Files
LocalAI/backend/go/stablediffusion-ggml/gosd.cpp
Richard Palethorpe 0b80167912 chore: ⬆️ Update leejet/stable-diffusion.cpp to 4ff2c8c74bd17c2cfffe3a01be77743fb3efba2f (#7771)
* ⬆️ Update leejet/stable-diffusion.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* fix: Add KL_OPTIMAL scheduler, pass sampler to default scheduler for LCM and fixup other refactorings from upstream

Signed-off-by: Richard Palethorpe <io@richiejp.com>

* Delete backend/go/stablediffusion-ggml/compile_commands.json

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

---------

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Signed-off-by: Richard Palethorpe <io@richiejp.com>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2025-12-29 19:06:35 +01:00

1118 lines
41 KiB
C++

#include "stable-diffusion.h"
#include <cmath>
#include <cstdint>
#define GGML_MAX_NAME 128
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <string>
#include <vector>
#include <map>
#include <filesystem>
#include <algorithm>
#include "gosd.h"
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_STATIC
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#define STB_IMAGE_WRITE_STATIC
#include "stb_image_write.h"
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#define STB_IMAGE_RESIZE_STATIC
#include "stb_image_resize.h"
#include <stdlib.h>
#include <regex>
// Names of the sampler method, same order as enum sample_method in stable-diffusion.h
const char* sample_method_str[] = {
"euler",
"euler_a",
"heun",
"dpm2",
"dpm++2s_a",
"dpm++2m",
"dpm++2mv2",
"ipndm",
"ipndm_v",
"lcm",
"ddim_trailing",
"tcd",
};
static_assert(std::size(sample_method_str) == SAMPLE_METHOD_COUNT, "sample method mismatch");
// Names of the sigma schedule overrides, same order as sample_schedule in stable-diffusion.h
const char* schedulers[] = {
"discrete",
"karras",
"exponential",
"ays",
"gits",
"sgm_uniform",
"simple",
"smoothstep",
"kl_optimal",
"lcm",
};
static_assert(std::size(schedulers) == SCHEDULER_COUNT, "schedulers mismatch");
// New enum string arrays
const char* rng_type_str[] = {
"std_default",
"cuda",
"cpu",
};
static_assert(std::size(rng_type_str) == RNG_TYPE_COUNT, "rng type mismatch");
const char* prediction_str[] = {
"epsilon",
"v",
"edm_v",
"flow",
"flux_flow",
"flux2_flow",
};
static_assert(std::size(prediction_str) == PREDICTION_COUNT, "prediction mismatch");
const char* lora_apply_mode_str[] = {
"auto",
"immediately",
"at_runtime",
};
static_assert(std::size(lora_apply_mode_str) == LORA_APPLY_MODE_COUNT, "lora apply mode mismatch");
constexpr const char* sd_type_str[] = {
"f32", // 0
"f16", // 1
"q4_0", // 2
"q4_1", // 3
nullptr, // 4
nullptr, // 5
"q5_0", // 6
"q5_1", // 7
"q8_0", // 8
"q8_1", // 9
"q2_k", // 10
"q3_k", // 11
"q4_k", // 12
"q5_k", // 13
"q6_k", // 14
"q8_k", // 15
"iq2_xxs", // 16
"iq2_xs", // 17
"iq3_xxs", // 18
"iq1_s", // 19
"iq4_nl", // 20
"iq3_s", // 21
"iq2_s", // 22
"iq4_xs", // 23
"i8", // 24
"i16", // 25
"i32", // 26
"i64", // 27
"f64", // 28
"iq1_m", // 29
"bf16", // 30
nullptr, nullptr, nullptr, nullptr, // 31-34
"tq1_0", // 35
"tq2_0", // 36
nullptr, nullptr, // 37-38
"mxfp4" // 39
};
static_assert(std::size(sd_type_str) == SD_TYPE_COUNT, "sd type mismatch");
sd_ctx_params_t ctx_params;
sd_ctx_t* sd_c;
// Moved from the context (load time) to generation time params
scheduler_t scheduler = SCHEDULER_COUNT;
sample_method_t sample_method = SAMPLE_METHOD_COUNT;
// Storage for embeddings (needs to persist for the lifetime of ctx_params)
static std::vector<sd_embedding_t> embedding_vec;
// Storage for embedding strings (needs to persist as long as embedding_vec references them)
static std::vector<std::string> embedding_strings;
// Storage for LoRAs (needs to persist for the lifetime of generation params)
static std::vector<sd_lora_t> lora_vec;
