSX, DO NOT embed the metal library - -DGGML_METAL_EMBED_LIBRARY=ON requires further investigation
# But if it's OSX without metal, disable it here # But if it's OSX without metal, disable it here
else ifeq ($(OS),Darwin) else ifeq ($(OS),Darwin)
@@ -30,7 +30,9 @@ else ifeq ($(OS),Darwin)
CMAKE_ARGS+=-DGGML_METAL=OFF CMAKE_ARGS+=-DGGML_METAL=OFF
else else
CMAKE_ARGS+=-DGGML_METAL=ON CMAKE_ARGS+=-DGGML_METAL=ON
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=ON # Until this is tested properly, we disable embedded metal file
# as we already embed it as part of the LocalAI assets
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=OFF
TARGET+=--target ggml-metal TARGET+=--target ggml-metal
endif endif
endif endif

View File

@@ -22,7 +22,6 @@
#include "backend.grpc.pb.h" #include "backend.grpc.pb.h"
#include "utils.hpp" #include "utils.hpp"
#include "sampling.h" #include "sampling.h"
#include "speculative.h"
// include std::regex // include std::regex
#include <cstddef> #include <cstddef>
#include <thread> #include <thread>
@@ -114,7 +113,7 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
std::string ret; std::string ret;
for (; begin != end; ++begin) for (; begin != end; ++begin)
{ {
ret += common_token_to_piece(ctx, *begin); ret += llama_token_to_piece(ctx, *begin);
} }
return ret; return ret;
} }
@@ -122,7 +121,7 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
// format incomplete utf-8 multibyte character for output // format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token) static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{ {
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token); std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character // if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token) // (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80) if (out.size() == 1 && (out[0] & 0x80) == 0x80)
@@ -135,32 +134,6 @@ static std::string tokens_to_output_formatted_string(const llama_context *ctx, c
return out; return out;
} }
// Adds an RPC server
// https://github.com/ggerganov/llama.cpp/compare/4dbc8b9cb71876e005724f4e8f73a3544646bcf5..3edfa7d3753c29e44b964c0ff424d2ea8d5fdee6
static void add_rpc_devices(std::string servers) {
auto rpc_servers = string_split<std::string>(servers, ',');
if (rpc_servers.empty()) {
throw std::invalid_argument("no RPC servers specified");
}
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
if (!rpc_reg) {
throw std::invalid_argument("failed to find RPC backend");
}
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
if (!ggml_backend_rpc_add_device_fn) {
throw std::invalid_argument("failed to find RPC device add function");
}
for (const auto & server : rpc_servers) {
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
if (dev) {
ggml_backend_device_register(dev);
} else {
throw std::invalid_argument("failed to register RPC device");
}
}
}
// convert a vector of completion_token_output to json // convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs) static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
{ {
@@ -186,45 +159,12 @@ static json probs_vector_to_json(const llama_context *ctx, const std::vector<com
return out; return out;
} }
struct llama_slot_params {
uint32_t seed = -1; // RNG seed
bool stream = true;
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
bool return_tokens = false;
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict
int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
int64_t t_max_prompt_ms = -1; // TODO: implement
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
std::vector<common_adapter_lora_info> lora;
std::vector<std::string> antiprompt;
std::vector<std::string> response_fields;
bool timings_per_token = false;
bool post_sampling_probs = false;
bool ignore_eos = false;
json input_prefix;
json input_suffix;
struct common_params_sampling sampling;
struct common_params_speculative speculative;
};
struct llama_client_slot struct llama_client_slot
{ {
int id; int id;
int task_id = -1; int task_id = -1;
struct llama_slot_params params; struct slot_params params;
common_speculative * spec = nullptr;
llama_batch batch_spec = {};
slot_state state = IDLE; slot_state state = IDLE;
slot_command command = NONE; slot_command command = NONE;
@@ -263,8 +203,8 @@ struct llama_client_slot
std::string stopping_word; std::string stopping_word;
// sampling // sampling
struct common_params_sampling sparams; struct gpt_sampler_params sparams;
common_sampler *ctx_sampling = nullptr; gpt_sampler *ctx_sampling = nullptr;
int32_t ga_i = 0; // group-attention state int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor int32_t ga_n = 1; // group-attention factor
@@ -317,8 +257,7 @@ struct llama_client_slot
images.clear(); images.clear();
} }
bool has_budget(gpt_params &global_params) {
bool has_budget(common_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1) if (params.n_predict == -1 && global_params.n_predict == -1)
{ {
return true; // limitless return true; // limitless
@@ -452,52 +391,14 @@ struct llama_metrics {
} }
}; };
struct llava_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
struct llama_server_context struct llama_server_context
{ {
llama_model *model = nullptr; llama_model *model = nullptr;
llama_context *ctx = nullptr; llama_context *ctx = nullptr;
common_init_result llama_init_dft;
llama_context * ctx_dft = nullptr;
llama_model * model_dft = nullptr;
llama_context_params cparams_dft;
const llama_vocab * vocab = nullptr;
clip_ctx *clp_ctx = nullptr; clip_ctx *clp_ctx = nullptr;
common_params params; gpt_params params;
llama_batch batch; llama_batch batch;
@@ -505,7 +406,6 @@ struct llama_server_context
bool clean_kv_cache = true; bool clean_kv_cache = true;
bool all_slots_are_idle = false; bool all_slots_are_idle = false;
bool add_bos_token = true; bool add_bos_token = true;
bool has_eos_token = true;
int32_t n_ctx; // total context for all clients / slots int32_t n_ctx; // total context for all clients / slots
@@ -541,8 +441,7 @@ struct llama_server_context
} }
} }
bool load_model(const gpt_params &params_)
bool load_model(const common_params &params_)
{ {
params = params_; params = params_;
if (!params.mmproj.empty()) { if (!params.mmproj.empty()) {
@@ -559,9 +458,9 @@ struct llama_server_context
} }
} }
common_init_result common_init = common_init_from_params(params); llama_init_result llama_init = llama_init_from_gpt_params(params);
model = common_init.model.release(); model = llama_init.model;
ctx = common_init.context.release(); ctx = llama_init.context;
if (model == nullptr) if (model == nullptr)
{ {
LOG_ERR("unable to load model: %s", params.model.c_str()); LOG_ERR("unable to load model: %s", params.model.c_str());
@@ -570,7 +469,7 @@ struct llama_server_context
if (multimodal) { if (multimodal) {
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx); const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
const int n_embd_llm = llama_model_n_embd(model); const int n_embd_llm = llama_n_embd(model);
if (n_embd_clip != n_embd_llm) { if (n_embd_clip != n_embd_llm) {
LOG("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm); LOG("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
llama_free(ctx); llama_free(ctx);
@@ -579,54 +478,23 @@ struct llama_server_context
} }
} }
vocab = llama_model_get_vocab(model);
n_ctx = llama_n_ctx(ctx); n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_vocab_get_add_bos(vocab); add_bos_token = llama_add_bos_token(model);
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
if (!params.speculative.model.empty()) {
LOG("loading draft model '%s'\n", params.speculative.model.c_str());
auto params_dft = params;
params_dft.devices = params.speculative.devices;
params_dft.model = params.speculative.model;
params_dft.n_ctx = params.speculative.n_ctx == 0 ? params.n_ctx / params.n_parallel : params.speculative.n_ctx;
params_dft.n_gpu_layers = params.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
llama_init_dft = common_init_from_params(params_dft);
model_dft = llama_init_dft.model.get();
if (model_dft == nullptr) {
LOG("failed to load draft model, '%s'\n", params.speculative.model.c_str());
return false;
}
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
LOG("the draft model '%s' is not compatible with the target model '%s'\n", params.speculative.model.c_str(), params.model.c_str());
return false;
}
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
cparams_dft = common_context_params_to_llama(params_dft);
cparams_dft.n_batch = n_ctx_dft;
// force F16 KV cache for the draft model for extra performance
cparams_dft.type_k = GGML_TYPE_F16;
cparams_dft.type_v = GGML_TYPE_F16;
// the context is not needed - we will create one for each slot
llama_init_dft.context.reset();
}
return true; return true;
} }
void validate_model_chat_template(server_params & sparams) {
llama_chat_message chat[] = {{"user", "test"}};
std::vector<char> buf(1);
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
if (res < 0) {
LOG_ERR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", __func__);
sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template
}
}
llama_client_slot* get_active_slot() { llama_client_slot* get_active_slot() {
for (llama_client_slot& slot : slots) { for (llama_client_slot& slot : slots) {
// Check if the slot is currently processing // Check if the slot is currently processing
@@ -652,22 +520,6 @@ struct llama_server_context
slot.n_ctx = n_ctx_slot; slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict; slot.n_predict = params.n_predict;
if (model_dft) {
slot.batch_spec = llama_batch_init(params.speculative.n_max + 1, 0, 1);
ctx_dft = llama_init_from_model(model_dft, cparams_dft);
if (ctx_dft == nullptr) {
LOG("%s", "failed to create draft context\n");
return;
}
slot.spec = common_speculative_init(ctx_dft);
if (slot.spec == nullptr) {
LOG("%s", "failed to create speculator\n");
return;
}
}
LOG_INFO("new slot", { LOG_INFO("new slot", {
{"slot_id", slot.id}, {"slot_id", slot.id},
{"n_ctx_slot", slot.n_ctx} {"n_ctx_slot", slot.n_ctx}
@@ -726,12 +578,12 @@ struct llama_server_context
std::vector<llama_token> p; std::vector<llama_token> p;
if (first) if (first)
{ {
p = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false; first = false;
} }
else else
{ {
p = common_tokenize(ctx, s, false, TMP_FORCE_SPECIAL); p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
} }
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
} }
@@ -748,7 +600,7 @@ struct llama_server_context
else else
{ {
auto s = json_prompt.template get<std::string>(); auto s = json_prompt.template get<std::string>();
prompt_tokens = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
} }
return prompt_tokens; return prompt_tokens;
@@ -776,17 +628,16 @@ struct llama_server_context
} }
bool launch_slot_with_data(llama_client_slot* &slot, json data) { bool launch_slot_with_data(llama_client_slot* &slot, json data) {
llama_slot_params default_params; slot_params default_params;
common_params_sampling default_sparams; gpt_sampler_params default_sparams;
default_sparams.speculative = params_base.speculative;
slot->params.stream = json_value(data, "stream", false); slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false); slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p); slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p); slot->sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range); slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
@@ -798,21 +649,13 @@ struct llama_server_context
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->sparams.seed = json_value(data, "seed", default_sparams.seed); slot->sparams.seed = json_value(data, "seed", default_sparams.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
slot->sparams.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
slot->sparams.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
slot->sparams.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
slot->sparams.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
slot->sparams.speculative.n_min = std::max(params.speculative.n_min, 2);
slot->sparams.speculative.n_max = std::max(params.speculative.n_max, 0);
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) { if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
// Might be better to reject the request with a 400 ? // Might be better to reject the request with a 400 ?
LOG_WARNING("Max tokens to predict exceeds server configuration", { LOG_WARNING("Max tokens to predict exceeds server configuration", {
