--- title: "Docker Installation" description: "Install LocalAI using Docker containers - the recommended installation method" weight: 1 url: '/installation/docker/' --- {{% notice tip %}} **Recommended Installation Method** Docker is the recommended way to install LocalAI and provides the easiest setup experience. {{% /notice %}} LocalAI provides Docker images that work with Docker, Podman, and other container engines. These images are available on [Docker Hub](https://hub.docker.com/r/localai/localai) and [Quay.io](https://quay.io/repository/go-skynet/local-ai). ## Prerequisites Before you begin, ensure you have Docker or Podman installed: - [Install Docker Desktop](https://docs.docker.com/get-docker/) (Mac, Windows, Linux) - [Install Podman](https://podman.io/getting-started/installation) (Linux alternative) - [Install Docker Engine](https://docs.docker.com/engine/install/) (Linux servers) ## Quick Start The fastest way to get started is with the CPU image: ```bash docker run -p 8080:8080 --name local-ai -ti localai/localai:latest ``` This will: - Start LocalAI (you'll need to install models separately) - Make the API available at `http://localhost:8080` {{% notice tip %}} **Docker Run vs Docker Start** - `docker run` creates and starts a new container. If a container with the same name already exists, this command will fail. - `docker start` starts an existing container that was previously created with `docker run`. If you've already run LocalAI before and want to start it again, use: `docker start -i local-ai` {{% /notice %}} ## Image Types LocalAI provides several image types to suit different needs: ### Standard Images Standard images don't include pre-configured models. Use these if you want to configure models manually. #### CPU Image ```bash docker run -ti --name local-ai -p 8080:8080 localai/localai:latest ``` #### GPU Images **NVIDIA CUDA 13:** ```bash docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-13 ``` **NVIDIA CUDA 12:** ```bash docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12 ``` **NVIDIA CUDA 11:** ```bash docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-11 ``` **AMD GPU (ROCm):** ```bash docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-gpu-hipblas ``` **Intel GPU:** ```bash docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-intel ``` **Vulkan:** ```bash docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-vulkan ``` **NVIDIA Jetson (L4T ARM64):** CUDA 12 (for Nvidia AGX Orin and similar platforms): ```bash docker run -ti --name local-ai -p 8080:8080 --runtime nvidia --gpus all localai/localai:latest-nvidia-l4t-arm64 ``` CUDA 13 (for Nvidia DGX Spark): ```bash docker run -ti --name local-ai -p 8080:8080 --runtime nvidia --gpus all localai/localai:latest-nvidia-l4t-arm64-cuda-13 ``` ### All-in-One (AIO) Images **Recommended for beginners** - These images come pre-configured with models and backends, ready to use immediately. #### CPU Image ```bash docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu ``` #### GPU Images **NVIDIA CUDA 13:** ```bash docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-13 ``` **NVIDIA CUDA 12:** ```bash docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-12 ``` **NVIDIA CUDA 11:** ```bash docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-11 ``` **AMD GPU (ROCm):** ```bash docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-aio-gpu-hipblas ``` **Intel GPU:** ```bash docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-gpu-intel ``` ## Using Docker Compose For a more manageable setup, especially with persistent volumes, use Docker Compose: ```yaml version: "3.9" services: api: image: localai/localai:latest-aio-cpu # For GPU support, use one of: # image: localai/localai:latest-aio-gpu-nvidia-cuda-13 # image: localai/localai:latest-aio-gpu-nvidia-cuda-12 # image: localai/localai:latest-aio-gpu-nvidia-cuda-11 # image: localai/localai:latest-aio-gpu-hipblas # image: localai/localai:latest-aio-gpu-intel healthcheck: test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"] interval: 1m timeout: 20m retries: 5 ports: - 8080:8080 environment: - DEBUG=true volumes: - ./models:/models:cached # For NVIDIA GPUs, uncomment: # deploy: # resources: # reservations: # devices: # - driver: nvidia # count: 1 # capabilities: [gpu] ``` Save this as `docker-compose.yml` and run: ```bash docker compose up -d ``` ## Persistent Storage To persist models and configurations, mount a volume: ```bash docker run -ti --name local-ai -p 8080:8080 \ -v $PWD/models:/models \ localai/localai:latest-aio-cpu ``` Or use a named volume: ```bash docker volume create localai-models docker run -ti --name local-ai -p 8080:8080 \ -v localai-models:/models \ localai/localai:latest-aio-cpu ``` ## What's Included in AIO Images All-in-One images come pre-configured with: - **Text Generation**: LLM models for chat and completion - **Image Generation**: Stable Diffusion models - **Text to Speech**: TTS models - **Speech to Text**: Whisper models - **Embeddings**: Vector embedding models - **Function Calling**: Support for OpenAI-compatible function calling The AIO images use OpenAI-compatible model names (like `gpt-4`, `gpt-4-vision-preview`) but are backed by open-source models. See the [container images documentation](/getting-started/container-images/#all-in-one-images) for the complete mapping. ## Next Steps After installation: 1. Access the WebUI at `http://localhost:8080` 2. Check available models: `curl http://localhost:8080/v1/models` 3. [Install additional models](/getting-started/models/) 4. [Try out examples](/getting-started/try-it-out/) ## Advanced Configuration For detailed information about: - All available image tags and versions - Advanced Docker configuration options - Custom image builds - Backend management See the [Container Images documentation](/getting-started/container-images/). ## Troubleshooting ### Container won't start - Check Docker is running: `docker ps` - Check port 8080 is available: `netstat -an | grep 8080` (Linux/Mac) - View logs: `docker logs local-ai` ### GPU not detected - Ensure Docker has GPU access: `docker run --rm --gpus all nvidia/cuda:12.0.0-base-ubuntu22.04 nvidia-smi` - For NVIDIA: Install [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) - For AMD: Ensure devices are accessible: `ls -la /dev/kfd /dev/dri` ### Models not downloading - Check internet connection - Verify disk space: `df -h` - Check Docker logs for errors: `docker logs local-ai` ## See Also - [Container Images Reference](/getting-started/container-images/) - Complete image reference - [Install Models](/getting-started/models/) - Install and configure models - [GPU Acceleration](/features/gpu-acceleration/) - GPU setup and optimization - [Kubernetes Installation](/installation/kubernetes/) - Deploy on Kubernetes