// Storage for LoRA strings (needs to persist as long as lora_vec references them)
static std::vector<std::string> lora_strings;
// Storage for lora_dir path
static std::string lora_dir_path;
// Build embeddings vector from directory, similar to upstream CLI
static void build_embedding_vec(const char* embedding_dir) {
embedding_vec.clear();
embedding_strings.clear();
if (!embedding_dir || strlen(embedding_dir) == 0) {
return;
}
if (!std::filesystem::exists(embedding_dir) || !std::filesystem::is_directory(embedding_dir)) {
fprintf(stderr, "Embedding directory does not exist or is not a directory: %s\n", embedding_dir);
return;
}
static const std::vector<std::string> valid_ext = {".pt", ".safetensors", ".gguf"};
for (const auto& entry : std::filesystem::directory_iterator(embedding_dir)) {
if (!entry.is_regular_file()) {
continue;
}
auto path = entry.path();
std::string ext = path.extension().string();
bool valid = false;
for (const auto& e : valid_ext) {
if (ext == e) {
valid = true;
break;
}
}
if (!valid) {
continue;
}
std::string name = path.stem().string();
std::string full_path = path.string();
// Store strings in persistent storage
embedding_strings.push_back(name);
embedding_strings.push_back(full_path);
sd_embedding_t item;
item.name = embedding_strings[embedding_strings.size() - 2].c_str();
item.path = embedding_strings[embedding_strings.size() - 1].c_str();
embedding_vec.push_back(item);
fprintf(stderr, "Found embedding: %s -> %s\n", item.name, item.path);
}
fprintf(stderr, "Loaded %zu embeddings from %s\n", embedding_vec.size(), embedding_dir);
}
// Discover LoRA files in directory and build a map of name -> path
static std::map<std::string, std::string> discover_lora_files(const char* lora_dir) {
std::map<std::string, std::string> lora_map;
if (!lora_dir || strlen(lora_dir) == 0) {
fprintf(stderr, "LoRA directory not specified\n");
return lora_map;
}
if (!std::filesystem::exists(lora_dir) || !std::filesystem::is_directory(lora_dir)) {
fprintf(stderr, "LoRA directory does not exist or is not a directory: %s\n", lora_dir);
return lora_map;
}
static const std::vector<std::string> valid_ext = {".safetensors", ".ckpt", ".pt", ".gguf"};
fprintf(stderr, "Discovering LoRA files in: %s\n", lora_dir);
for (const auto& entry : std::filesystem::directory_iterator(lora_dir)) {
if (!entry.is_regular_file()) {
continue;
}
auto path = entry.path();
std::string ext = path.extension().string();
bool valid = false;
for (const auto& e : valid_ext) {
if (ext == e) {
valid = true;
break;
}
}
if (!valid) {
continue;
}
std::string name = path.stem().string(); // stem() already removes extension
std::string full_path = path.string();
// Store the name (without extension) -> full path mapping
// This allows users to specify just the name in <lora:name:strength>
lora_map[name] = full_path;
fprintf(stderr, "Found LoRA file: %s -> %s\n", name.c_str(), full_path.c_str());
}
fprintf(stderr, "Discovered %zu LoRA files in %s\n", lora_map.size(), lora_dir);
return lora_map;
}
// Helper function to check if a path is absolute (matches upstream)
static bool is_absolute_path(const std::string& p) {
#ifdef _WIN32
// Windows: C:/path or C:\path
return p.size() > 1 && std::isalpha(static_cast<unsigned char>(p[0])) && p[1] == ':';
#else
// Unix: /path
return !p.empty() && p[0] == '/';
#endif
}
// Parse LoRAs from prompt string (e.g., "<lora:name:1.0>" or "<lora:name>")
// Returns a vector of LoRA info and the cleaned prompt with LoRA tags removed
// Matches upstream implementation more closely
static std::pair<std::vector<sd_lora_t>, std::string> parse_loras_from_prompt(const std::string& prompt, const char* lora_dir) {
std::vector<sd_lora_t> loras;
std::string cleaned_prompt = prompt;
if (!lora_dir || strlen(lora_dir) == 0) {