@@ -851,8 +694,8 @@ struct llama_server_context
slot->prompt = ""; slot->prompt = "";
} }
if (json_value(data, "ignore_eos", false) && has_eos_token) { if (json_value(data, "ignore_eos", false)) {
slot->sparams.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY}); slot->sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
} }
/* /*
slot->sparams.penalty_prompt_tokens.clear(); slot->sparams.penalty_prompt_tokens.clear();
@@ -891,13 +734,13 @@ struct llama_server_context
} }
} }
*/ */
slot->sparams.logit_bias.clear(); slot->sparams.logit_bias.clear();
const auto &logit_bias = data.find("logit_bias"); const auto &logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array()) if (logit_bias != data.end() && logit_bias->is_array())
{ {
const llama_vocab * vocab = llama_model_get_vocab(model); const int n_vocab = llama_n_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
for (const auto &el : *logit_bias) for (const auto &el : *logit_bias)
{ {
if (el.is_array() && el.size() == 2) if (el.is_array() && el.size() == 2)
@@ -926,7 +769,7 @@ struct llama_server_context
} }
else if (el[0].is_string()) else if (el[0].is_string())
{ {
auto toks = common_tokenize(vocab, el[0].get<std::string>(), false); auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks) for (auto tok : toks)
{ {
slot->sparams.logit_bias.push_back({tok, bias}); slot->sparams.logit_bias.push_back({tok, bias});
@@ -958,7 +801,7 @@ struct llama_server_context
sampler_names.emplace_back(name); sampler_names.emplace_back(name);
} }
} }
slot->sparams.samplers = common_sampler_types_from_names(sampler_names, false); slot->sparams.samplers = gpt_sampler_types_from_names(sampler_names, false);
} }
else else
{ {
@@ -1042,9 +885,9 @@ struct llama_server_context
if (slot->ctx_sampling != nullptr) if (slot->ctx_sampling != nullptr)
{ {
common_sampler_free(slot->ctx_sampling); gpt_sampler_free(slot->ctx_sampling);
} }
slot->ctx_sampling = common_sampler_init(model, slot->sparams); slot->ctx_sampling = gpt_sampler_init(model, slot->sparams);
//llama_set_rng_seed(ctx, slot->params.seed); //llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT; slot->command = LOAD_PROMPT;
@@ -1071,13 +914,13 @@ struct llama_server_context
system_tokens.clear(); system_tokens.clear();
if (!system_prompt.empty()) { if (!system_prompt.empty()) {
system_tokens = common_tokenize(ctx, system_prompt, add_bos_token); system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
common_batch_clear(batch); llama_batch_clear(batch);
for (int i = 0; i < (int)system_tokens.size(); ++i) for (int i = 0; i < (int)system_tokens.size(); ++i)
{ {
common_batch_add(batch, system_tokens[i], i, { 0 }, false); llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
} }
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch) for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
@@ -1091,6 +934,7 @@ struct llama_server_context
batch.n_seq_id + i, batch.n_seq_id + i,
batch.seq_id + i, batch.seq_id + i,
batch.logits + i, batch.logits + i,
0, 0, 0, // unused
}; };
if (llama_decode(ctx, batch_view) != 0) if (llama_decode(ctx, batch_view) != 0)
{ {
@@ -1165,7 +1009,7 @@ struct llama_server_context
bool process_token(completion_token_output &result, llama_client_slot &slot) { bool process_token(completion_token_output &result, llama_client_slot &slot) {
// remember which tokens were sampled - used for repetition penalties during sampling // remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = common_token_to_piece(ctx, result.tok); const std::string token_str = llama_token_to_piece(ctx, result.tok);
slot.sampled = result.tok; slot.sampled = result.tok;
// search stop word and delete it // search stop word and delete it
@@ -1256,7 +1100,7 @@ struct llama_server_context
slot.has_next_token = false; slot.has_next_token = false;
} }
if (result.tok == llama_vocab_eos(vocab) || llama_vocab_is_eog(vocab, result.tok)) if (result.tok == llama_token_eos(model))
{ {
slot.stopped_eos = true; slot.stopped_eos = true;
slot.has_next_token = false; slot.has_next_token = false;
@@ -1316,7 +1160,7 @@ struct llama_server_context
samplers.reserve(slot.sparams.samplers.size()); samplers.reserve(slot.sparams.samplers.size());
for (const auto & sampler : slot.sparams.samplers) for (const auto & sampler : slot.sparams.samplers)
{ {
samplers.emplace_back(common_sampler_type_to_str(sampler)); samplers.emplace_back(gpt_sampler_type_to_str(sampler));
} }
return json { return json {
@@ -1330,6 +1174,7 @@ struct llama_server_context
{"top_k", slot.sparams.top_k}, {"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p}, {"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p}, {"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typ_p}, {"typical_p", slot.sparams.typ_p},
{"repeat_last_n", slot.sparams.penalty_last_n}, {"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat}, {"repeat_penalty", slot.sparams.penalty_repeat},
@@ -1338,12 +1183,13 @@ struct llama_server_context
{"mirostat", slot.sparams.mirostat}, {"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau}, {"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta}, {"mirostat_eta", slot.sparams.mirostat_eta},
{"penalize_nl", slot.sparams.penalize_nl},
{"stop", slot.params.antiprompt}, {"stop", slot.params.antiprompt},
{"n_predict", slot.params.n_predict}, {"n_predict", slot.params.n_predict},
{"n_keep", params.n_keep}, {"n_keep", params.n_keep},
{"ignore_eos", slot.sparams.ignore_eos}, {"ignore_eos", slot.sparams.ignore_eos},
{"stream", slot.params.stream}, {"stream", slot.params.stream},
// {"logit_bias", slot.sparams.logit_bias}, // {"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs}, {"n_probs", slot.sparams.n_probs},
{"min_keep", slot.sparams.min_keep}, {"min_keep", slot.sparams.min_keep},
{"grammar", slot.sparams.grammar}, {"grammar", slot.sparams.grammar},
@@ -1370,7 +1216,7 @@ struct llama_server_context
if (slot.sparams.n_probs > 0) if (slot.sparams.n_probs > 0)
{ {
std::vector<completion_token_output> probs_output = {}; std::vector<completion_token_output> probs_output = {};
const std::vector<llama_token> to_send_toks = common_tokenize(ctx, tkn.text_to_send, false); const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size()); size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size()); size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
if (probs_pos < probs_stop_pos) if (probs_pos < probs_stop_pos)
@@ -1422,7 +1268,7 @@ struct llama_server_context
std::vector<completion_token_output> probs = {}; std::vector<completion_token_output> probs = {};
if (!slot.params.stream && slot.stopped_word) if (!slot.params.stream && slot.stopped_word)
{ {
const std::vector<llama_token> stop_word_toks = common_tokenize(ctx, slot.stopping_word, false); const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size()); probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
} }
else else
@@ -1451,7 +1297,7 @@ struct llama_server_context
res.error = false; res.error = false;
res.stop = true; res.stop = true;
const int n_embd = llama_model_n_embd(model); const int n_embd = llama_n_embd(model);
if (!params.embedding) if (!params.embedding)
{ {
LOG_WARNING("embedding disabled", { LOG_WARNING("embedding disabled", {
@@ -1533,6 +1379,7 @@ struct llama_server_context
batch.n_seq_id + i, batch.n_seq_id + i,
batch.seq_id + i, batch.seq_id + i,
batch.logits + i, batch.logits + i,
0, 0, 0, // unused
}; };
if (llama_decode(ctx, batch_view)) if (llama_decode(ctx, batch_view))
{ {
@@ -1550,10 +1397,9 @@ struct llama_server_context
n_eval = n_batch; n_eval = n_batch;
} }
const int n_embd = llama_model_n_embd(model); const int n_embd = llama_n_embd(model);
float * embd = img.image_embedding + i * n_embd; llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, slot.n_past, 0); if (llama_decode(ctx, batch_img))
if (llama_decode(ctx, llava_batch.batch))
{ {
LOG("%s : failed to eval image\n", __func__); LOG("%s : failed to eval image\n", __func__);
return false; return false;
@@ -1562,7 +1408,7 @@ struct llama_server_context
} }
image_idx++; image_idx++;
common_batch_clear(batch); llama_batch_clear(batch);
// append prefix of next image // append prefix of next image
const auto json_prompt = (image_idx >= (int) slot.images.size()) ? const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
@@ -1572,7 +1418,7 @@ struct llama_server_context
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
for (int i = 0; i < (int) append_tokens.size(); ++i) for (int i = 0; i < (int) append_tokens.size(); ++i)
{ {
common_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true); llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
slot.n_past += 1; slot.n_past += 1;
} }
} }
@@ -1704,7 +1550,7 @@ struct llama_server_context
update_system_prompt(); update_system_prompt();
} }
common_batch_clear(batch); llama_batch_clear(batch);
if (all_slots_are_idle) if (all_slots_are_idle)
{ {
@@ -1782,7 +1628,7 @@ struct llama_server_context
// TODO: we always have to take into account the "system_tokens" // TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow // this is not great and needs to be improved somehow
common_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true); llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
slot.n_past += 1; slot.n_past += 1;
} }
@@ -1831,11 +1677,11 @@ struct llama_server_context
suffix_tokens.erase(suffix_tokens.begin()); suffix_tokens.erase(suffix_tokens.begin());
} }
prefix_tokens.insert(prefix_tokens.begin(), llama_vocab_fim_pre(vocab)); prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
prefix_tokens.insert(prefix_tokens.begin(), llama_vocab_bos(vocab)); // always add BOS prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
prefix_tokens.insert(prefix_tokens.end(), llama_vocab_fim_suf(vocab)); prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
prefix_tokens.push_back(llama_vocab_fim_mid(vocab)); prefix_tokens.push_back(llama_token_middle(model));
prompt_tokens = prefix_tokens; prompt_tokens = prefix_tokens;
} }
else else
@@ -1876,7 +1722,7 @@ struct llama_server_context
if (!slot.params.cache_prompt) if (!slot.params.cache_prompt)
{ {
common_sampler_reset(slot.ctx_sampling); gpt_sampler_reset(slot.ctx_sampling);
slot.n_past = 0; slot.n_past = 0;
slot.n_past_se = 0; slot.n_past_se = 0;
@@ -1888,7 +1734,7 @@ struct llama_server_context
// push the prompt into the sampling context (do not apply grammar) // push the prompt into the sampling context (do not apply grammar)
for (auto &token : prompt_tokens) for (auto &token : prompt_tokens)
{ {
common_sampler_accept(slot.ctx_sampling, token, false); gpt_sampler_accept(slot.ctx_sampling, token, false);
} }
slot.n_past = common_part(slot.cache_tokens, prompt_tokens); slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
@@ -1980,7 +1826,7 @@ struct llama_server_context
ga_i += ga_w/ga_n; ga_i += ga_w/ga_n;
} }
} }
common_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false); llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
slot_npast++; slot_npast++;
} }
@@ -2058,6 +1904,7 @@ struct llama_server_context
batch.n_seq_id + i, batch.n_seq_id + i,
batch.seq_id + i, batch.seq_id + i,
batch.logits + i, batch.logits + i,
0, 0, 0, // unused
}; };
const int ret = llama_decode(ctx, batch_view); const int ret = llama_decode(ctx, batch_view);
@@ -2096,9 +1943,9 @@ struct llama_server_context
} }
completion_token_output result; completion_token_output result;
const llama_token id = common_sampler_sample(slot.ctx_sampling, ctx, slot.i_batch - i); const llama_token id = gpt_sampler_sample(slot.ctx_sampling, ctx, slot.i_batch - i);
common_sampler_accept(slot.ctx_sampling, id, true); gpt_sampler_accept(slot.ctx_sampling, id, true);
slot.n_decoded += 1; slot.n_decoded += 1;
if (slot.n_decoded == 1) if (slot.n_decoded == 1)
@@ -2109,7 +1956,7 @@ struct llama_server_context
} }
result.tok = id; result.tok = id;
const auto * cur_p = common_sampler_get_candidates(slot.ctx_sampling); const auto * cur_p = gpt_sampler_get_candidates(slot.ctx_sampling);
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) { for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
result.probs.push_back({ result.probs.push_back({
@@ -2130,97 +1977,6 @@ struct llama_server_context
} }
} }
// do speculative decoding
for (auto & slot : slots) {
if (!slot.is_processing() || !(ctx_dft && params.speculative.n_max > 0)) {
continue;
}
if (slot.state != PROCESSING) {
continue;
}
// determine the max draft that fits the current slot state
int n_draft_max = slot.params.speculative.n_max;
