+++ disableToc = false title = "📖 Text generation (GPT)" weight = 10 url = "/features/text-generation/" +++ LocalAI supports generating text with GPT with `llama.cpp` and other backends (such as `rwkv.cpp` as ) see also the [Model compatibility]({{%relref "reference/compatibility-table" %}}) for an up-to-date list of the supported model families. Note: - You can also specify the model name as part of the OpenAI token. - If only one model is available, the API will use it for all the requests. ## API Reference ### Chat completions https://platform.openai.com/docs/api-reference/chat For example, to generate a chat completion, you can send a POST request to the `/v1/chat/completions` endpoint with the instruction as the request body: ```bash curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "ggml-koala-7b-model-q4_0-r2.bin", "messages": [{"role": "user", "content": "Say this is a test!"}], "temperature": 0.7 }' ``` Available additional parameters: `top_p`, `top_k`, `max_tokens` ### Edit completions https://platform.openai.com/docs/api-reference/edits To generate an edit completion you can send a POST request to the `/v1/edits` endpoint with the instruction as the request body: ```bash curl http://localhost:8080/v1/edits -H "Content-Type: application/json" -d '{ "model": "ggml-koala-7b-model-q4_0-r2.bin", "instruction": "rephrase", "input": "Black cat jumped out of the window", "temperature": 0.7 }' ``` Available additional parameters: `top_p`, `top_k`, `max_tokens`. ### Completions https://platform.openai.com/docs/api-reference/completions To generate a completion, you can send a POST request to the `/v1/completions` endpoint with the instruction as per the request body: ```bash curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{ "model": "ggml-koala-7b-model-q4_0-r2.bin", "prompt": "A long time ago in a galaxy far, far away", "temperature": 0.7 }' ``` Available additional parameters: `top_p`, `top_k`, `max_tokens` ### List models You can list all the models available with: ```bash curl http://localhost:8080/v1/models ``` ## Backends ### RWKV RWKV support is available through llama.cpp (see below) ### llama.cpp [llama.cpp](https://github.com/ggerganov/llama.cpp) is a popular port of Facebook's LLaMA model in C/C++. {{% notice note %}} The `ggml` file format has been deprecated. If you are using `ggml` models and you are configuring your model with a YAML file, specify, use a LocalAI version older than v2.25.0. For `gguf` models, use the `llama` backend. The go backend is deprecated as well but still available as `go-llama`. {{% /notice %}} #### Features The `llama.cpp` model supports the following features: - [📖 Text generation (GPT)]({{%relref "features/text-generation" %}}) - [🧠 Embeddings]({{%relref "features/embeddings" %}}) - [🔥 OpenAI functions]({{%relref "features/openai-functions" %}}) - [✍️ Constrained grammars]({{%relref "features/constrained_grammars" %}}) #### Setup LocalAI supports `llama.cpp` models out of the box. You can use the `llama.cpp` model in the same way as any other model. ##### Manual setup It is sufficient to copy the `ggml` or `gguf` model files in the `models` folder. You can refer to the model in the `model` parameter in the API calls. [You can optionally create an associated YAML]({{%relref "advanced" %}}) model config file to tune the model's parameters or apply a template to the prompt. Prompt templates are useful for models that are fine-tuned towards a specific prompt. ##### Automatic setup LocalAI supports model galleries which are indexes of models. For instance, the huggingface gallery contains a large curated index of models from the huggingface model hub for `ggml` or `gguf` models. For instance, if you have the galleries enabled and LocalAI already running, you can just start chatting with models in huggingface by running: ```bash curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "TheBloke/WizardLM-13B-V1.2-GGML/wizardlm-13b-v1.2.ggmlv3.q2_K.bin", "messages": [{"role": "user", "content": "Say this is a test!"}], "temperature": 0.1 }' ``` LocalAI will automatically download and configure the model in the `model` directory. Models can be also preloaded or downloaded on demand. To learn about model galleries, check out the [model gallery documentation]({{%relref "features/model-gallery" %}}). #### YAML configuration To use the `llama.cpp` backend, specify `llama-cpp` as the backend in the YAML file: ```yaml name: llama backend: llama-cpp parameters: # Relative to the models path model: file.gguf ``` #### Backend Options The `llama.cpp` backend supports additional configuration options that can be specified in the `options` field of your model YAML configuration. These options allow fine-tuning of the backend behavior: | Option | Type | Description | Example | |--------|------|-------------|---------| | `use_jinja` or `jinja` | boolean | Enable Jinja2 template processing for chat templates. When enabled, the