fprintf(stderr, "LoRA directory not set, cannot parse LoRAs from prompt\n");
return {loras, cleaned_prompt};
}
// Discover LoRA files for name-based lookup
std::map<std::string, std::string> discovered_lora_map = discover_lora_files(lora_dir);
// Map to accumulate multipliers for the same LoRA (matches upstream)
std::map<std::string, float> lora_map;
std::map<std::string, float> high_noise_lora_map;
static const std::regex re(R"(<lora:([^:>]+):([^>]+)>)");
static const std::vector<std::string> valid_ext = {".pt", ".safetensors", ".gguf"};
std::smatch m;
std::string tmp = prompt;
fprintf(stderr, "Parsing LoRAs from prompt: %s\n", prompt.c_str());
while (std::regex_search(tmp, m, re)) {
std::string raw_path = m[1].str();
const std::string raw_mul = m[2].str();
float mul = 0.f;
try {
mul = std::stof(raw_mul);
} catch (...) {
tmp = m.suffix().str();
cleaned_prompt = std::regex_replace(cleaned_prompt, re, "", std::regex_constants::format_first_only);
fprintf(stderr, "Invalid LoRA multiplier '%s', skipping\n", raw_mul.c_str());
continue;
}
bool is_high_noise = false;
static const std::string prefix = "|high_noise|";
if (raw_path.rfind(prefix, 0) == 0) {
raw_path.erase(0, prefix.size());
is_high_noise = true;
}
std::filesystem::path final_path;
if (is_absolute_path(raw_path)) {
final_path = raw_path;
} else {
// Try name-based lookup first
auto it = discovered_lora_map.find(raw_path);
if (it != discovered_lora_map.end()) {
final_path = it->second;
} else {
// Try case-insensitive lookup
bool found = false;
for (const auto& pair : discovered_lora_map) {
std::string lower_name = raw_path;
std::string lower_key = pair.first;
std::transform(lower_name.begin(), lower_name.end(), lower_name.begin(), ::tolower);
std::transform(lower_key.begin(), lower_key.end(), lower_key.begin(), ::tolower);
if (lower_name == lower_key) {
final_path = pair.second;
found = true;
break;
}
}
if (!found) {
// Try as relative path in lora_dir
final_path = std::filesystem::path(lora_dir) / raw_path;
}
}
}
// Try adding extensions if file doesn't exist
if (!std::filesystem::exists(final_path)) {
bool found = false;
for (const auto& ext : valid_ext) {
std::filesystem::path try_path = final_path;
try_path += ext;
if (std::filesystem::exists(try_path)) {
final_path = try_path;
found = true;
break;
}
}
if (!found) {
fprintf(stderr, "WARNING: LoRA file not found: %s\n", final_path.lexically_normal().string().c_str());
tmp = m.suffix().str();
cleaned_prompt = std::regex_replace(cleaned_prompt, re, "", std::regex_constants::format_first_only);
continue;
}
}
// Normalize path (matches upstream)
const std::string key = final_path.lexically_normal().string();
// Accumulate multiplier if same LoRA appears multiple times (matches upstream)
if (is_high_noise) {
high_noise_lora_map[key] += mul;
} else {
lora_map[key] += mul;
}
fprintf(stderr, "Parsed LoRA: path='%s', multiplier=%.2f, is_high_noise=%s\n",
key.c_str(), mul, is_high_noise ? "true" : "false");
cleaned_prompt = std::regex_replace(cleaned_prompt, re, "", std::regex_constants::format_first_only);
tmp = m.suffix().str();
}
// Build final LoRA vector from accumulated maps (matches upstream)
// Store all path strings first to ensure they persist
for (const auto& kv : lora_map) {
lora_strings.push_back(kv.first);
}
for (const auto& kv : high_noise_lora_map) {
lora_strings.push_back(kv.first);
}
// Now build the LoRA vector with pointers to the stored strings
size_t string_idx = 0;
for (const auto& kv : lora_map) {
sd_lora_t item;
item.is_high_noise = false;
item.path = lora_strings[string_idx].c_str();
item.multiplier = kv.second;
loras.push_back(item);
string_idx++;
}
for (const auto& kv : high_noise_lora_map) {
sd_lora_t item;
item.is_high_noise = true;
item.path = lora_strings[string_idx].c_str();
item.multiplier = kv.second;
loras.push_back(item);