// note: n_past is not yet increased for the `id` token sampled above
// also, need to leave space for 1 extra token to allow context shifts
n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
if (slot.n_remaining > 0) {
n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
}
LOG("max possible draft: %d\n", n_draft_max);
if (n_draft_max < slot.params.speculative.n_min) {
LOG("the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
continue;
}
llama_token id = slot.sampled;
struct common_speculative_params params_spec;
params_spec.n_draft = n_draft_max;
params_spec.n_reuse = llama_n_ctx(ctx_dft) - slot.params.speculative.n_max;
params_spec.p_min = slot.params.speculative.p_min;
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
// ignore small drafts
if (slot.params.speculative.n_min > (int) draft.size()) {
LOG("ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
continue;
}
// construct the speculation batch
common_batch_clear(slot.batch_spec);
common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
for (size_t i = 0; i < draft.size(); ++i) {
common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
}
LOG("decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
llama_decode(ctx, slot.batch_spec);
// the accepted tokens from the speculation
const auto ids = common_sampler_sample_and_accept_n(slot.ctx_sampling, ctx, draft);
slot.n_past += ids.size();
slot.n_decoded += ids.size();
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
for (size_t i = 0; i < ids.size(); ++i) {
completion_token_output result;
result.tok = ids[i];
result.text_to_send = common_token_to_piece(ctx, result.tok, params.special);
//result.prob = 1.0f; // set later
// TODO: set result.probs
if (!process_token(result, slot)) {
// release slot because of stop condition
slot.release();
slot.print_timings();
send_final_response(slot);
metrics.on_prediction(slot);
break;
}
}
LOG("accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
}
LOG_VERBOSE("slots updated", {}); LOG_VERBOSE("slots updated", {});
return true; return true;
} }
@@ -2253,7 +2009,7 @@ static json format_partial_response(
struct token_translator struct token_translator
{ {
llama_context * ctx; llama_context * ctx;
std::string operator()(llama_token tok) const { return common_token_to_piece(ctx, tok); } std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); } std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
}; };
@@ -2318,6 +2074,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
// slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); // slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
// slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); // slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
// slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); // slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
// slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
// slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p); // slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
// slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); // slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
// slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); // slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
@@ -2327,6 +2084,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
// slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); // slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
// slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); // slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
// slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); // slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
// slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
// slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); // slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
// slot->params.seed = json_value(data, "seed", default_params.seed); // slot->params.seed = json_value(data, "seed", default_params.seed);
// slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); // slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
@@ -2340,6 +2098,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
data["n_predict"] = predict->tokens() == 0 ? -1 : predict->tokens(); data["n_predict"] = predict->tokens() == 0 ? -1 : predict->tokens();
data["top_k"] = predict->topk(); data["top_k"] = predict->topk();
data["top_p"] = predict->topp(); data["top_p"] = predict->topp();
data["tfs_z"] = predict->tailfreesamplingz();
data["typical_p"] = predict->typicalp(); data["typical_p"] = predict->typicalp();
data["temperature"] = predict->temperature(); data["temperature"] = predict->temperature();
data["repeat_last_n"] = predict->repeat(); data["repeat_last_n"] = predict->repeat();
@@ -2349,6 +2108,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
data["mirostat"] = predict->mirostat(); data["mirostat"] = predict->mirostat();
data["mirostat_tau"] = predict->mirostattau(); data["mirostat_tau"] = predict->mirostattau();
data["mirostat_eta"] = predict->mirostateta(); data["mirostat_eta"] = predict->mirostateta();
data["penalize_nl"] = predict->penalizenl();
data["n_keep"] = predict->nkeep(); data["n_keep"] = predict->nkeep();
data["seed"] = predict->seed(); data["seed"] = predict->seed();
data["grammar"] = predict->grammar(); data["grammar"] = predict->grammar();
@@ -2385,6 +2145,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
// llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens(); // llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens();
// llama.params.sparams.top_k = predict->topk(); // llama.params.sparams.top_k = predict->topk();
// llama.params.sparams.top_p = predict->topp(); // llama.params.sparams.top_p = predict->topp();
// llama.params.sparams.tfs_z = predict->tailfreesamplingz();
// llama.params.sparams.typical_p = predict->typicalp(); // llama.params.sparams.typical_p = predict->typicalp();
// llama.params.sparams.penalty_last_n = predict->repeat(); // llama.params.sparams.penalty_last_n = predict->repeat();
// llama.params.sparams.temp = predict->temperature(); // llama.params.sparams.temp = predict->temperature();
@@ -2394,6 +2155,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
// llama.params.sparams.mirostat = predict->mirostat(); // llama.params.sparams.mirostat = predict->mirostat();
// llama.params.sparams.mirostat_tau = predict->mirostattau(); // llama.params.sparams.mirostat_tau = predict->mirostattau();
// llama.params.sparams.mirostat_eta = predict->mirostateta(); // llama.params.sparams.mirostat_eta = predict->mirostateta();
// llama.params.sparams.penalize_nl = predict->penalizenl();
// llama.params.n_keep = predict->nkeep(); // llama.params.n_keep = predict->nkeep();
// llama.params.seed = predict->seed(); // llama.params.seed = predict->seed();
// llama.params.sparams.grammar = predict->grammar(); // llama.params.sparams.grammar = predict->grammar();
@@ -2440,37 +2202,8 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
// } // }
// } // }
const std::vector<ggml_type> kv_cache_types = {
GGML_TYPE_F32,
GGML_TYPE_F16,
GGML_TYPE_BF16,
GGML_TYPE_Q8_0,
GGML_TYPE_Q4_0,
GGML_TYPE_Q4_1,
GGML_TYPE_IQ4_NL,
GGML_TYPE_Q5_0,
GGML_TYPE_Q5_1,
};
static ggml_type kv_cache_type_from_str(const std::string & s) {
for (const auto & type : kv_cache_types) {
if (ggml_type_name(type) == s) {
return type;
}
}
throw std::runtime_error("Unsupported cache type: " + s);
}
static std::string get_all_kv_cache_types() {
std::ostringstream msg;
for (const auto & type : kv_cache_types) {
msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
}
return msg.str();
}
static void params_parse(const backend::ModelOptions* request, static void params_parse(const backend::ModelOptions* request,
common_params & params) { gpt_params & params) {
// this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809 // this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809
@@ -2482,41 +2215,11 @@ static void params_parse(const backend::ModelOptions* request,
} }
// params.model_alias ?? // params.model_alias ??
params.model_alias = request->modelfile(); params.model_alias = request->modelfile();
if (!request->cachetypekey().empty()) {
params.cache_type_k = kv_cache_type_from_str(request->cachetypekey());
}
if (!request->cachetypevalue().empty()) {
params.cache_type_v = kv_cache_type_from_str(request->cachetypevalue());
}
params.n_ctx = request->contextsize(); params.n_ctx = request->contextsize();
//params.memory_f16 = request->f16memory(); //params.memory_f16 = request->f16memory();
params.cpuparams.n_threads = request->threads(); params.cpuparams.n_threads = request->threads();
params.n_gpu_layers = request->ngpulayers(); params.n_gpu_layers = request->ngpulayers();
params.n_batch = request->nbatch(); params.n_batch = request->nbatch();
params.speculative.model = request->draftmodel();
// If options is not NULL, parse options
for (int i = 0; request->options()[i] != NULL; i++) {
char *optname = strtok(request->options()[i], ":");
char *optval = strtok(NULL, ":");
if (optval == NULL) {
optval = "true";
}
if (!strcmp(optname, "speculative.n_gpu_layers")) {
params.speculative.n_gpu_layers = std::stoi(optval);
}
if (!strcmp(optname, "speculative.n_ctx")) {
params.speculative.n_ctx = std::stoi(optval);
}
}
if params.speculative.n_gpu_layers == 0 {
params.speculative.n_gpu_layers = params.n_gpu_layers;
}
if params.speculative.n_ctx == 0 {
params.speculative.n_ctx = params.n_ctx;
}
// Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1 // Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1
//params.n_parallel = 1; //params.n_parallel = 1;
const char *env_parallel = std::getenv("LLAMACPP_PARALLEL"); const char *env_parallel = std::getenv("LLAMACPP_PARALLEL");
@@ -2529,7 +2232,7 @@ static void params_parse(const backend::ModelOptions* request,
const char *llama_grpc_servers = std::getenv("LLAMACPP_GRPC_SERVERS"); const char *llama_grpc_servers = std::getenv("LLAMACPP_GRPC_SERVERS");
if (llama_grpc_servers != NULL) { if (llama_grpc_servers != NULL) {
add_rpc_devices(std::string(llama_grpc_servers)); params.rpc_servers = std::string(llama_grpc_servers);
} }
// TODO: Add yarn // TODO: Add yarn
@@ -2570,7 +2273,6 @@ static void params_parse(const backend::ModelOptions* request,
params.use_mmap = request->mmap(); params.use_mmap = request->mmap();
params.flash_attn = request->flashattention(); params.flash_attn = request->flashattention();
params.no_kv_offload = request->nokvoffload(); params.no_kv_offload = request->nokvoffload();
params.ctx_shift = false; // We control context-shifting in any case (and we disable it as it could just lead to infinite loops)
params.embedding = request->embeddings(); params.embedding = request->embeddings();
@@ -2609,7 +2311,7 @@ public:
grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) { grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) {
// Implement LoadModel RPC // Implement LoadModel RPC
common_params params; gpt_params params;
params_parse(request, params); params_parse(request, params);
llama_backend_init(); llama_backend_init();
@@ -2655,13 +2357,6 @@ public:
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0); int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
reply.set_prompt_tokens(tokens_evaluated); reply.set_prompt_tokens(tokens_evaluated);
if (result.result_json.contains("timings")) {
double timing_prompt_processing = result.result_json.at("timings").value("prompt_ms", 0.0);
reply.set_timing_prompt_processing(timing_prompt_processing);
double timing_token_generation = result.result_json.at("timings").value("predicted_ms", 0.0);
reply.set_timing_token_generation(timing_token_generation);
}
// Log Request Correlation Id // Log Request Correlation Id
LOG_VERBOSE("correlation:", { LOG_VERBOSE("correlation:", {
{ "id", data["correlation_id"] } { "id", data["correlation_id"] }
@@ -2702,13 +2397,6 @@ public:
reply->set_prompt_tokens(tokens_evaluated); reply->set_prompt_tokens(tokens_evaluated);
reply->set_tokens(tokens_predicted); reply->set_tokens(tokens_predicted);
reply->set_message(completion_text); reply->set_message(completion_text);
if (result.result_json.contains("timings")) {
double timing_prompt_processing = result.result_json.at("timings").value("prompt_ms", 0.0);
reply->set_timing_prompt_processing(timing_prompt_processing);
double timing_token_generation = result.result_json.at("timings").value("predicted_ms", 0.0);
reply->set_timing_token_generation(timing_token_generation);
}
} }
else else
{ {

