Files
LocalAI/backend/README.md
Richard Palethorpe e6ba26c3e7 chore: Update to Ubuntu24.04 (cont #7423) (#7769)
* ci(workflows): bump GitHub Actions images to Ubuntu 24.04

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* ci(workflows): remove CUDA 11.x support from GitHub Actions (incompatible with ubuntu:24.04)

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* ci(workflows): bump GitHub Actions CUDA support to 12.9

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* build(docker): bump base image to ubuntu:24.04 and adjust Vulkan SDK/packages

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* fix(backend): correct context paths for Python backends in workflows, Makefile and Dockerfile

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* chore(make): disable parallel backend builds to avoid race conditions

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* chore(make): export CUDA_MAJOR_VERSION and CUDA_MINOR_VERSION for override

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* build(backend): update backend Dockerfiles to Ubuntu 24.04

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* chore(backend): add ROCm env vars and default AMDGPU_TARGETS for hipBLAS builds

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* chore(chatterbox): bump ROCm PyTorch to 2.9.1+rocm6.4 and update index URL; align hipblas requirements

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* chore: add local-ai-launcher to .gitignore

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* ci(workflows): fix backends GitHub Actions workflows after rebase

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* build(docker): use build-time UBUNTU_VERSION variable

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* chore(docker): remove libquadmath0 from requirements-stage base image

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* chore(make): add backends/vllm to .NOTPARALLEL to prevent parallel builds

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* fix(docker): correct CUDA installation steps in backend Dockerfiles

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* chore(backend): update ROCm to 6.4 and align Python hipblas requirements

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* ci(workflows): switch GitHub Actions runners to Ubuntu-24.04 for CUDA on arm64 builds

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* build(docker): update base image and backend Dockerfiles for Ubuntu 24.04 compatibility on arm64

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* build(backend): increase timeout for uv installs behind slow networks on backend/Dockerfile.python

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* ci(workflows): switch GitHub Actions runners to Ubuntu-24.04 for vibevoice backend

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* ci(workflows): fix failing GitHub Actions runners

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>

* fix: Allow FROM_SOURCE to be unset, use upstream Intel images etc.

Signed-off-by: Richard Palethorpe <io@richiejp.com>

* chore(build): rm all traces of CUDA 11

Signed-off-by: Richard Palethorpe <io@richiejp.com>

* chore(build): Add Ubuntu codename as an argument

Signed-off-by: Richard Palethorpe <io@richiejp.com>

---------

Signed-off-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>
Signed-off-by: Richard Palethorpe <io@richiejp.com>
Co-authored-by: Alessandro Sturniolo <alessandro.sturniolo@gmail.com>
2026-01-06 15:26:42 +01:00

7.4 KiB

LocalAI Backend Architecture

This directory contains the core backend infrastructure for LocalAI, including the gRPC protocol definition, multi-language Dockerfiles, and language-specific backend implementations.

Overview

LocalAI uses a unified gRPC-based architecture that allows different programming languages to implement AI backends while maintaining consistent interfaces and capabilities. The backend system supports multiple hardware acceleration targets and provides a standardized way to integrate various AI models and frameworks.

Architecture Components

1. Protocol Definition (backend.proto)

The backend.proto file defines the gRPC service interface that all backends must implement. This ensures consistency across different language implementations and provides a contract for communication between LocalAI core and backend services.

Core Services

  • Text Generation: Predict, PredictStream for LLM inference
  • Embeddings: Embedding for text vectorization
  • Image Generation: GenerateImage for stable diffusion and image models
  • Audio Processing: AudioTranscription, TTS, SoundGeneration
  • Video Generation: GenerateVideo for video synthesis
  • Object Detection: Detect for computer vision tasks
  • Vector Storage: StoresSet, StoresGet, StoresFind for RAG operations
  • Reranking: Rerank for document relevance scoring
  • Voice Activity Detection: VAD for audio segmentation

Key Message Types

  • PredictOptions: Comprehensive configuration for text generation
  • ModelOptions: Model loading and configuration parameters
  • Result: Standardized response format
  • StatusResponse: Backend health and memory usage information

2. Multi-Language Dockerfiles

The backend system provides language-specific Dockerfiles that handle the build environment and dependencies for different programming languages:

  • Dockerfile.python
  • Dockerfile.golang
  • Dockerfile.llama-cpp

3. Language-Specific Implementations

Python Backends (python/)

  • transformers: Hugging Face Transformers framework
  • vllm: High-performance LLM inference
  • mlx: Apple Silicon optimization
  • diffusers: Stable Diffusion models
  • Audio: bark, coqui, faster-whisper, kitten-tts
  • Vision: mlx-vlm, rfdetr
  • Specialized: rerankers, chatterbox, kokoro

Go Backends (go/)

  • whisper: OpenAI Whisper speech recognition in Go with GGML cpp backend (whisper.cpp)
  • stablediffusion-ggml: Stable Diffusion in Go with GGML Cpp backend
  • huggingface: Hugging Face model integration
  • piper: Text-to-speech synthesis Golang with C bindings using rhaspy/piper
  • bark-cpp: Bark TTS models Golang with Cpp bindings
  • local-store: Vector storage backend