string_idx++;
}
// Clean up extra spaces
std::regex space_regex(R"(\s+)");
cleaned_prompt = std::regex_replace(cleaned_prompt, space_regex, " ");
// Trim leading/trailing spaces
size_t first = cleaned_prompt.find_first_not_of(" \t");
if (first != std::string::npos) {
cleaned_prompt.erase(0, first);
}
size_t last = cleaned_prompt.find_last_not_of(" \t");
if (last != std::string::npos) {
cleaned_prompt.erase(last + 1);
}
fprintf(stderr, "Parsed %zu LoRA(s) from prompt. Cleaned prompt: %s\n", loras.size(), cleaned_prompt.c_str());
return {loras, cleaned_prompt};
}
// Copied from the upstream CLI
static void sd_log_cb(enum sd_log_level_t level, const char* log, void* data) {
//SDParams* params = (SDParams*)data;
const char* level_str;
if (!log /*|| (!params->verbose && level <= SD_LOG_DEBUG)*/) {
return;
}
switch (level) {
case SD_LOG_DEBUG:
level_str = "DEBUG";
break;
case SD_LOG_INFO:
level_str = "INFO";
break;
case SD_LOG_WARN:
level_str = "WARN";
break;
case SD_LOG_ERROR:
level_str = "ERROR";
break;
default: /* Potential future-proofing */
level_str = "?????";
break;
}
fprintf(stderr, "[%-5s] ", level_str);
fputs(log, stderr);
fflush(stderr);
}
int load_model(const char *model, char *model_path, char* options[], int threads, int diff) {
fprintf (stderr, "Loading model: %p=%s\n", model, model);
sd_set_log_callback(sd_log_cb, NULL);
const char *stableDiffusionModel = "";
if (diff == 1 ) {
stableDiffusionModel = strdup(model);
model = "";
}
// decode options. Options are in form optname:optvale, or if booleans only optname.
const char *clip_l_path = "";
const char *clip_g_path = "";
const char *t5xxl_path = "";
const char *vae_path = "";
const char *scheduler_str = "";
const char *sampler = "";
const char *clip_vision_path = "";
const char *llm_path = "";
const char *llm_vision_path = "";
const char *diffusion_model_path = stableDiffusionModel;
const char *high_noise_diffusion_model_path = "";
const char *taesd_path = "";
const char *control_net_path = "";
const char *embedding_dir = "";
const char *photo_maker_path = "";
const char *tensor_type_rules = "";
char *lora_dir = model_path;
bool vae_decode_only = true;
int n_threads = threads;
enum sd_type_t wtype = SD_TYPE_COUNT;
enum rng_type_t rng_type = CUDA_RNG;
enum rng_type_t sampler_rng_type = RNG_TYPE_COUNT;
enum prediction_t prediction = PREDICTION_COUNT;
enum lora_apply_mode_t lora_apply_mode = LORA_APPLY_AUTO;
bool offload_params_to_cpu = false;
bool keep_clip_on_cpu = false;
bool keep_control_net_on_cpu = false;
bool keep_vae_on_cpu = false;
bool diffusion_flash_attn = false;
bool tae_preview_only = false;
bool diffusion_conv_direct = false;
bool vae_conv_direct = false;
bool force_sdxl_vae_conv_scale = false;
bool chroma_use_dit_mask = true;
bool chroma_use_t5_mask = false;
int chroma_t5_mask_pad = 1;
float flow_shift = INFINITY;
fprintf(stderr, "parsing options: %p\n", options);
// If options is not NULL, parse options
for (int i = 0; options[i] != NULL; i++) {
const char *optname = strtok(options[i], ":");
const char *optval = strtok(NULL, ":");
if (optval == NULL) {
optval = "true";
}
if (!strcmp(optname, "clip_l_path")) {
clip_l_path = strdup(optval);
}
if (!strcmp(optname, "clip_g_path")) {
clip_g_path = strdup(optval);
}
if (!strcmp(optname, "t5xxl_path")) {
t5xxl_path = strdup(optval);
}
if (!strcmp(optname, "vae_path")) {
vae_path = strdup(optval);
}
if (!strcmp(optname, "scheduler")) {
scheduler_str = optval;
}
if (!strcmp(optname, "sampler")) {
sampler = optval;
}
if (!strcmp(optname, "lora_dir")) {
// Path join with model dir
if (model_path && strlen(model_path) > 0) {
std::filesystem::path model_path_str(model_path);
std::filesystem::path lora_path(optval);
std::filesystem::path full_lora_path = model_path_str / lora_path;
lora_dir = strdup(full_lora_path.string().c_str());