View File

@@ -1,13 +1,13 @@
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 3cd0d2fa..6c5e811a 100644 index 342042ff..224db9b5 100644
--- a/examples/llava/clip.cpp --- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp
@@ -2608,7 +2608,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima @@ -2419,7 +2419,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches)); int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) { for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + 1; - patches_data[i] = i + 1;
+ patches_data[i] = i; + patches_data[i] = i;
} }
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data); free(patches_data);

View File

@@ -1,25 +0,0 @@
INCLUDE_PATH := $(abspath ./)
LIBRARY_PATH := $(abspath ./)
AR?=ar
BUILD_TYPE?=
# keep standard at C11 and C++11
CXXFLAGS = -I. -I$(INCLUDE_PATH)/../../../sources/bark.cpp/examples -I$(INCLUDE_PATH)/../../../sources/bark.cpp/spm-headers -I$(INCLUDE_PATH)/../../../sources/bark.cpp -O3 -DNDEBUG -std=c++17 -fPIC
LDFLAGS = -L$(LIBRARY_PATH) -L$(LIBRARY_PATH)/../../../sources/bark.cpp/build/examples -lbark -lstdc++ -lm
# warnings
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
gobark.o:
$(CXX) $(CXXFLAGS) gobark.cpp -o gobark.o -c $(LDFLAGS)
libbark.a: gobark.o
cp $(INCLUDE_PATH)/../../../sources/bark.cpp/build/libbark.a ./
$(AR) rcs libbark.a gobark.o
$(AR) rcs libbark.a $(LIBRARY_PATH)/../../../sources/bark.cpp/build/encodec.cpp/ggml/src/CMakeFiles/ggml.dir/ggml.c.o
$(AR) rcs libbark.a $(LIBRARY_PATH)/../../../sources/bark.cpp/build/encodec.cpp/ggml/src/CMakeFiles/ggml.dir/ggml-alloc.c.o
$(AR) rcs libbark.a $(LIBRARY_PATH)/../../../sources/bark.cpp/build/encodec.cpp/ggml/src/CMakeFiles/ggml.dir/ggml-backend.c.o
clean:
rm -f gobark.o libbark.a

View File

@@ -1,85 +0,0 @@
#include <iostream>
#include <tuple>
#include "bark.h"
#include "gobark.h"
#include "common.h"
#include "ggml.h"
struct bark_context *c;
void bark_print_progress_callback(struct bark_context *bctx, enum bark_encoding_step step, int progress, void *user_data) {
if (step == bark_encoding_step::SEMANTIC) {
printf("\rGenerating semantic tokens... %d%%", progress);
} else if (step == bark_encoding_step::COARSE) {
printf("\rGenerating coarse tokens... %d%%", progress);
} else if (step == bark_encoding_step::FINE) {
printf("\rGenerating fine tokens... %d%%", progress);
}
fflush(stdout);
}
int load_model(char *model) {
// initialize bark context
struct bark_context_params ctx_params = bark_context_default_params();
bark_params params;
params.model_path = model;
// ctx_params.verbosity = verbosity;
ctx_params.progress_callback = bark_print_progress_callback;
ctx_params.progress_callback_user_data = nullptr;
struct bark_context *bctx = bark_load_model(params.model_path.c_str(), ctx_params, params.seed);
if (!bctx) {
fprintf(stderr, "%s: Could not load model\n", __func__);
return 1;
}
c = bctx;
return 0;
}
int tts(char *text,int threads, char *dst ) {
ggml_time_init();
const int64_t t_main_start_us = ggml_time_us();
// generate audio
if (!bark_generate_audio(c, text, threads)) {
fprintf(stderr, "%s: An error occured. If the problem persists, feel free to open an issue to report it.\n", __func__);
return 1;
}
const float *audio_data = bark_get_audio_data(c);
if (audio_data == NULL) {
fprintf(stderr, "%s: Could not get audio data\n", __func__);
return 1;
}
const int audio_arr_size = bark_get_audio_data_size(c);
std::vector<float> audio_arr(audio_data, audio_data + audio_arr_size);
write_wav_on_disk(audio_arr, dst);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
const int64_t t_load_us = bark_get_load_time(c);
const int64_t t_eval_us = bark_get_eval_time(c);
printf("\n\n");
printf("%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
printf("%s: eval time = %8.2f ms\n", __func__, t_eval_us / 1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
}
return 0;
}
int unload() {
bark_free(c);
}

View File

@@ -1,52 +0,0 @@
package main
// #cgo CXXFLAGS: -I${SRCDIR}/../../../sources/bark.cpp/ -I${SRCDIR}/../../../sources/bark.cpp/encodec.cpp -I${SRCDIR}/../../../sources/bark.cpp/examples -I${SRCDIR}/../../../sources/bark.cpp/spm-headers
// #cgo LDFLAGS: -L${SRCDIR}/ -L${SRCDIR}/../../../sources/bark.cpp/build/examples -L${SRCDIR}/../../../sources/bark.cpp/build/encodec.cpp/ -lbark -lencodec -lcommon
// #include <gobark.h>
// #include <stdlib.h>
import "C"
import (
"fmt"
"unsafe"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type Bark struct {
base.SingleThread
threads int
}
func (sd *Bark) Load(opts *pb.ModelOptions) error {
sd.threads = int(opts.Threads)
modelFile := C.CString(opts.ModelFile)
defer C.free(unsafe.Pointer(modelFile))
ret := C.load_model(modelFile)
if ret != 0 {
return fmt.Errorf("inference failed")
}
return nil
}
func (sd *Bark) TTS(opts *pb.TTSRequest) error {
t := C.CString(opts.Text)
defer C.free(unsafe.Pointer(t))
dst := C.CString(opts.Dst)
defer C.free(unsafe.Pointer(dst))
threads := C.int(sd.threads)
ret := C.tts(t, threads, dst)
if ret != 0 {
return fmt.Errorf("inference failed")
}
return nil
}

View File

@@ -1,8 +0,0 @@
#ifdef __cplusplus
extern "C" {
#endif
int load_model(char *model);
int tts(char *text,int threads, char *dst );
#ifdef __cplusplus
}
#endif

View File

@@ -1,96 +0,0 @@
INCLUDE_PATH := $(abspath ./)
LIBRARY_PATH := $(abspath ./)
AR?=ar
CMAKE_ARGS?=
BUILD_TYPE?=
ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
# keep standard at C11 and C++11
CXXFLAGS = -I. -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/thirdparty -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/ggml/include -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp -O3 -DNDEBUG -std=c++17 -fPIC
# Disable Shared libs as we are linking on static gRPC and we can't mix shared and static
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF
# If build type is cublas, then we set -DGGML_CUDA=ON to CMAKE_ARGS automatically
ifeq ($(BUILD_TYPE),cublas)
CMAKE_ARGS+=-DGGML_CUDA=ON
# If build type is openblas then we set -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
# to CMAKE_ARGS automatically
else ifeq ($(BUILD_TYPE),openblas)
CMAKE_ARGS+=-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
# If build type is clblas (openCL) we set -DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
else ifeq ($(BUILD_TYPE),clblas)
CMAKE_ARGS+=-DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
else ifeq ($(BUILD_TYPE),hipblas)
CMAKE_ARGS+=-DGGML_HIP=ON
# If it's OSX, DO NOT embed the metal library - -DGGML_METAL_EMBED_LIBRARY=ON requires further investigation
# But if it's OSX without metal, disable it here
else ifeq ($(OS),Darwin)
ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DGGML_METAL=OFF
else
CMAKE_ARGS+=-DGGML_METAL=ON
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=ON
TARGET+=--target ggml-metal
endif
endif
# ifeq ($(BUILD_TYPE),sycl_f16)
# CMAKE_ARGS+=-DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DSD_SYCL=ON -DGGML_SYCL_F16=ON
# endif
# ifeq ($(BUILD_TYPE),sycl_f32)
# CMAKE_ARGS+=-DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DSD_SYCL=ON
# endif
# warnings
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
# Find all .a archives in ARCHIVE_DIR
# (ggml can have different backends cpu, cuda, etc., each backend generates a .a archive)
GGML_ARCHIVE_DIR := build/ggml/src/
ALL_ARCHIVES := $(shell find $(GGML_ARCHIVE_DIR) -type f -name '*.a')
# Name of the single merged library
COMBINED_LIB := libggmlall.a
# Rule to merge all the .a files into one
$(COMBINED_LIB): $(ALL_ARCHIVES)
@echo "Merging all .a into $(COMBINED_LIB)"
rm -f $@
mkdir -p merge-tmp
for a in $(ALL_ARCHIVES); do \
( cd merge-tmp && ar x ../$$a ); \
done
( cd merge-tmp && ar rcs ../$@ *.o )
# Ensure we have a proper index
ranlib $@
# Clean up
rm -rf merge-tmp
build/libstable-diffusion.a:
@echo "Building SD with $(BUILD_TYPE) build type and $(CMAKE_ARGS)"
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
+bash -c "source $(ONEAPI_VARS); \
mkdir -p build && \
cd build && \
cmake $(CMAKE_ARGS) ../../../../../sources/stablediffusion-ggml.cpp && \
cmake --build . --config Release"
else
mkdir -p build && \
cd build && \
cmake $(CMAKE_ARGS) ../../../../../sources/stablediffusion-ggml.cpp && \
cmake --build . --config Release
endif
$(MAKE) $(COMBINED_LIB)
gosd.o:
$(CXX) $(CXXFLAGS) gosd.cpp -o gosd.o -c
libsd.a: gosd.o
cp $(INCLUDE_PATH)/build/libstable-diffusion.a ./libsd.a
$(AR) rcs libsd.a gosd.o
clean:
rm -rf gosd.o libsd.a build $(COMBINED_LIB)

