mirror of
https://github.com/mudler/LocalAI.git
synced 2025-12-27 16:39:16 -05:00
258 lines
9.0 KiB
Python
258 lines
9.0 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
This is an extra gRPC server of LocalAI for Chatterbox TTS
|
|
"""
|
|
from concurrent import futures
|
|
import time
|
|
import argparse
|
|
import signal
|
|
import sys
|
|
import os
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
|
|
import torch
|
|
import torchaudio as ta
|
|
from chatterbox.tts import ChatterboxTTS
|
|
from chatterbox.mtl_tts import ChatterboxMultilingualTTS
|
|
import grpc
|
|
import tempfile
|
|
|
|
def is_float(s):
|
|
"""Check if a string can be converted to float."""
|
|
try:
|
|
float(s)
|
|
return True
|
|
except ValueError:
|
|
return False
|
|
def is_int(s):
|
|
"""Check if a string can be converted to int."""
|
|
try:
|
|
int(s)
|
|
return True
|
|
except ValueError:
|
|
return False
|
|
|
|
def split_text_at_word_boundary(text, max_length=250):
|
|
"""
|
|
Split text at word boundaries without truncating words.
|
|
Returns a list of text chunks.
|
|
"""
|
|
if not text or len(text) <= max_length:
|
|
return [text]
|
|
|
|
chunks = []
|
|
words = text.split()
|
|
current_chunk = ""
|
|
|
|
for word in words:
|
|
# Check if adding this word would exceed the limit
|
|
if len(current_chunk) + len(word) + 1 <= max_length:
|
|
if current_chunk:
|
|
current_chunk += " " + word
|
|
else:
|
|
current_chunk = word
|
|
else:
|
|
# If current chunk is not empty, add it to chunks
|
|
if current_chunk:
|
|
chunks.append(current_chunk)
|
|
current_chunk = word
|
|
else:
|
|
# If a single word is longer than max_length, we have to include it anyway
|
|
chunks.append(word)
|
|
current_chunk = ""
|
|
|
|
# Add the last chunk if it's not empty
|
|
if current_chunk:
|
|
chunks.append(current_chunk)
|
|
|
|
return chunks
|
|
|
|
def merge_audio_files(audio_files, output_path, sample_rate):
|
|
"""
|
|
Merge multiple audio files into a single audio file.
|
|
"""
|
|
if not audio_files:
|
|
return
|
|
|
|
if len(audio_files) == 1:
|
|
# If only one file, just copy it
|
|
import shutil
|
|
shutil.copy2(audio_files[0], output_path)
|
|
return
|
|
|
|
# Load all audio files
|
|
waveforms = []
|
|
for audio_file in audio_files:
|
|
waveform, sr = ta.load(audio_file)
|
|
if sr != sample_rate:
|
|
# Resample if necessary
|
|
resampler = ta.transforms.Resample(sr, sample_rate)
|
|
waveform = resampler(waveform)
|
|
waveforms.append(waveform)
|
|
|
|
# Concatenate all waveforms
|
|
merged_waveform = torch.cat(waveforms, dim=1)
|
|
|
|
# Save the merged audio
|
|
ta.save(output_path, merged_waveform, sample_rate)
|
|
|
|
# Clean up temporary files
|
|
for audio_file in audio_files:
|
|
if os.path.exists(audio_file):
|
|
os.remove(audio_file)
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
"""
|
|
BackendServicer is the class that implements the gRPC service
|
|
"""
|
|
def Health(self, request, context):
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
def LoadModel(self, request, context):
|
|
|
|
# Get device
|
|
# device = "cuda" if request.CUDA else "cpu"
|
|
if torch.cuda.is_available():
|
|
print("CUDA is available", file=sys.stderr)
|
|
device = "cuda"
|
|
else:
|
|
print("CUDA is not available", file=sys.stderr)
|
|
device = "cpu"
|
|
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
|
if mps_available:
|
|
device = "mps"
|
|
if not torch.cuda.is_available() and request.CUDA:
|
|
return backend_pb2.Result(success=False, message="CUDA is not available")
|
|
|
|
|
|
options = request.Options
|
|
|
|
# empty dict
|
|
self.options = {}
|
|
|
|
# The options are a list of strings in this form optname:optvalue
|
|