backend uses Jinja2-based chat templates from the model for formatting messages. | `use_jinja:true` | | `context_shift` | boolean | Enable context shifting, which allows the model to dynamically adjust context window usage. | `context_shift:true` | | `cache_ram` | integer | Set the maximum RAM cache size in MiB for KV cache. Use `-1` for unlimited (default). | `cache_ram:2048` | | `parallel` or `n_parallel` | integer | Enable parallel request processing. When set to a value greater than 1, enables continuous batching for handling multiple requests concurrently. | `parallel:4` | | `grpc_servers` or `rpc_servers` | string | Comma-separated list of gRPC server addresses for distributed inference. Allows distributing workload across multiple llama.cpp workers. | `grpc_servers:localhost:50051,localhost:50052` | | `fit_params` or `fit` | boolean | Enable auto-adjustment of model/context parameters to fit available device memory. Default: `true`. | `fit_params:true` | | `fit_params_target` or `fit_target` | integer | Target margin per device in MiB when using fit_params. Default: `1024` (1GB). | `fit_target:2048` | | `fit_params_min_ctx` or `fit_ctx` | integer | Minimum context size that can be set by fit_params. Default: `4096`. | `fit_ctx:2048` | | `n_cache_reuse` or `cache_reuse` | integer | Minimum chunk size to attempt reusing from the cache via KV shifting. Default: `0` (disabled). | `cache_reuse:256` | | `slot_prompt_similarity` or `sps` | float | How much the prompt of a request must match the prompt of a slot to use that slot. Default: `0.1`. Set to `0` to disable. | `sps:0.5` | | `swa_full` | boolean | Use full-size SWA (Sliding Window Attention) cache. Default: `false`. | `swa_full:true` | | `cont_batching` or `continuous_batching` | boolean | Enable continuous batching for handling multiple sequences. Default: `true`. | `cont_batching:true` | | `check_tensors` | boolean | Validate tensor data for invalid values during model loading. Default: `false`. | `check_tensors:true` | | `warmup` | boolean | Enable warmup run after model loading. Default: `true`. | `warmup:false` | | `no_op_offload` | boolean | Disable offloading host tensor operations to device. Default: `false`. | `no_op_offload:true` | | `kv_unified` or `unified_kv` | boolean | Enable unified KV cache. Default: `false`. | `kv_unified:true` | | `n_ctx_checkpoints` or `ctx_checkpoints` | integer | Maximum number of context checkpoints per slot. Default: `8`. | `ctx_checkpoints:4` | **Example configuration with options:** ```yaml name: llama-model backend: llama parameters: model: model.gguf options: - use_jinja:true - context_shift:true - cache_ram:4096 - parallel:2 - fit_params:true - fit_target:1024 - slot_prompt_similarity:0.5 ``` **Note:** The `parallel` option can also be set via the `LLAMACPP_PARALLEL` environment variable, and `grpc_servers` can be set via the `LLAMACPP_GRPC_SERVERS` environment variable. Options specified in the YAML file take precedence over environment variables. #### Reference - [llama](https://github.com/ggerganov/llama.cpp) ### exllama/2 [Exllama](https://github.com/turboderp/exllama) is a "A more memory-efficient rewrite of the HF transformers implementation of Llama for use with quantized weights". Both `exllama` and `exllama2` are supported. #### Model setup Download the model as a folder inside the `model ` directory and create a YAML file specifying the `exllama` backend. For instance with the `TheBloke/WizardLM-7B-uncensored-GPTQ` model: ``` $ git lfs install $ cd models && git clone https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GPTQ $ ls models/ .keep WizardLM-7B-uncensored-GPTQ/ exllama.yaml $ cat models/exllama.yaml name: exllama parameters: model: WizardLM-7B-uncensored-GPTQ backend: exllama ``` Test with: ```bash curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "exllama", "messages": [{"role": "user", "content": "How are you?"}], "temperature": 0.1 }' ``` ### vLLM [vLLM](https://github.com/vllm-project/vllm) is a fast and easy-to-use library for LLM inference. LocalAI has a built-in integration with vLLM, and it can be used to run models. You can check out `vllm` performance [here](https://github.com/vllm-project/vllm#performance). #### Setup Create a YAML file for the model you want to use with `vllm`. To setup a model, you need to just specify the model name in the YAML config file: ```yaml name: vllm backend: vllm parameters: model: "facebook/opt-125m" ``` The backend will automatically download the required files in order to run the model. #### Usage Use the `completions` endpoint by specifying the `vllm` backend: ``` curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{ "model": "vllm", "prompt": "Hello, my name is", "temperature": 0.1, "top_p": 0.1 }' ``` ### Transformers [Transformers](https://huggingface.co/docs/transformers/index) is a State-of-the-art Machine Learning library for PyTorch, TensorFlow, and JAX. LocalAI has a