View File

@@ -1,228 +0,0 @@
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include "gosd.h"
// #include "preprocessing.hpp"
#include "flux.hpp"
#include "stable-diffusion.h"
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_STATIC
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#define STB_IMAGE_WRITE_STATIC
#include "stb_image_write.h"
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#define STB_IMAGE_RESIZE_STATIC
#include "stb_image_resize.h"
// Names of the sampler method, same order as enum sample_method in stable-diffusion.h
const char* sample_method_str[] = {
"euler_a",
"euler",
"heun",
"dpm2",
"dpm++2s_a",
"dpm++2m",
"dpm++2mv2",
"ipndm",
"ipndm_v",
"lcm",
};
// Names of the sigma schedule overrides, same order as sample_schedule in stable-diffusion.h
const char* schedule_str[] = {
"default",
"discrete",
"karras",
"exponential",
"ays",
"gits",
};
sd_ctx_t* sd_c;
sample_method_t sample_method;
int load_model(char *model, char* options[], int threads, int diff) {
fprintf (stderr, "Loading model!\n");
char *stableDiffusionModel = "";
if (diff == 1 ) {
stableDiffusionModel = model;
model = "";
}
// decode options. Options are in form optname:optvale, or if booleans only optname.
char *clip_l_path = "";
char *clip_g_path = "";
char *t5xxl_path = "";
char *vae_path = "";
char *scheduler = "";
char *sampler = "";
// If options is not NULL, parse options
for (int i = 0; options[i] != NULL; i++) {
char *optname = strtok(options[i], ":");
char *optval = strtok(NULL, ":");
if (optval == NULL) {
optval = "true";
}
if (!strcmp(optname, "clip_l_path")) {
clip_l_path = optval;
}
if (!strcmp(optname, "clip_g_path")) {
clip_g_path = optval;
}
if (!strcmp(optname, "t5xxl_path")) {
t5xxl_path = optval;
}
if (!strcmp(optname, "vae_path")) {
vae_path = optval;
}
if (!strcmp(optname, "scheduler")) {
scheduler = optval;
}
if (!strcmp(optname, "sampler")) {
sampler = optval;
}
}
int sample_method_found = -1;
for (int m = 0; m < N_SAMPLE_METHODS; m++) {
if (!strcmp(sampler, sample_method_str[m])) {
sample_method_found = m;
}
}
if (sample_method_found == -1) {
fprintf(stderr, "Invalid sample method, default to EULER_A!\n");
sample_method_found = EULER_A;
}
sample_method = (sample_method_t)sample_method_found;
int schedule_found = -1;
for (int d = 0; d < N_SCHEDULES; d++) {
if (!strcmp(scheduler, schedule_str[d])) {
schedule_found = d;
fprintf (stderr, "Found scheduler: %s\n", scheduler);
}
}
if (schedule_found == -1) {
fprintf (stderr, "Invalid scheduler! using DEFAULT\n");
schedule_found = DEFAULT;
}
schedule_t schedule = (schedule_t)schedule_found;
fprintf (stderr, "Creating context\n");
sd_ctx_t* sd_ctx = new_sd_ctx(model,
clip_l_path,
clip_g_path,
t5xxl_path,
stableDiffusionModel,
vae_path,
"",
"",
"",
"",
"",
false,
false,
false,
threads,
SD_TYPE_COUNT,
STD_DEFAULT_RNG,
schedule,
false,
false,
false,
false);
if (sd_ctx == NULL) {
fprintf (stderr, "failed loading model (generic error)\n");
return 1;
}
fprintf (stderr, "Created context: OK\n");
sd_c = sd_ctx;
return 0;
}
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed , char *dst, float cfg_scale) {
sd_image_t* results;
std::vector<int> skip_layers = {7, 8, 9};
fprintf (stderr, "Generating image\n");
results = txt2img(sd_c,
text,
negativeText,
-1, //clip_skip
cfg_scale, // sfg_scale
3.5f,
width,
height,
sample_method,
steps,
seed,
1,
NULL,
0.9f,
20.f,
false,
"",
skip_layers.data(),
skip_layers.size(),
0,
0.01,
0.2);
if (results == NULL) {
fprintf (stderr, "NO results\n");
return 1;
}
if (results[0].data == NULL) {
fprintf (stderr, "Results with no data\n");
return 1;
}
fprintf (stderr, "Writing PNG\n");
fprintf (stderr, "DST: %s\n", dst);
fprintf (stderr, "Width: %d\n", results[0].width);
fprintf (stderr, "Height: %d\n", results[0].height);
fprintf (stderr, "Channel: %d\n", results[0].channel);
fprintf (stderr, "Data: %p\n", results[0].data);
stbi_write_png(dst, results[0].width, results[0].height, results[0].channel,
results[0].data, 0, NULL);
fprintf (stderr, "Saved resulting image to '%s'\n", dst);
// TODO: free results. Why does it crash?
free(results[0].data);
results[0].data = NULL;
free(results);
fprintf (stderr, "gen_image is done", dst);
return 0;
}
int unload() {
free_sd_ctx(sd_c);
}

View File

@@ -1,96 +0,0 @@
package main
// #cgo CXXFLAGS: -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/thirdparty -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/ggml/include
// #cgo LDFLAGS: -L${SRCDIR}/ -lsd -lstdc++ -lm -lggmlall -lgomp
// #include <gosd.h>
// #include <stdlib.h>
import "C"
import (
"fmt"
"os"
"path/filepath"
"strings"
"unsafe"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/utils"
)
type SDGGML struct {
base.SingleThread
threads int
sampleMethod string
cfgScale float32
}
func (sd *SDGGML) Load(opts *pb.ModelOptions) error {
sd.threads = int(opts.Threads)
modelFile := C.CString(opts.ModelFile)
defer C.free(unsafe.Pointer(modelFile))
var options **C.char
// prepare the options array to pass to C
size := C.size_t(unsafe.Sizeof((*C.char)(nil)))
length := C.size_t(len(opts.Options))
options = (**C.char)(C.malloc(length * size))
view := (*[1 << 30]*C.char)(unsafe.Pointer(options))[0:len(opts.Options):len(opts.Options)]
var diffusionModel int
var oo []string
for _, op := range opts.Options {
if op == "diffusion_model" {
diffusionModel = 1
continue
}
// If it's an option path, we resolve absolute path from the model path
if strings.Contains(op, ":") && strings.Contains(op, "path") {
data := strings.Split(op, ":")
data[1] = filepath.Join(opts.ModelPath, data[1])
if err := utils.VerifyPath(data[1], opts.ModelPath); err == nil {
oo = append(oo, strings.Join(data, ":"))
}
} else {
oo = append(oo, op)
}
}
fmt.Fprintf(os.Stderr, "Options: %+v\n", oo)
for i, x := range oo {
view[i] = C.CString(x)
}
sd.cfgScale = opts.CFGScale
ret := C.load_model(modelFile, options, C.int(opts.Threads), C.int(diffusionModel))
if ret != 0 {
return fmt.Errorf("could not load model")
}
return nil
}
func (sd *SDGGML) GenerateImage(opts *pb.GenerateImageRequest) error {
t := C.CString(opts.PositivePrompt)
defer C.free(unsafe.Pointer(t))
dst := C.CString(opts.Dst)
defer C.free(unsafe.Pointer(dst))
negative := C.CString(opts.NegativePrompt)
defer C.free(unsafe.Pointer(negative))
ret := C.gen_image(t, negative, C.int(opts.Width), C.int(opts.Height), C.int(opts.Step), C.int(opts.Seed), dst, C.float(sd.cfgScale))
if ret != 0 {
return fmt.Errorf("inference failed")
}
return nil
}

View File

@@ -1,8 +0,0 @@
#ifdef __cplusplus
extern "C" {
#endif
int load_model(char *model, char* options[], int threads, int diffusionModel);
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed, char *dst, float cfg_scale);
#ifdef __cplusplus
}
#endif

View File

@@ -1,6 +1,7 @@
package main package main
// Note: this is started internally by LocalAI and a server is allocated for each model // Note: this is started internally by LocalAI and a server is allocated for each model
import ( import (
"flag" "flag"
@@ -14,7 +15,7 @@ var (
func main() { func main() {
flag.Parse() flag.Parse()
if err := grpc.StartServer(*addr, &Bark{}); err != nil { if err := grpc.StartServer(*addr, &Image{}); err != nil {
panic(err) panic(err)
} }
} }

View File

@@ -0,0 +1,33 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/stablediffusion"
)
type Image struct {
base.SingleThread
stablediffusion *stablediffusion.StableDiffusion
}
func (image *Image) Load(opts *pb.ModelOptions) error {
var err error
// Note: the Model here is a path to a directory containing the model files
image.stablediffusion, err = stablediffusion.New(opts.ModelFile)
return err
}
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
return image.stablediffusion.GenerateImage(
int(opts.Height),
int(opts.Width),
int(opts.Mode),
int(opts.Step),
int(opts.Seed),
opts.PositivePrompt,
opts.NegativePrompt,
opts.Dst)
}

View File

@@ -1,6 +1,7 @@
package main package main
// Note: this is started internally by LocalAI and a server is allocated for each model // Note: this is started internally by LocalAI and a server is allocated for each model
import ( import (
"flag" "flag"
@@ -14,7 +15,7 @@ var (
func main() { func main() {
flag.Parse() flag.Parse()
if err := grpc.StartServer(*addr, &SDGGML{}); err != nil { if err := grpc.StartServer(*addr, &Image{}); err != nil {
panic(err) panic(err)
} }
} }

View File

@@ -0,0 +1,32 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/tinydream"
)
type Image struct {
base.SingleThread
tinydream *tinydream.TinyDream
}
func (image *Image) Load(opts *pb.ModelOptions) error {
var err error
// Note: the Model here is a path to a directory containing the model files
image.tinydream, err = tinydream.New(opts.ModelFile)
return err
}
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
return image.tinydream.GenerateImage(
int(opts.Height),
int(opts.Width),
int(opts.Step),
int(opts.Seed),
opts.PositivePrompt,
opts.NegativePrompt,
opts.Dst)
}

View File

@@ -0,0 +1,34 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
bert "github.com/go-skynet/go-bert.cpp"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type Embeddings struct {
base.SingleThread
bert *bert.Bert
}
func (llm *Embeddings) Load(opts *pb.ModelOptions) error {
model, err := bert.New(opts.ModelFile)
llm.bert = model
return err
}
func (llm *Embeddings) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
if len(opts.EmbeddingTokens) > 0 {
tokens := []int{}
for _, t := range opts.EmbeddingTokens {
tokens = append(tokens, int(t))
}
return llm.bert.TokenEmbeddings(tokens, bert.SetThreads(int(opts.Threads)))
}
return llm.bert.Embeddings(opts.Embeddings, bert.SetThreads(int(opts.Threads)))
}

View File

@@ -0,0 +1,21 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
grpc "github.com/mudler/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &Embeddings{}); err != nil {
panic(err)
}
}

View File

@@ -15,7 +15,7 @@ var (
func main() { func main() {
flag.Parse() flag.Parse()
if err := grpc.StartServer(*addr, &VAD{}); err != nil { if err := grpc.StartServer(*addr, &LLM{}); err != nil {
panic(err) panic(err)
} }
} }

View File

@@ -0,0 +1,95 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"path/filepath"
"github.com/donomii/go-rwkv.cpp"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
const tokenizerSuffix = ".tokenizer.json"
type LLM struct {
base.SingleThread
rwkv *rwkv.RwkvState
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
tokenizerFile := opts.Tokenizer
if tokenizerFile == "" {
modelFile := filepath.Base(opts.ModelFile)
tokenizerFile = modelFile + tokenizerSuffix
}
modelPath := filepath.Dir(opts.ModelFile)
tokenizerPath := filepath.Join(modelPath, tokenizerFile)
model := rwkv.LoadFiles(opts.ModelFile, tokenizerPath, uint32(opts.GetThreads()))
if model == nil {
return fmt.Errorf("rwkv could not load model")
}
llm.rwkv = model
return nil
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
stopWord := "\n"
if len(opts.StopPrompts) > 0 {
stopWord = opts.StopPrompts[0]
}
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
return "", err
}
response := llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), nil)
return response, nil
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
stopWord := "\n"
if len(opts.StopPrompts) > 0 {
stopWord = opts.StopPrompts[0]
}
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
fmt.Println("Error processing input: ", err)
return
}
llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), func(s string) bool {
results <- s
return true
})
close(results)
}()
return nil
}
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
tokens, err := llm.rwkv.Tokenizer.Encode(opts.Prompt)
if err != nil {
return pb.TokenizationResponse{}, err
}
l := len(tokens)
i32Tokens := make([]int32, l)
for i, t := range tokens {
i32Tokens[i] = int32(t.ID)
}
return pb.TokenizationResponse{
Length: int32(l),
Tokens: i32Tokens,
}, nil
}