lora_dir_path = full_lora_path.string();
fprintf(stderr, "LoRA dir resolved to: %s\n", lora_dir);
} else {
lora_dir = strdup(optval);
lora_dir_path = std::string(optval);
fprintf(stderr, "No model path provided, using lora dir as-is: %s\n", lora_dir);
}
// Discover LoRAs immediately when directory is set
if (lora_dir && strlen(lora_dir) > 0) {
discover_lora_files(lora_dir);
}
}
// New parsing
if (!strcmp(optname, "clip_vision_path")) clip_vision_path = strdup(optval);
if (!strcmp(optname, "llm_path")) llm_path = strdup(optval);
if (!strcmp(optname, "llm_vision_path")) llm_vision_path = strdup(optval);
if (!strcmp(optname, "diffusion_model_path")) diffusion_model_path = strdup(optval);
if (!strcmp(optname, "high_noise_diffusion_model_path")) high_noise_diffusion_model_path = strdup(optval);
if (!strcmp(optname, "taesd_path")) taesd_path = strdup(optval);
if (!strcmp(optname, "control_net_path")) control_net_path = strdup(optval);
if (!strcmp(optname, "embedding_dir")) {
// Path join with model dir
if (model_path && strlen(model_path) > 0) {
std::filesystem::path model_path_str(model_path);
std::filesystem::path embedding_path(optval);
std::filesystem::path full_embedding_path = model_path_str / embedding_path;
embedding_dir = strdup(full_embedding_path.string().c_str());
fprintf(stderr, "Embedding dir resolved to: %s\n", embedding_dir);
} else {
embedding_dir = strdup(optval);
fprintf(stderr, "No model path provided, using embedding dir as-is: %s\n", embedding_dir);
}
}
if (!strcmp(optname, "photo_maker_path")) photo_maker_path = strdup(optval);
if (!strcmp(optname, "tensor_type_rules")) tensor_type_rules = strdup(optval);
if (!strcmp(optname, "vae_decode_only")) vae_decode_only = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "offload_params_to_cpu")) offload_params_to_cpu = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "keep_clip_on_cpu")) keep_clip_on_cpu = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "keep_control_net_on_cpu")) keep_control_net_on_cpu = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "keep_vae_on_cpu")) keep_vae_on_cpu = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "diffusion_flash_attn")) diffusion_flash_attn = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "tae_preview_only")) tae_preview_only = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "diffusion_conv_direct")) diffusion_conv_direct = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "vae_conv_direct")) vae_conv_direct = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "force_sdxl_vae_conv_scale")) force_sdxl_vae_conv_scale = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "chroma_use_dit_mask")) chroma_use_dit_mask = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "chroma_use_t5_mask")) chroma_use_t5_mask = (strcmp(optval, "true") == 0 || strcmp(optval, "1") == 0);
if (!strcmp(optname, "n_threads")) n_threads = atoi(optval);
if (!strcmp(optname, "chroma_t5_mask_pad")) chroma_t5_mask_pad = atoi(optval);
if (!strcmp(optname, "flow_shift")) flow_shift = atof(optval);
if (!strcmp(optname, "rng_type")) {
int found = -1;
for (int m = 0; m < RNG_TYPE_COUNT; m++) {
if (!strcmp(optval, rng_type_str[m])) {
found = m;
break;
}
}
if (found != -1) {
rng_type = (rng_type_t)found;
fprintf(stderr, "Found rng_type: %s\n", optval);
} else {
fprintf(stderr, "Invalid rng_type: %s, using default\n", optval);
}
}
if (!strcmp(optname, "sampler_rng_type")) {
int found = -1;
for (int m = 0; m < RNG_TYPE_COUNT; m++) {
if (!strcmp(optval, rng_type_str[m])) {
found = m;
break;
}
}
if (found != -1) {
sampler_rng_type = (rng_type_t)found;
fprintf(stderr, "Found sampler_rng_type: %s\n", optval);
} else {
fprintf(stderr, "Invalid sampler_rng_type: %s, using default\n", optval);
}
}
if (!strcmp(optname, "prediction")) {
int found = -1;