built-in integration with Transformers, and it can be used to run models. This is an extra backend - in the container images (the `extra` images already contains python dependencies for Transformers) is already available and there is nothing to do for the setup. #### Setup Create a YAML file for the model you want to use with `transformers`. To setup a model, you need to just specify the model name in the YAML config file: ```yaml name: transformers backend: transformers parameters: model: "facebook/opt-125m" type: AutoModelForCausalLM quantization: bnb_4bit # One of: bnb_8bit, bnb_4bit, xpu_4bit, xpu_8bit (optional) ``` The backend will automatically download the required files in order to run the model. #### Parameters ##### Type | Type | Description | | --- | --- | | `AutoModelForCausalLM` | `AutoModelForCausalLM` is a model that can be used to generate sequences. Use it for NVIDIA CUDA and Intel GPU with Intel Extensions for Pytorch acceleration | | `OVModelForCausalLM` | for Intel CPU/GPU/NPU OpenVINO Text Generation models | | `OVModelForFeatureExtraction` | for Intel CPU/GPU/NPU OpenVINO Embedding acceleration | | N/A | Defaults to `AutoModel` | - `OVModelForCausalLM` requires OpenVINO IR [Text Generation](https://huggingface.co/models?library=openvino&pipeline_tag=text-generation) models from Hugging face - `OVModelForFeatureExtraction` works with any Safetensors Transformer [Feature Extraction](https://huggingface.co/models?pipeline_tag=feature-extraction&library=transformers,safetensors) model from Huggingface (Embedding Model) Please note that streaming is currently not implemente in `AutoModelForCausalLM` for Intel GPU. AMD GPU support is not implemented. Although AMD CPU is not officially supported by OpenVINO there are reports that it works: YMMV. ##### Embeddings Use `embeddings: true` if the model is an embedding model ##### Inference device selection Transformer backend tries to automatically select the best device for inference, anyway you can override the decision manually overriding with the `main_gpu` parameter. | Inference Engine | Applicable Values | | --- | --- | | CUDA | `cuda`, `cuda.X` where X is the GPU device like in `nvidia-smi -L` output | | OpenVINO | Any applicable value from [Inference Modes](https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes.html) like `AUTO`,`CPU`,`GPU`,`NPU`,`MULTI`,`HETERO` | Example for CUDA: `main_gpu: cuda.0` Example for OpenVINO: `main_gpu: AUTO:-CPU` This parameter applies to both Text Generation and Feature Extraction (i.e. Embeddings) models. ##### Inference Precision Transformer backend automatically select the fastest applicable inference precision according to the device support. CUDA backend can manually enable *bfloat16* if your hardware support it with the following parameter: `f16: true` ##### Quantization | Quantization | Description | | --- | --- | | `bnb_8bit` | 8-bit quantization | | `bnb_4bit` | 4-bit quantization | | `xpu_8bit` | 8-bit quantization for Intel XPUs | | `xpu_4bit` | 4-bit quantization for Intel XPUs | ##### Trust Remote Code Some models like Microsoft Phi-3 requires external code than what is provided by the transformer library. By default it is disabled for security. It can be manually enabled with: `trust_remote_code: true` ##### Maximum Context Size Maximum context size in bytes can be specified with the parameter: `context_size`. Do not use values higher than what your model support. Usage example: `context_size: 8192` ##### Auto Prompt Template Usually chat template is defined by the model author in the `tokenizer_config.json` file. To enable it use the `use_tokenizer_template: true` parameter in the `template` section. Usage example: ``` template: use_tokenizer_template: true ``` ##### Custom Stop Words Stopwords are usually defined in `tokenizer_config.json` file. They can be overridden with the `stopwords` parameter in case of need like in llama3-Instruct model. Usage example: ``` stopwords: - "<|eot_id|>" - "<|end_of_text|>" ``` #### Usage Use the `completions` endpoint by specifying the `transformers` model: ``` curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{ "model": "transformers", "prompt": "Hello, my name is", "temperature": 0.1, "top_p": 0.1 }' ``` #### Examples ##### OpenVINO A model configuration file for openvion and starling model: ```yaml name: starling-openvino backend: transformers parameters: model: fakezeta/Starling-LM-7B-beta-openvino-int8 context_size: 8192 threads: 6 f16: true type: OVModelForCausalLM stopwords: - <|end_of_turn|> - <|endoftext|> prompt_cache_path: "cache" prompt_cache_all: true template: chat_message: | {{if eq .RoleName "system"}}{{.Content}}<|end_of_turn|>{{end}}{{if eq .RoleName "assistant"}}<|end_of_turn|>GPT4 Correct Assistant: {{.Content}}<|end_of_turn|>{{end}}{{if eq .RoleName "user"}}GPT4 Correct User: {{.Content}}{{end}} chat: | {{.Input}}<|end_of_turn|>GPT4 Correct Assistant: completion: | {{.Input}} ```