View File

@@ -311,16 +311,12 @@ func (s *Store) StoresGet(opts *pb.StoresGetOptions) (pb.StoresGetResult, error)
} }
func isNormalized(k []float32) bool { func isNormalized(k []float32) bool {
var sum float64 var sum float32
for _, v := range k { for _, v := range k {
v64 := float64(v) sum += v
sum += v64*v64
} }
s := math.Sqrt(sum) return sum == 1.0
return s >= 0.99 && s <= 1.01
} }
// TODO: This we could replace with handwritten SIMD code // TODO: This we could replace with handwritten SIMD code
@@ -332,7 +328,7 @@ func normalizedCosineSimilarity(k1, k2 []float32) float32 {
dot += k1[i] * k2[i] dot += k1[i] * k2[i]
} }
assert(dot >= -1.01 && dot <= 1.01, fmt.Sprintf("dot = %f", dot)) assert(dot >= -1 && dot <= 1, fmt.Sprintf("dot = %f", dot))
// 2.0 * (1.0 - dot) would be the Euclidean distance // 2.0 * (1.0 - dot) would be the Euclidean distance
return dot return dot
@@ -422,7 +418,7 @@ func cosineSimilarity(k1, k2 []float32, mag1 float64) float32 {
sim := float32(dot / (mag1 * math.Sqrt(mag2))) sim := float32(dot / (mag1 * math.Sqrt(mag2)))
assert(sim >= -1.01 && sim <= 1.01, fmt.Sprintf("sim = %f", sim)) assert(sim >= -1 && sim <= 1, fmt.Sprintf("sim = %f", sim))
return sim return sim
} }

View File

@@ -1,54 +0,0 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/streamer45/silero-vad-go/speech"
)
type VAD struct {
base.SingleThread
detector *speech.Detector
}
func (vad *VAD) Load(opts *pb.ModelOptions) error {
v, err := speech.NewDetector(speech.DetectorConfig{
ModelPath: opts.ModelFile,
SampleRate: 16000,
//WindowSize: 1024,
Threshold: 0.5,
MinSilenceDurationMs: 0,
SpeechPadMs: 0,
})
if err != nil {
return fmt.Errorf("create silero detector: %w", err)
}
vad.detector = v
return err
}
func (vad *VAD) VAD(req *pb.VADRequest) (pb.VADResponse, error) {
audio := req.Audio
segments, err := vad.detector.Detect(audio)
if err != nil {
return pb.VADResponse{}, fmt.Errorf("detect: %w", err)
}
vadSegments := []*pb.VADSegment{}
for _, s := range segments {
vadSegments = append(vadSegments, &pb.VADSegment{
Start: float32(s.SpeechStartAt),
End: float32(s.SpeechEndAt),
})
}
return pb.VADResponse{
Segments: vadSegments,
}, nil
}

View File

@@ -1,2 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118 torch

View File

@@ -1 +1 @@
torch==2.4.1 torch

View File

@@ -1,2 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0 --extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0 torch

View File

@@ -1,6 +1,5 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu intel-extension-for-pytorch
torch==2.3.1+cxx11.abi torch
oneccl_bind_pt==2.3.100+xpu
optimum[openvino] optimum[openvino]
setuptools setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406

View File

@@ -1,6 +1,6 @@
accelerate accelerate
auto-gptq==0.7.1 auto-gptq==0.7.1
grpcio==1.69.0 grpcio==1.66.2
protobuf protobuf
certifi certifi
transformers transformers

View File

@@ -1,4 +1,4 @@
transformers transformers
accelerate accelerate
torch==2.4.1 torch
torchaudio==2.4.1 torchaudio

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118 torch
torchaudio==2.4.1+cu118 torchaudio
transformers transformers
accelerate accelerate

View File

@@ -1,4 +1,4 @@
torch==2.4.1 torch
torchaudio==2.4.1 torchaudio
transformers transformers
accelerate accelerate

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0 --extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0 torch
torchaudio==2.4.1+rocm6.0 torchaudio
transformers transformers
accelerate accelerate

View File

@@ -1,9 +1,8 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu intel-extension-for-pytorch
torch==2.3.1+cxx11.abi torch
torchaudio==2.3.1+cxx11.abi torchaudio
oneccl_bind_pt==2.3.100+xpu
optimum[openvino] optimum[openvino]
setuptools setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
transformers transformers
accelerate accelerate

View File

@@ -1,4 +1,4 @@
bark==0.1.5 bark==0.1.5
grpcio==1.69.0 grpcio==1.66.2
protobuf protobuf
certifi certifi

View File

@@ -17,9 +17,6 @@
# LIMIT_TARGETS="cublas12" # LIMIT_TARGETS="cublas12"
# source $(dirname $0)/../common/libbackend.sh # source $(dirname $0)/../common/libbackend.sh
# #
PYTHON_VERSION="3.10"
function init() { function init() {
# Name of the backend (directory name) # Name of the backend (directory name)
BACKEND_NAME=${PWD##*/} BACKEND_NAME=${PWD##*/}
@@ -91,7 +88,7 @@ function getBuildProfile() {
# always result in an activated virtual environment # always result in an activated virtual environment
function ensureVenv() { function ensureVenv() {
if [ ! -d "${EDIR}/venv" ]; then if [ ! -d "${EDIR}/venv" ]; then
uv venv --python ${PYTHON_VERSION} ${EDIR}/venv uv venv ${EDIR}/venv
echo "virtualenv created" echo "virtualenv created"
fi fi

View File

@@ -1,9 +1,8 @@
.DEFAULT_GOAL := install .DEFAULT_GOAL := install
.PHONY: install .PHONY: install
install: install: protogen
bash install.sh bash install.sh
$(MAKE) protogen
.PHONY: protogen .PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py protogen: backend_pb2_grpc.py backend_pb2.py
@@ -13,7 +12,7 @@ protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py $(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py: backend_pb2_grpc.py backend_pb2.py:
bash protogen.sh python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean .PHONY: clean
clean: protogen-clean clean: protogen-clean

View File

@@ -1,6 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

@@ -1,5 +1,4 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu intel-extension-for-pytorch
torch==2.3.1+cxx11.abi torch
oneccl_bind_pt==2.3.100+xpu
optimum[openvino] optimum[openvino]

View File

@@ -1,3 +1,2 @@
grpcio==1.69.0 grpcio==1.66.2
protobuf protobuf
grpcio-tools

View File

@@ -1,4 +1,3 @@
transformers transformers
accelerate accelerate
torch==2.4.1 torch
coqui-tts

View File

@@ -1,6 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118 torch
torchaudio==2.4.1+cu118 torchaudio
transformers transformers
accelerate accelerate
coqui-tts

View File

@@ -1,5 +1,4 @@
torch==2.4.1 torch
torchaudio==2.4.1 torchaudio
transformers transformers
accelerate accelerate
coqui-tts

View File

@@ -1,6 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0 --extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0 torch
torchaudio==2.4.1+rocm6.0 torchaudio
transformers transformers
accelerate accelerate
coqui-tts

View File

@@ -1,10 +1,8 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu intel-extension-for-pytorch
torch==2.3.1+cxx11.abi torch
torchaudio==2.3.1+cxx11.abi torchaudio
oneccl_bind_pt==2.3.100+xpu
optimum[openvino] optimum[openvino]
setuptools setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
transformers transformers
accelerate accelerate
coqui-tts

View File

@@ -1,4 +1,4 @@
grpcio==1.69.0 coqui-tts
grpcio==1.66.2
protobuf protobuf
certifi certifi
packaging==24.1

View File

@@ -19,7 +19,7 @@ class TestBackendServicer(unittest.TestCase):
This method sets up the gRPC service by starting the server This method sets up the gRPC service by starting the server
""" """
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"]) self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(30) time.sleep(10)
def tearDown(self) -> None: def tearDown(self) -> None:
""" """

View File

@@ -17,7 +17,7 @@ import backend_pb2_grpc
import grpc import grpc
from diffusers import SanaPipeline, StableDiffusion3Pipeline, StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, \ from diffusers import StableDiffusion3Pipeline, StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, \
EulerAncestralDiscreteScheduler, FluxPipeline, FluxTransformer2DModel EulerAncestralDiscreteScheduler, FluxPipeline, FluxTransformer2DModel
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline
from diffusers.pipelines.stable_diffusion import safety_checker from diffusers.pipelines.stable_diffusion import safety_checker
@@ -247,16 +247,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
use_safetensors=True, use_safetensors=True,
variant=variant) variant=variant)
elif request.PipelineType == "FluxPipeline": elif request.PipelineType == "FluxPipeline":
if fromSingleFile:
self.pipe = FluxPipeline.from_single_file(modelFile,
torch_dtype=torchType,
use_safetensors=True)
else:
self.pipe = FluxPipeline.from_pretrained( self.pipe = FluxPipeline.from_pretrained(
request.Model, request.Model,
torch_dtype=torch.bfloat16) torch_dtype=torch.bfloat16)
if request.LowVRAM: if request.LowVRAM:
self.pipe.enable_model_cpu_offload() self.pipe.enable_model_cpu_offload()
elif request.PipelineType == "FluxTransformer2DModel": elif request.PipelineType == "FluxTransformer2DModel":
dtype = torch.bfloat16 dtype = torch.bfloat16
# specify from environment or default to "ChuckMcSneed/FLUX.1-dev" # specify from environment or default to "ChuckMcSneed/FLUX.1-dev"
@@ -275,13 +270,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.LowVRAM: if request.LowVRAM:
self.pipe.enable_model_cpu_offload() self.pipe.enable_model_cpu_offload()
elif request.PipelineType == "SanaPipeline":
self.pipe = SanaPipeline.from_pretrained(
request.Model,
variant="bf16",
torch_dtype=torch.bfloat16)
self.pipe.vae.to(torch.bfloat16)
self.pipe.text_encoder.to(torch.bfloat16)
if CLIPSKIP and request.CLIPSkip != 0: if CLIPSKIP and request.CLIPSkip != 0:
self.clip_skip = request.CLIPSkip self.clip_skip = request.CLIPSkip
@@ -308,34 +296,22 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.pipe.controlnet = self.controlnet self.pipe.controlnet = self.controlnet
else: else:
self.controlnet = None self.controlnet = None
# Assume directory from request.ModelFile.
if request.LoraAdapter and not os.path.isabs(request.LoraAdapter): # Only if request.LoraAdapter it's not an absolute path
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
# get base path of modelFile
modelFileBase = os.path.dirname(request.ModelFile)
# modify LoraAdapter to be relative to modelFileBase # modify LoraAdapter to be relative to modelFileBase
request.LoraAdapter = os.path.join(request.ModelPath, request.LoraAdapter) request.LoraAdapter = os.path.join(modelFileBase, request.LoraAdapter)
device = "cpu" if not request.CUDA else "cuda" device = "cpu" if not request.CUDA else "cuda"
self.device = device self.device = device
if request.LoraAdapter: if request.LoraAdapter:
# Check if its a local file and not a directory ( we load lora differently for a safetensor file ) # Check if its a local file and not a directory ( we load lora differently for a safetensor file )
if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter): if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter):
# self.load_lora_weights(request.LoraAdapter, 1, device, torchType)
self.pipe.load_lora_weights(request.LoraAdapter) self.pipe.load_lora_weights(request.LoraAdapter)
else: else:
self.pipe.unet.load_attn_procs(request.LoraAdapter) self.pipe.unet.load_attn_procs(request.LoraAdapter)
if len(request.LoraAdapters) > 0:
i = 0
adapters_name = []
adapters_weights = []
for adapter in request.LoraAdapters:
if not os.path.isabs(adapter):
adapter = os.path.join(request.ModelPath, adapter)
self.pipe.load_lora_weights(adapter, adapter_name=f"adapter_{i}")
adapters_name.append(f"adapter_{i}")
i += 1
for adapters_weight in request.LoraScales:
adapters_weights.append(adapters_weight)
self.pipe.set_adapters(adapters_name, adapter_weights=adapters_weights)
if request.CUDA: if request.CUDA:
self.pipe.to('cuda') self.pipe.to('cuda')
@@ -416,6 +392,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
# create a dictionary of values for the parameters # create a dictionary of values for the parameters
options = { options = {
"negative_prompt": request.negative_prompt, "negative_prompt": request.negative_prompt,
"width": request.width,
"height": request.height,
"num_inference_steps": steps, "num_inference_steps": steps,
} }
@@ -433,13 +411,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
keys = options.keys() keys = options.keys()
if request.EnableParameters != "": if request.EnableParameters != "":
keys = [key.strip() for key in request.EnableParameters.split(",")] keys = request.EnableParameters.split(",")
if request.EnableParameters == "none": if request.EnableParameters == "none":
keys = [] keys = []
# create a dictionary of parameters by using the keys from EnableParameters and the values from defaults # create a dictionary of parameters by using the keys from EnableParameters and the values from defaults
kwargs = {key: options.get(key) for key in keys if key in options} kwargs = {key: options[key] for key in keys}
# Set seed # Set seed
if request.seed > 0: if request.seed > 0:
@@ -450,12 +428,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if self.PipelineType == "FluxPipeline": if self.PipelineType == "FluxPipeline":
kwargs["max_sequence_length"] = 256 kwargs["max_sequence_length"] = 256
if request.width:
kwargs["width"] = request.width
if request.height:
kwargs["height"] = request.height
if self.PipelineType == "FluxTransformer2DModel": if self.PipelineType == "FluxTransformer2DModel":
kwargs["output_type"] = "pil" kwargs["output_type"] = "pil"
kwargs["generator"] = torch.Generator("cpu").manual_seed(0) kwargs["generator"] = torch.Generator("cpu").manual_seed(0)
@@ -475,7 +447,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
export_to_video(video_frames, request.dst) export_to_video(video_frames, request.dst)
return backend_pb2.Result(message="Media generated successfully", success=True) return backend_pb2.Result(message="Media generated successfully", success=True)
print(f"Generating image with {kwargs=}", file=sys.stderr)
image = {} image = {}
if COMPEL: if COMPEL:
conditioning, pooled = self.compel.build_conditioning_tensor(prompt) conditioning, pooled = self.compel.build_conditioning_tensor(prompt)