for (int m = 0; m < PREDICTION_COUNT; m++) {
if (!strcmp(optval, prediction_str[m])) {
found = m;
break;
}
}
if (found != -1) {
prediction = (prediction_t)found;
fprintf(stderr, "Found prediction: %s\n", optval);
} else {
fprintf(stderr, "Invalid prediction: %s, using default\n", optval);
}
}
if (!strcmp(optname, "lora_apply_mode")) {
int found = -1;
for (int m = 0; m < LORA_APPLY_MODE_COUNT; m++) {
if (!strcmp(optval, lora_apply_mode_str[m])) {
found = m;
break;
}
}
if (found != -1) {
lora_apply_mode = (lora_apply_mode_t)found;
fprintf(stderr, "Found lora_apply_mode: %s\n", optval);
} else {
fprintf(stderr, "Invalid lora_apply_mode: %s, using default\n", optval);
}
}
if (!strcmp(optname, "wtype")) {
int found = -1;
for (int m = 0; m < SD_TYPE_COUNT; m++) {
if (sd_type_str[m] && !strcmp(optval, sd_type_str[m])) {
found = m;
break;
}
}
if (found != -1) {
wtype = (sd_type_t)found;
fprintf(stderr, "Found wtype: %s\n", optval);
} else {
fprintf(stderr, "Invalid wtype: %s, using default\n", optval);
}
}
}
fprintf(stderr, "parsed options\n");
// Build embeddings vector from directory if provided
build_embedding_vec(embedding_dir);
fprintf (stderr, "Creating context\n");
sd_ctx_params_init(&ctx_params);
ctx_params.model_path = model;
ctx_params.clip_l_path = clip_l_path;
ctx_params.clip_g_path = clip_g_path;
ctx_params.clip_vision_path = clip_vision_path;
ctx_params.t5xxl_path = t5xxl_path;
ctx_params.llm_path = llm_path;
ctx_params.llm_vision_path = llm_vision_path;
ctx_params.diffusion_model_path = diffusion_model_path;
ctx_params.high_noise_diffusion_model_path = high_noise_diffusion_model_path;
ctx_params.vae_path = vae_path;
ctx_params.taesd_path = taesd_path;
ctx_params.control_net_path = control_net_path;
if (lora_dir && strlen(lora_dir) > 0) {
lora_dir_path = std::string(lora_dir);
fprintf(stderr, "LoRA model directory set to: %s\n", lora_dir);
// Discover LoRAs at load time for logging
discover_lora_files(lora_dir);
} else {
fprintf(stderr, "WARNING: LoRA model directory not set. LoRAs in prompts will not be loaded.\n");
}
// Set embeddings array and count
ctx_params.embeddings = embedding_vec.empty() ? NULL : embedding_vec.data();
ctx_params.embedding_count = static_cast<uint32_t>(embedding_vec.size());
ctx_params.photo_maker_path = photo_maker_path;
ctx_params.tensor_type_rules = tensor_type_rules;
ctx_params.vae_decode_only = vae_decode_only;
// XXX: Setting to true causes a segfault on the second run
ctx_params.free_params_immediately = false;
ctx_params.n_threads = n_threads;
ctx_params.rng_type = rng_type;
ctx_params.keep_clip_on_cpu = keep_clip_on_cpu;
if (wtype != SD_TYPE_COUNT) ctx_params.wtype = wtype;
if (sampler_rng_type != RNG_TYPE_COUNT) ctx_params.sampler_rng_type = sampler_rng_type;
if (prediction != PREDICTION_COUNT) ctx_params.prediction = prediction;
if (lora_apply_mode != LORA_APPLY_MODE_COUNT) ctx_params.lora_apply_mode = lora_apply_mode;
ctx_params.offload_params_to_cpu = offload_params_to_cpu;
ctx_params.keep_control_net_on_cpu = keep_control_net_on_cpu;
ctx_params.keep_vae_on_cpu = keep_vae_on_cpu;
ctx_params.diffusion_flash_attn = diffusion_flash_attn;
ctx_params.tae_preview_only = tae_preview_only;
ctx_params.diffusion_conv_direct = diffusion_conv_direct;
ctx_params.vae_conv_direct = vae_conv_direct;
ctx_params.force_sdxl_vae_conv_scale = force_sdxl_vae_conv_scale;
ctx_params.chroma_use_dit_mask = chroma_use_dit_mask;
ctx_params.chroma_use_t5_mask = chroma_use_t5_mask;
ctx_params.chroma_t5_mask_pad = chroma_t5_mask_pad;
ctx_params.flow_shift = flow_shift;
sd_ctx_t* sd_ctx = new_sd_ctx(&ctx_params);
if (sd_ctx == NULL) {
fprintf (stderr, "failed loading model (generic error)\n");
// TODO: Clean up allocated memory
return 1;
}
fprintf (stderr, "Created context: OK\n");
int sample_method_found = -1;