# We are storing all the options in a dict so we can use it later when
|
|
# generating the images
|
|
for opt in options:
|
|
if ":" not in opt:
|
|
continue
|
|
key, value = opt.split(":")
|
|
# if value is a number, convert it to the appropriate type
|
|
if is_float(value):
|
|
value = float(value)
|
|
elif is_int(value):
|
|
value = int(value)
|
|
elif value.lower() in ["true", "false"]:
|
|
value = value.lower() == "true"
|
|
self.options[key] = value
|
|
|
|
self.AudioPath = None
|
|
|
|
if os.path.isabs(request.AudioPath):
|
|
self.AudioPath = request.AudioPath
|
|
elif request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
|
|
# get base path of modelFile
|
|
modelFileBase = os.path.dirname(request.ModelFile)
|
|
# modify LoraAdapter to be relative to modelFileBase
|
|
self.AudioPath = os.path.join(modelFileBase, request.AudioPath)
|
|
try:
|
|
print("Preparing models, please wait", file=sys.stderr)
|
|
if "multilingual" in self.options:
|
|
# remove key from options
|
|
del self.options["multilingual"]
|
|
self.model = ChatterboxMultilingualTTS.from_pretrained(device=device)
|
|
else:
|
|
self.model = ChatterboxTTS.from_pretrained(device=device)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
# Implement your logic here for the LoadModel service
|
|
# Replace this with your desired response
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
def TTS(self, request, context):
|
|
try:
|
|
kwargs = {}
|
|
|
|
if "language" in self.options:
|
|
kwargs["language_id"] = self.options["language"]
|
|
if self.AudioPath is not None:
|
|
kwargs["audio_prompt_path"] = self.AudioPath
|
|
|
|
# add options to kwargs
|
|
kwargs.update(self.options)
|
|
|
|
# Check if text exceeds 250 characters
|
|
# (chatterbox does not support long text)
|
|
# https://github.com/resemble-ai/chatterbox/issues/60
|
|
# https://github.com/resemble-ai/chatterbox/issues/110
|
|
if len(request.text) > 250:
|
|
# Split text at word boundaries
|
|
text_chunks = split_text_at_word_boundary(request.text, max_length=250)
|
|
print(f"Splitting text into chunks of 250 characters: {len(text_chunks)}", file=sys.stderr)
|
|
# Generate audio for each chunk
|
|
temp_audio_files = []
|
|
for i, chunk in enumerate(text_chunks):
|
|
# Generate audio for this chunk
|
|
wav = self.model.generate(chunk, **kwargs)
|
|
|
|
# Create temporary file for this chunk
|
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
|
|
temp_file.close()
|
|
ta.save(temp_file.name, wav, self.model.sr)
|
|
temp_audio_files.append(temp_file.name)
|
|
|
|
# Merge all audio files
|
|
merge_audio_files(temp_audio_files, request.dst, self.model.sr)
|
|
else:
|
|
# Generate audio using ChatterboxTTS for short text
|
|
wav = self.model.generate(request.text, **kwargs)
|
|
# Save the generated audio
|
|
ta.save(request.dst, wav, self.model.sr)
|
|
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(success=True)
|
|
|
|
def serve(address):
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
|
|
options=[
|
|
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
|
|
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
|
|
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
|
|
])
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
server.add_insecure_port(address)
|
|
server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
# Define the signal handler function
|
|
def signal_handler(sig, frame):
|
|
print("Received termination signal. Shutting down...")
|
|
server.stop(0)
|
|
sys.exit(0)
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
try:
|
|
while True:
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
except KeyboardInterrupt:
|
|
server.stop(0)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
serve(args.addr)
|