Files
LocalAI/core/http/endpoints/openai/inference.go
Ettore Di Giacinto d7f9f3ac93 feat: add support to logitbias and logprobs (#7283)
* feat: add support to logprobs in results

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat: add support to logitbias

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-11-16 13:27:36 +01:00

116 lines
3.2 KiB
Go

package openai
import (
"encoding/json"
"github.com/mudler/LocalAI/core/backend"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
model "github.com/mudler/LocalAI/pkg/model"
)
func ComputeChoices(
req *schema.OpenAIRequest,
predInput string,
config *config.ModelConfig,
bcl *config.ModelConfigLoader,
o *config.ApplicationConfig,
loader *model.ModelLoader,
cb func(string, *[]schema.Choice),
tokenCallback func(string, backend.TokenUsage) bool) ([]schema.Choice, backend.TokenUsage, error) {
n := req.N // number of completions to return
result := []schema.Choice{}
if n == 0 {
n = 1
}
images := []string{}
for _, m := range req.Messages {
images = append(images, m.StringImages...)
}
videos := []string{}
for _, m := range req.Messages {
videos = append(videos, m.StringVideos...)
}
audios := []string{}
for _, m := range req.Messages {
audios = append(audios, m.StringAudios...)
}
// Serialize tools and tool_choice to JSON strings
toolsJSON := ""
if len(req.Tools) > 0 {
toolsBytes, err := json.Marshal(req.Tools)
if err == nil {
toolsJSON = string(toolsBytes)
}
}
toolChoiceJSON := ""
if req.ToolsChoice != nil {
toolChoiceBytes, err := json.Marshal(req.ToolsChoice)
if err == nil {
toolChoiceJSON = string(toolChoiceBytes)
}
}
// Extract logprobs from request
// According to OpenAI API: logprobs is boolean, top_logprobs (0-20) controls how many top tokens per position
var logprobs *int
var topLogprobs *int
if req.Logprobs.IsEnabled() {
// If logprobs is enabled, use top_logprobs if provided, otherwise default to 1
if req.TopLogprobs != nil {
topLogprobs = req.TopLogprobs
// For backend compatibility, set logprobs to the top_logprobs value
logprobs = req.TopLogprobs
} else {
// Default to 1 if logprobs is true but top_logprobs not specified
val := 1
logprobs = &val
topLogprobs = &val
}
}
// Extract logit_bias from request
// According to OpenAI API: logit_bias is a map of token IDs (as strings) to bias values (-100 to 100)
var logitBias map[string]float64
if len(req.LogitBias) > 0 {
logitBias = req.LogitBias
}
// get the model function to call for the result
predFunc, err := backend.ModelInference(
req.Context, predInput, req.Messages, images, videos, audios, loader, config, bcl, o, tokenCallback, toolsJSON, toolChoiceJSON, logprobs, topLogprobs, logitBias)
if err != nil {
return result, backend.TokenUsage{}, err
}
tokenUsage := backend.TokenUsage{}
for i := 0; i < n; i++ {
prediction, err := predFunc()
if err != nil {
return result, backend.TokenUsage{}, err
}
tokenUsage.Prompt += prediction.Usage.Prompt
tokenUsage.Completion += prediction.Usage.Completion
tokenUsage.TimingPromptProcessing += prediction.Usage.TimingPromptProcessing
tokenUsage.TimingTokenGeneration += prediction.Usage.TimingTokenGeneration
finetunedResponse := backend.Finetune(*config, predInput, prediction.Response)
cb(finetunedResponse, &result)
// Add logprobs to the last choice if present
if prediction.Logprobs != nil && len(result) > 0 {
result[len(result)-1].Logprobs = prediction.Logprobs
}
//result = append(result, Choice{Text: prediction})
}
return result, tokenUsage, err
}