for (int m = 0; m < SAMPLE_METHOD_COUNT; m++) {
if (!strcmp(sampler, sample_method_str[m])) {
sample_method_found = m;
fprintf(stderr, "Found sampler: %s\n", sampler);
}
}
if (sample_method_found == -1) {
sample_method_found = sd_get_default_sample_method(sd_ctx);
fprintf(stderr, "Invalid sample method, using default: %s\n", sample_method_str[sample_method_found]);
}
sample_method = (sample_method_t)sample_method_found;
for (int d = 0; d < SCHEDULER_COUNT; d++) {
if (!strcmp(scheduler_str, schedulers[d])) {
scheduler = (scheduler_t)d;
fprintf (stderr, "Found scheduler: %s\n", scheduler_str);
}
}
if (scheduler == SCHEDULER_COUNT) {
scheduler = sd_get_default_scheduler(sd_ctx, sample_method);
fprintf(stderr, "Invalid scheduler, using default: %s\n", schedulers[scheduler]);
}
sd_c = sd_ctx;
return 0;
}
void sd_tiling_params_set_enabled(sd_tiling_params_t *params, bool enabled) {
params->enabled = enabled;
}
void sd_tiling_params_set_tile_sizes(sd_tiling_params_t *params, int tile_size_x, int tile_size_y) {
params->tile_size_x = tile_size_x;
params->tile_size_y = tile_size_y;
}
void sd_tiling_params_set_rel_sizes(sd_tiling_params_t *params, float rel_size_x, float rel_size_y) {
params->rel_size_x = rel_size_x;
params->rel_size_y = rel_size_y;
}
void sd_tiling_params_set_target_overlap(sd_tiling_params_t *params, float target_overlap) {
params->target_overlap = target_overlap;
}
sd_tiling_params_t* sd_img_gen_params_get_vae_tiling_params(sd_img_gen_params_t *params) {
return &params->vae_tiling_params;
}
sd_img_gen_params_t* sd_img_gen_params_new(void) {
sd_img_gen_params_t *params = (sd_img_gen_params_t *)std::malloc(sizeof(sd_img_gen_params_t));
sd_img_gen_params_init(params);
sd_sample_params_init(&params->sample_params);
sd_cache_params_init(&params->cache);
params->control_strength = 0.9f;
return params;
}
// Storage for cleaned prompt strings (needs to persist)
static std::string cleaned_prompt_storage;
static std::string cleaned_negative_prompt_storage;
void sd_img_gen_params_set_prompts(sd_img_gen_params_t *params, const char *prompt, const char *negative_prompt) {
// Clear previous LoRA data
lora_vec.clear();
lora_strings.clear();
// Parse LoRAs from prompt
std::string prompt_str = prompt ? prompt : "";
std::string negative_prompt_str = negative_prompt ? negative_prompt : "";
// Get lora_dir from ctx_params if available, otherwise use stored path
const char* lora_dir_to_use = lora_dir_path.empty() ? nullptr : lora_dir_path.c_str();
auto [loras, cleaned_prompt] = parse_loras_from_prompt(prompt_str, lora_dir_to_use);
lora_vec = loras;
cleaned_prompt_storage = cleaned_prompt;
// Also check negative prompt for LoRAs (though this is less common)
auto [neg_loras, cleaned_negative] = parse_loras_from_prompt(negative_prompt_str, lora_dir_to_use);
// Merge negative prompt LoRAs (though typically not used)
if (!neg_loras.empty()) {
fprintf(stderr, "Note: Found %zu LoRAs in negative prompt (may not be supported)\n", neg_loras.size());
}
cleaned_negative_prompt_storage = cleaned_negative;
// Set the cleaned prompts
params->prompt = cleaned_prompt_storage.c_str();
params->negative_prompt = cleaned_negative_prompt_storage.c_str();
// Set LoRAs in params
params->loras = lora_vec.empty() ? nullptr : lora_vec.data();
params->lora_count = static_cast<uint32_t>(lora_vec.size());
fprintf(stderr, "Set prompts with %zu LoRAs. Original prompt: %s\n", lora_vec.size(), prompt ? prompt : "(null)");
fprintf(stderr, "Cleaned prompt: %s\n", cleaned_prompt_storage.c_str());
// Debug: Verify LoRAs are set correctly
if (params->loras && params->lora_count > 0) {
fprintf(stderr, "DEBUG: LoRAs set in params structure:\n");
for (uint32_t i = 0; i < params->lora_count; i++) {
fprintf(stderr, " params->loras[%u]: path='%s' (ptr=%p), multiplier=%.2f, is_high_noise=%s\n",
