Files
LocalAI/.env
Ettore Di Giacinto 98e5291afc feat: refactor build process, drop embedded backends (#5875)
* feat: split remaining backends and drop embedded backends

- Drop silero-vad, huggingface, and stores backend from embedded
  binaries
- Refactor Makefile and Dockerfile to avoid building grpc backends
- Drop golang code that was used to embed backends
- Simplify building by using goreleaser

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* chore(gallery): be specific with llama-cpp backend templates

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* chore(docs): update

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* chore(ci): minor fixes

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* chore: drop all ffmpeg references

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fix: run protogen-go

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Always enable p2p mode

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Update gorelease file

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fix(stores): do not always load

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Fix linting issues

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Simplify

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Mac OS fixup

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-07-22 16:31:04 +02:00

103 lines
3.8 KiB
Bash

## Set number of threads.
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
# LOCALAI_THREADS=14
## Specify a different bind address (defaults to ":8080")
# LOCALAI_ADDRESS=127.0.0.1:8080
## Default models context size
# LOCALAI_CONTEXT_SIZE=512
#
## Define galleries.
## models will to install will be visible in `/models/available`
# LOCALAI_GALLERIES=[{"name":"localai", "url":"github:mudler/LocalAI/gallery/index.yaml@master"}]
## CORS settings
# LOCALAI_CORS=true
# LOCALAI_CORS_ALLOW_ORIGINS=*
## Default path for models
#
# LOCALAI_MODELS_PATH=/models
## Enable debug mode
# LOCALAI_LOG_LEVEL=debug
## Disables COMPEL (Diffusers)
# COMPEL=0
## Enable/Disable single backend (useful if only one GPU is available)
# LOCALAI_SINGLE_ACTIVE_BACKEND=true
# Forces shutdown of the backends if busy (only if LOCALAI_SINGLE_ACTIVE_BACKEND is set)
# LOCALAI_FORCE_BACKEND_SHUTDOWN=true
## Specify a build type. Available: cublas, openblas, clblas.
## cuBLAS: This is a GPU-accelerated version of the complete standard BLAS (Basic Linear Algebra Subprograms) library. It's provided by Nvidia and is part of their CUDA toolkit.
## OpenBLAS: This is an open-source implementation of the BLAS library that aims to provide highly optimized code for various platforms. It includes support for multi-threading and can be compiled to use hardware-specific features for additional performance. OpenBLAS can run on many kinds of hardware, including CPUs from Intel, AMD, and ARM.
## clBLAS: This is an open-source implementation of the BLAS library that uses OpenCL, a framework for writing programs that execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors. clBLAS is designed to take advantage of the parallel computing power of GPUs but can also run on any hardware that supports OpenCL. This includes hardware from different vendors like Nvidia, AMD, and Intel.
# BUILD_TYPE=openblas
## Uncomment and set to true to enable rebuilding from source
# REBUILD=true
## Path where to store generated images
# LOCALAI_IMAGE_PATH=/tmp/generated/images
## Specify a default upload limit in MB (whisper)
# LOCALAI_UPLOAD_LIMIT=15
## List of external GRPC backends (note on the container image this variable is already set to use extra backends available in extra/)
# LOCALAI_EXTERNAL_GRPC_BACKENDS=my-backend:127.0.0.1:9000,my-backend2:/usr/bin/backend.py
### Advanced settings ###
### Those are not really used by LocalAI, but from components in the stack ###
##
### Preload libraries
# LD_PRELOAD=
### Huggingface cache for models
# HUGGINGFACE_HUB_CACHE=/usr/local/huggingface
### Python backends GRPC max workers
### Default number of workers for GRPC Python backends.
### This actually controls wether a backend can process multiple requests or not.
# PYTHON_GRPC_MAX_WORKERS=1
### Define the number of parallel LLAMA.cpp workers (Defaults to 1)
# LLAMACPP_PARALLEL=1
### Define a list of GRPC Servers for llama-cpp workers to distribute the load
# https://github.com/ggerganov/llama.cpp/pull/6829
# https://github.com/ggerganov/llama.cpp/blob/master/tools/rpc/README.md
# LLAMACPP_GRPC_SERVERS=""
### Enable to run parallel requests
# LOCALAI_PARALLEL_REQUESTS=true
# Enable to allow p2p mode
# LOCALAI_P2P=true
# Enable to use federated mode
# LOCALAI_FEDERATED=true
# Enable to start federation server
# FEDERATED_SERVER=true
# Define to use federation token
# TOKEN=""
### Watchdog settings
###
# Enables watchdog to kill backends that are inactive for too much time
# LOCALAI_WATCHDOG_IDLE=true
#
# Time in duration format (e.g. 1h30m) after which a backend is considered idle
# LOCALAI_WATCHDOG_IDLE_TIMEOUT=5m
#
# Enables watchdog to kill backends that are busy for too much time
# LOCALAI_WATCHDOG_BUSY=true
#
# Time in duration format (e.g. 1h30m) after which a backend is considered busy
# LOCALAI_WATCHDOG_BUSY_TIMEOUT=5m