C++ Backends (cpp/)

  • llama-cpp: Llama.cpp integration
  • grpc: GRPC utilities and helpers

Hardware Acceleration Support

CUDA (NVIDIA)

  • Versions: CUDA 12.x, 13.x
  • Features: cuBLAS, cuDNN, TensorRT optimization
  • Targets: x86_64, ARM64 (Jetson)

ROCm (AMD)

  • Features: HIP, rocBLAS, MIOpen
  • Targets: AMD GPUs with ROCm support

Intel

  • Features: oneAPI, Intel Extension for PyTorch
  • Targets: Intel GPUs, XPUs, CPUs

Vulkan

  • Features: Cross-platform GPU acceleration
  • Targets: Windows, Linux, Android, macOS

Apple Silicon

  • Features: MLX framework, Metal Performance Shaders
  • Targets: M1/M2/M3 Macs

Backend Registry (index.yaml)

The index.yaml file serves as a central registry for all available backends, providing:

  • Metadata: Name, description, license, icons
  • Capabilities: Hardware targets and optimization profiles
  • Tags: Categorization for discovery
  • URLs: Source code and documentation links

Building Backends

Prerequisites

  • Docker with multi-architecture support
  • Appropriate hardware drivers (CUDA, ROCm, etc.)
  • Build tools (make, cmake, compilers)

Build Commands

Example of build commands with Docker

# Build Python backend
docker build -f backend/Dockerfile.python \
  --build-arg BACKEND=transformers \
  --build-arg BUILD_TYPE=cublas12 \
  --build-arg CUDA_MAJOR_VERSION=12 \
  --build-arg CUDA_MINOR_VERSION=0 \
  -t localai-backend-transformers .

# Build Go backend
docker build -f backend/Dockerfile.golang \
  --build-arg BACKEND=whisper \
  --build-arg BUILD_TYPE=cpu \
  -t localai-backend-whisper .

# Build C++ backend
docker build -f backend/Dockerfile.llama-cpp \
  --build-arg BACKEND=llama-cpp \
  --build-arg BUILD_TYPE=cublas12 \
  -t localai-backend-llama-cpp .

For ARM64/Mac builds, docker can't be used, and the makefile in the respective backend has to be used.

Build Types

  • cpu: CPU-only optimization
  • cublas12, cublas13: CUDA 12.x, 13.x with cuBLAS
  • hipblas: ROCm with rocBLAS
  • intel: Intel oneAPI optimization
  • vulkan: Vulkan-based acceleration
  • metal: Apple Metal optimization

Backend Development

Creating a New Backend

  1. Choose Language: Select Python, Go, or C++ based on requirements
  2. Implement Interface: Implement the gRPC service defined in backend.proto
  3. Add Dependencies: Create appropriate requirements files
  4. Configure Build: Set up Dockerfile and build scripts
  5. Register Backend: Add entry to index.yaml
  6. Test Integration: Verify gRPC communication and functionality

Backend Structure

backend-name/
├── backend.py/go/cpp    # Main implementation
├── requirements.txt      # Dependencies
├── Dockerfile           # Build configuration
├── install.sh           # Installation script
├── run.sh              # Execution script
├── test.sh             # Test script
└── README.md           # Backend documentation

Required gRPC Methods

At minimum, backends must implement:

  • Health() - Service health check
  • LoadModel() - Model loading and initialization
  • Predict() - Main inference endpoint
  • Status() - Backend status and metrics

Integration with LocalAI Core

Backends communicate with LocalAI core through gRPC:

  1. Service Discovery: Core discovers available backends
  2. Model Loading: Core requests model loading via LoadModel
  3. Inference: Core sends requests via Predict or specialized endpoints
  4. Streaming: Core handles streaming responses for real-time generation
  5. Monitoring: Core tracks backend health and performance

Performance Optimization

Memory Management

  • Model Caching: Efficient model loading and caching
  • Batch Processing: Optimize for multiple concurrent requests
  • Memory Pinning: GPU memory optimization for CUDA/ROCm

Hardware Utilization

  • Multi-GPU: Support for tensor parallelism
  • Mixed Precision: FP16/BF16 for memory efficiency
  • Kernel Fusion: Optimized CUDA/ROCm kernels

Troubleshooting

Common Issues

  1. GRPC Connection: Verify backend service is running and accessible
  2. Model Loading: Check model paths and dependencies
  3. Hardware Detection: Ensure appropriate drivers and libraries
  4. Memory Issues: Monitor GPU memory usage and model sizes

Contributing

When contributing to the backend system:

  1. Follow Protocol: Implement the exact gRPC interface
  2. Add Tests: Include comprehensive test coverage
  3. Document: Provide clear usage examples
  4. Optimize: Consider performance and resource usage
  5. Validate: Test across different hardware targets