View File

@@ -5,5 +5,5 @@ accelerate
compel compel
peft peft
sentencepiece sentencepiece
torch==2.4.1 torch
optimum-quanto optimum-quanto

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118 torch
diffusers diffusers
opencv-python opencv-python
transformers transformers

View File

@@ -1,4 +1,4 @@
torch==2.4.1 torch
diffusers diffusers
opencv-python opencv-python
transformers transformers

View File

@@ -1,10 +1,9 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu intel-extension-for-pytorch
torch==2.3.1+cxx11.abi torch
torchvision==0.18.1+cxx11.abi torchvision
oneccl_bind_pt==2.3.100+xpu
optimum[openvino] optimum[openvino]
setuptools setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
diffusers diffusers
opencv-python opencv-python
transformers transformers

View File

@@ -1,5 +1,5 @@
setuptools setuptools
grpcio==1.69.0 grpcio==1.66.2
pillow pillow
protobuf protobuf
certifi certifi

View File

@@ -1,3 +1,3 @@
transformers transformers
accelerate accelerate
torch==2.4.1 torch

View File

@@ -1,4 +1,4 @@
--extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118 torch
transformers transformers
accelerate accelerate

View File

@@ -1,3 +1,3 @@
torch==2.4.1 torch
transformers transformers
accelerate accelerate

View File

@@ -1,4 +1,4 @@
grpcio==1.69.0 grpcio==1.66.2
protobuf protobuf
certifi certifi
wheel wheel

View File

@@ -1,20 +0,0 @@
.DEFAULT_GOAL := install
.PHONY: install
install:
bash install.sh
$(MAKE) protogen
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
bash protogen.sh
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,6 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

@@ -1,8 +0,0 @@
faster-whisper
opencv-python
accelerate
compel
peft
sentencepiece
torch==2.4.1
optimum-quanto

View File

@@ -1,9 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
faster-whisper
opencv-python
accelerate
compel
peft
sentencepiece
optimum-quanto

View File

@@ -1,8 +0,0 @@
torch==2.4.1
faster-whisper
opencv-python
accelerate
compel
peft
sentencepiece
optimum-quanto

View File

@@ -1,6 +0,0 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
faster-whisper

View File

@@ -1,3 +0,0 @@
grpcio==1.69.0
protobuf
grpcio-tools

View File

@@ -1,524 +0,0 @@
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/istftnet.py
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
from scipy.signal import get_window
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
LRELU_SLOPE = 0.1
class AdaIN1d(nn.Module):
def __init__(self, style_dim, num_features):
super().__init__()
self.norm = nn.InstanceNorm1d(num_features, affine=False)
self.fc = nn.Linear(style_dim, num_features*2)
def forward(self, x, s):
h = self.fc(s)
h = h.view(h.size(0), h.size(1), 1)
gamma, beta = torch.chunk(h, chunks=2, dim=1)
return (1 + gamma) * self.norm(x) + beta
class AdaINResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
super(AdaINResBlock1, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.adain1 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.adain2 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
def forward(self, x, s):
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
xt = n1(x, s)
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
xt = c1(xt)
xt = n2(xt, s)
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class TorchSTFT(torch.nn.Module):
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
super().__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
def transform(self, input_data):
forward_transform = torch.stft(
input_data,
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
return_complex=True)
return torch.abs(forward_transform), torch.angle(forward_transform)
def inverse(self, magnitude, phase):
inverse_transform = torch.istft(
magnitude * torch.exp(phase * 1j),
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
self.upsample_scale = upsample_scale
def _f02uv(self, f0):
# generate uv signal
uv = (f0 > self.voiced_threshold).type(torch.float32)
return uv
def _f02sine(self, f0_values):
""" f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
# convert to F0 in rad. The interger part n can be ignored
# because 2 * np.pi * n doesn't affect phase
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
device=f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
if not self.flag_for_pulse:
# # for normal case
# # To prevent torch.cumsum numerical overflow,
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
# # Buffer tmp_over_one_idx indicates the time step to add -1.
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
scale_factor=1/self.upsample_scale,
mode="linear").transpose(1, 2)
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
sines = torch.sin(phase)
else:
# If necessary, make sure that the first time step of every
# voiced segments is sin(pi) or cos(0)
# This is used for pulse-train generation
# identify the last time step in unvoiced segments
uv = self._f02uv(f0_values)
uv_1 = torch.roll(uv, shifts=-1, dims=1)
uv_1[:, -1, :] = 1
u_loc = (uv < 1) * (uv_1 > 0)
# get the instantanouse phase
tmp_cumsum = torch.cumsum(rad_values, dim=1)
# different batch needs to be processed differently
for idx in range(f0_values.shape[0]):
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
# stores the accumulation of i.phase within
# each voiced segments
tmp_cumsum[idx, :, :] = 0
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
# rad_values - tmp_cumsum: remove the accumulation of i.phase
# within the previous voiced segment.
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
# get the sines
sines = torch.cos(i_phase * 2 * np.pi)
return sines
def forward(self, f0):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
device=f0.device)
# fundamental component
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
# generate sine waveforms
sine_waves = self._f02sine(fn) * self.sine_amp
# generate uv signal
# uv = torch.ones(f0.shape)
# uv = uv * (f0 > self.voiced_threshold)
uv = self._f02uv(f0)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
sine_amp, add_noise_std, voiced_threshod)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
with torch.no_grad():
sine_wavs, uv, _ = self.l_sin_gen(x)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
def padDiff(x):
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
class Generator(torch.nn.Module):
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
resblock = AdaINResBlock1
self.m_source = SourceModuleHnNSF(
sampling_rate=24000,
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
harmonic_num=8, voiced_threshod=10)
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
self.noise_convs = nn.ModuleList()
self.noise_res = nn.ModuleList()
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
k, u, padding=(k-u)//2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d, style_dim))
c_cur = upsample_initial_channel // (2 ** (i + 1))
if i + 1 < len(upsample_rates): #
stride_f0 = np.prod(upsample_rates[i + 1:])
self.noise_convs.append(Conv1d(
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
else:
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
self.post_n_fft = gen_istft_n_fft
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
def forward(self, x, s, f0):
with torch.no_grad():
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
har_source, noi_source, uv = self.m_source(f0)
har_source = har_source.transpose(1, 2).squeeze(1)
har_spec, har_phase = self.stft.transform(har_source)
har = torch.cat([har_spec, har_phase], dim=1)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x_source = self.noise_convs[i](har)
x_source = self.noise_res[i](x_source, s)
x = self.ups[i](x)
if i == self.num_upsamples - 1:
x = self.reflection_pad(x)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x, s)
else:
xs += self.resblocks[i*self.num_kernels+j](x, s)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
return self.stft.inverse(spec, phase)
def fw_phase(self, x, s):
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x, s)
else:
xs += self.resblocks[i*self.num_kernels+j](x, s)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.reflection_pad(x)
x = self.conv_post(x)
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
return spec, phase
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class AdainResBlk1d(nn.Module):
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
upsample='none', dropout_p=0.0):
super().__init__()
self.actv = actv
self.upsample_type = upsample
self.upsample = UpSample1d(upsample)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out, style_dim)
self.dropout = nn.Dropout(dropout_p)
if upsample == 'none':
self.pool = nn.Identity()
else:
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
def _build_weights(self, dim_in, dim_out, style_dim):
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
self.norm1 = AdaIN1d(style_dim, dim_in)
self.norm2 = AdaIN1d(style_dim, dim_out)
if self.learned_sc:
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
x = self.upsample(x)
if self.learned_sc:
x = self.conv1x1(x)
return x
def _residual(self, x, s):
x = self.norm1(x, s)
x = self.actv(x)
x = self.pool(x)
x = self.conv1(self.dropout(x))
x = self.norm2(x, s)
x = self.actv(x)
x = self.conv2(self.dropout(x))
return x
def forward(self, x, s):
out = self._residual(x, s)
out = (out + self._shortcut(x)) / np.sqrt(2)
return out
class UpSample1d(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
else:
return F.interpolate(x, scale_factor=2, mode='nearest')
class Decoder(nn.Module):
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
resblock_kernel_sizes = [3,7,11],
upsample_rates = [10, 6],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
upsample_kernel_sizes=[20, 12],
gen_istft_n_fft=20, gen_istft_hop_size=5):
super().__init__()
self.decode = nn.ModuleList()
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
self.asr_res = nn.Sequential(
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
)
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
upsample_initial_channel, resblock_dilation_sizes,
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
def forward(self, asr, F0_curve, N, s):
F0 = self.F0_conv(F0_curve.unsqueeze(1))
N = self.N_conv(N.unsqueeze(1))
x = torch.cat([asr, F0, N], axis=1)
x = self.encode(x, s)
asr_res = self.asr_res(asr)
res = True
for block in self.decode:
if res:
x = torch.cat([x, asr_res, F0, N], axis=1)
x = block(x, s)
if block.upsample_type != "none":
res = False
x = self.generator(x, s, F0_curve)
return x

View File

@@ -1,166 +0,0 @@
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/kokoro.py
import phonemizer
import re
import torch
import numpy as np
def split_num(num):
num = num.group()
if '.' in num:
return num
elif ':' in num:
h, m = [int(n) for n in num.split(':')]
if m == 0:
return f"{h} o'clock"
elif m < 10:
return f'{h} oh {m}'
return f'{h} {m}'
year = int(num[:4])
if year < 1100 or year % 1000 < 10:
return num
left, right = num[:2], int(num[2:4])
s = 's' if num.endswith('s') else ''
if 100 <= year % 1000 <= 999:
if right == 0:
return f'{left} hundred{s}'
elif right < 10:
return f'{left} oh {right}{s}'
return f'{left} {right}{s}'
def flip_money(m):
m = m.group()
bill = 'dollar' if m[0] == '$' else 'pound'
if m[-1].isalpha():
return f'{m[1:]} {bill}s'
elif '.' not in m:
s = '' if m[1:] == '1' else 's'
return f'{m[1:]} {bill}{s}'
b, c = m[1:].split('.')
s = '' if b == '1' else 's'
c = int(c.ljust(2, '0'))
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
return f'{b} {bill}{s} and {c} {coins}'
def point_num(num):
a, b = num.group().split('.')
return ' point '.join([a, ' '.join(b)])
def normalize_text(text):
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
text = text.replace('«', chr(8220)).replace('»', chr(8221))
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
text = text.replace('(', '«').replace(')', '»')
for a, b in zip('、。!,:;?', ',.!,:;?'):
text = text.replace(a, b+' ')
text = re.sub(r'[^\S \n]', ' ', text)
text = re.sub(r' +', ' ', text)
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
text = re.sub(r'(?<=\d),(?=\d)', '', text)
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
text = re.sub(r'\d*\.\d+', point_num, text)
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
text = re.sub(r'(?<=\d)S', ' S', text)
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
text = re.sub(r"(?<=X')S\b", 's', text)
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
return text.strip()
def get_vocab():
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
return dicts
VOCAB = get_vocab()
def tokenize(ps):
return [i for i in map(VOCAB.get, ps) if i is not None]
phonemizers = dict(
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
)
def phonemize(text, lang, norm=True):
if norm:
text = normalize_text(text)
ps = phonemizers[lang].phonemize([text])
ps = ps[0] if ps else ''
# https://en.wiktionary.org/wiki/kokoro#English
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
if lang == 'a':
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
ps = ''.join(filter(lambda p: p in VOCAB, ps))
return ps.strip()
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
@torch.no_grad()
def forward(model, tokens, ref_s, speed):
device = ref_s.device
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s = ref_s[:, 128:]
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
c_frame += pred_dur[0,i].item()
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
ps = ps or phonemize(text, lang)
tokens = tokenize(ps)
if not tokens:
return None
elif len(tokens) > 510:
tokens = tokens[:510]
print('Truncated to 510 tokens')
ref_s = voicepack[len(tokens)]
out = forward(model, tokens, ref_s, speed)
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
return out, ps
def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
ps = ps or phonemize(text, lang)
tokens = tokenize(ps)
if not tokens:
return None
outs = []
loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
for i in range(loop_count):
ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
outs.append(out)
outs = np.concatenate(outs)
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
return outs, ps

View File

@@ -1,373 +0,0 @@
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/models.py
from istftnet import AdaIN1d, Decoder
from munch import Munch
from pathlib import Path
from plbert import load_plbert
from torch.nn.utils import weight_norm, spectral_norm
import json
import numpy as np
import os
import os.path as osp
import torch
import torch.nn as nn
import torch.nn.functional as F
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class TextEncoder(nn.Module):
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
super().__init__()
self.embedding = nn.Embedding(n_symbols, channels)
padding = (kernel_size - 1) // 2
self.cnn = nn.ModuleList()
for _ in range(depth):
self.cnn.append(nn.Sequential(
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
LayerNorm(channels),
actv,
nn.Dropout(0.2),
))
# self.cnn = nn.Sequential(*self.cnn)
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
def forward(self, x, input_lengths, m):
x = self.embedding(x) # [B, T, emb]
x = x.transpose(1, 2) # [B, emb, T]
m = m.to(input_lengths.device).unsqueeze(1)
x.masked_fill_(m, 0.0)
for c in self.cnn:
x = c(x)
x.masked_fill_(m, 0.0)
x = x.transpose(1, 2) # [B, T, chn]
input_lengths = input_lengths.cpu().numpy()
x = nn.utils.rnn.pack_padded_sequence(
x, input_lengths, batch_first=True, enforce_sorted=False)
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
x, _ = nn.utils.rnn.pad_packed_sequence(
x, batch_first=True)
x = x.transpose(-1, -2)
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
x_pad[:, :, :x.shape[-1]] = x
x = x_pad.to(x.device)
x.masked_fill_(m, 0.0)
return x
def inference(self, x):
x = self.embedding(x)
x = x.transpose(1, 2)
x = self.cnn(x)
x = x.transpose(1, 2)
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
return x
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
class UpSample1d(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
else:
return F.interpolate(x, scale_factor=2, mode='nearest')
class AdainResBlk1d(nn.Module):
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
upsample='none', dropout_p=0.0):
super().__init__()
self.actv = actv
self.upsample_type = upsample
self.upsample = UpSample1d(upsample)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out, style_dim)
self.dropout = nn.Dropout(dropout_p)
if upsample == 'none':
self.pool = nn.Identity()
else:
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
def _build_weights(self, dim_in, dim_out, style_dim):
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
self.norm1 = AdaIN1d(style_dim, dim_in)
self.norm2 = AdaIN1d(style_dim, dim_out)
if self.learned_sc:
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
x = self.upsample(x)
if self.learned_sc:
x = self.conv1x1(x)
return x
def _residual(self, x, s):
x = self.norm1(x, s)
x = self.actv(x)
x = self.pool(x)
x = self.conv1(self.dropout(x))
x = self.norm2(x, s)
x = self.actv(x)
x = self.conv2(self.dropout(x))
return x
def forward(self, x, s):
out = self._residual(x, s)
out = (out + self._shortcut(x)) / np.sqrt(2)
return out
class AdaLayerNorm(nn.Module):
def __init__(self, style_dim, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.fc = nn.Linear(style_dim, channels*2)
def forward(self, x, s):
x = x.transpose(-1, -2)
x = x.transpose(1, -1)
h = self.fc(s)
h = h.view(h.size(0), h.size(1), 1)
gamma, beta = torch.chunk(h, chunks=2, dim=1)
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), eps=self.eps)
x = (1 + gamma) * x + beta
return x.transpose(1, -1).transpose(-1, -2)
class ProsodyPredictor(nn.Module):
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
super().__init__()
self.text_encoder = DurationEncoder(sty_dim=style_dim,
d_model=d_hid,
nlayers=nlayers,
dropout=dropout)
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
self.duration_proj = LinearNorm(d_hid, max_dur)
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
self.F0 = nn.ModuleList()
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
self.N = nn.ModuleList()
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
def forward(self, texts, style, text_lengths, alignment, m):
d = self.text_encoder(texts, style, text_lengths, m)
batch_size = d.shape[0]
text_size = d.shape[1]
# predict duration
input_lengths = text_lengths.cpu().numpy()
x = nn.utils.rnn.pack_padded_sequence(
d, input_lengths, batch_first=True, enforce_sorted=False)
m = m.to(text_lengths.device).unsqueeze(1)
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
x, _ = nn.utils.rnn.pad_packed_sequence(
x, batch_first=True)
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
x_pad[:, :x.shape[1], :] = x
x = x_pad.to(x.device)
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
en = (d.transpose(-1, -2) @ alignment)
return duration.squeeze(-1), en
def F0Ntrain(self, x, s):
x, _ = self.shared(x.transpose(-1, -2))
F0 = x.transpose(-1, -2)
for block in self.F0:
F0 = block(F0, s)
F0 = self.F0_proj(F0)
N = x.transpose(-1, -2)
for block in self.N:
N = block(N, s)
N = self.N_proj(N)
return F0.squeeze(1), N.squeeze(1)
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
class DurationEncoder(nn.Module):
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
super().__init__()
self.lstms = nn.ModuleList()
for _ in range(nlayers):
self.lstms.append(nn.LSTM(d_model + sty_dim,
d_model // 2,
num_layers=1,
batch_first=True,
bidirectional=True,
dropout=dropout))
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
self.dropout = dropout
self.d_model = d_model
self.sty_dim = sty_dim
def forward(self, x, style, text_lengths, m):
masks = m.to(text_lengths.device)
x = x.permute(2, 0, 1)
s = style.expand(x.shape[0], x.shape[1], -1)
x = torch.cat([x, s], axis=-1)
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
x = x.transpose(0, 1)
input_lengths = text_lengths.cpu().numpy()
x = x.transpose(-1, -2)
for block in self.lstms:
if isinstance(block, AdaLayerNorm):
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
else:
x = x.transpose(-1, -2)
x = nn.utils.rnn.pack_padded_sequence(
x, input_lengths, batch_first=True, enforce_sorted=False)
block.flatten_parameters()
x, _ = block(x)
x, _ = nn.utils.rnn.pad_packed_sequence(
x, batch_first=True)
x = F.dropout(x, p=self.dropout, training=self.training)
x = x.transpose(-1, -2)
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
x_pad[:, :, :x.shape[-1]] = x
x = x_pad.to(x.device)
return x.transpose(-1, -2)
def inference(self, x, style):
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
style = style.expand(x.shape[0], x.shape[1], -1)
x = torch.cat([x, style], axis=-1)
src = self.pos_encoder(x)
output = self.transformer_encoder(src).transpose(0, 1)
return output
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
def recursive_munch(d):
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d
def build_model(path, device):
config = Path(__file__).parent / 'config.json'
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
with open(config, 'r') as r:
args = recursive_munch(json.load(r))
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
upsample_rates = args.decoder.upsample_rates,
upsample_initial_channel=args.decoder.upsample_initial_channel,
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
bert = load_plbert()
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
for child in parent.children():
if isinstance(child, nn.RNNBase):
child.flatten_parameters()
model = Munch(
bert=bert.to(device).eval(),
bert_encoder=bert_encoder.to(device).eval(),
predictor=predictor.to(device).eval(),
decoder=decoder.to(device).eval(),
text_encoder=text_encoder.to(device).eval(),
)
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
assert key in model, key
try:
model[key].load_state_dict(state_dict)
except:
state_dict = {k[7:]: v for k, v in state_dict.items()}
model[key].load_state_dict(state_dict, strict=False)
return model

View File

@@ -1,16 +0,0 @@
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/plbert.py
# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
from transformers import AlbertConfig, AlbertModel
class CustomAlbert(AlbertModel):
def forward(self, *args, **kwargs):
# Call the original forward method
outputs = super().forward(*args, **kwargs)
# Only return the last_hidden_state
return outputs.last_hidden_state
def load_plbert():
plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
albert_base_configuration = AlbertConfig(**plbert_config)
bert = CustomAlbert(albert_base_configuration)
return bert

View File

@@ -1,6 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

@@ -1,2 +0,0 @@
torch==2.4.1
transformers

View File

@@ -1,2 +0,0 @@
torch==2.4.1
transformers

View File

@@ -1,5 +0,0 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
transformers

View File

@@ -1,7 +0,0 @@
grpcio==1.69.0
protobuf
phonemizer
scipy
munch
setuptools
soundfile

View File

@@ -0,0 +1,29 @@
.PHONY: mamba
mamba: protogen
bash install.sh
.PHONY: run
run: protogen
@echo "Running mamba..."
bash run.sh
@echo "mamba run."
.PHONY: test
test: protogen
@echo "Testing mamba..."
bash test.sh
@echo "mamba tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
$(RM) -r venv __pycache__

View File

@@ -0,0 +1,5 @@
# Creating a separate environment for the mamba project
```
make mamba
```

Some files were not shown because too many files have changed in this diff Show More