i,
params->loras[i].path ? params->loras[i].path : "(null)",
(void*)params->loras[i].path,
params->loras[i].multiplier,
params->loras[i].is_high_noise ? "true" : "false");
}
} else {
fprintf(stderr, "DEBUG: No LoRAs set in params structure (loras=%p, lora_count=%u)\n",
(void*)params->loras, params->lora_count);
}
}
void sd_img_gen_params_set_dimensions(sd_img_gen_params_t *params, int width, int height) {
params->width = width;
params->height = height;
}
void sd_img_gen_params_set_seed(sd_img_gen_params_t *params, int64_t seed) {
params->seed = seed;
}
int gen_image(sd_img_gen_params_t *p, int steps, char *dst, float cfg_scale, char *src_image, float strength, char *mask_image, char* ref_images[], int ref_images_count) {
sd_image_t* results;
std::vector<int> skip_layers = {7, 8, 9};
fprintf (stderr, "Generating image\n");
p->sample_params.guidance.txt_cfg = cfg_scale;
p->sample_params.guidance.slg.layers = skip_layers.data();
p->sample_params.guidance.slg.layer_count = skip_layers.size();
p->sample_params.sample_method = sample_method;
p->sample_params.sample_steps = steps;
p->sample_params.scheduler = scheduler;
int width = p->width;
int height = p->height;
// Handle input image for img2img
bool has_input_image = (src_image != NULL && strlen(src_image) > 0);
bool has_mask_image = (mask_image != NULL && strlen(mask_image) > 0);
uint8_t* input_image_buffer = NULL;
uint8_t* mask_image_buffer = NULL;
std::vector<uint8_t> default_mask_image_vec;
if (has_input_image) {
fprintf(stderr, "Loading input image: %s\n", src_image);
int c = 0;
int img_width = 0;
int img_height = 0;
input_image_buffer = stbi_load(src_image, &img_width, &img_height, &c, 3);
if (input_image_buffer == NULL) {
fprintf(stderr, "Failed to load input image from '%s'\n", src_image);
return 1;
}
if (c < 3) {
fprintf(stderr, "Input image must have at least 3 channels, got %d\n", c);
free(input_image_buffer);
return 1;
}
// Resize input image if dimensions don't match
if (img_width != width || img_height != height) {
fprintf(stderr, "Resizing input image from %dx%d to %dx%d\n", img_width, img_height, width, height);
uint8_t* resized_image_buffer = (uint8_t*)malloc(height * width * 3);
if (resized_image_buffer == NULL) {
fprintf(stderr, "Failed to allocate memory for resized image\n");
free(input_image_buffer);
return 1;
}
stbir_resize(input_image_buffer, img_width, img_height, 0,
resized_image_buffer, width, height, 0, STBIR_TYPE_UINT8,
3, STBIR_ALPHA_CHANNEL_NONE, 0,
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,
STBIR_FILTER_BOX, STBIR_FILTER_BOX,
STBIR_COLORSPACE_SRGB, nullptr);
free(input_image_buffer);
input_image_buffer = resized_image_buffer;
}
p->init_image = {(uint32_t)width, (uint32_t)height, 3, input_image_buffer};
p->strength = strength;
fprintf(stderr, "Using img2img with strength: %.2f\n", strength);
} else {
// No input image, use empty image for text-to-image
p->init_image = {(uint32_t)width, (uint32_t)height, 3, NULL};
p->strength = 0.0f;
}
// Handle mask image for inpainting
if (has_mask_image) {
fprintf(stderr, "Loading mask image: %s\n", mask_image);
int c = 0;
int mask_width = 0;
int mask_height = 0;
mask_image_buffer = stbi_load(mask_image, &mask_width, &mask_height, &c, 1);
if (mask_image_buffer == NULL) {
fprintf(stderr, "Failed to load mask image from '%s'\n", mask_image);
if (input_image_buffer) free(input_image_buffer);
return 1;
}
// Resize mask if dimensions don't match
if (mask_width != width || mask_height != height) {
fprintf(stderr, "Resizing mask image from %dx%d to %dx%d\n", mask_width, mask_height, width, height);
uint8_t* resized_mask_buffer = (uint8_t*)malloc(height * width);
if (resized_mask_buffer == NULL) {
fprintf(stderr, "Failed to allocate memory for resized mask\n");
free(mask_image_buffer);
if (input_image_buffer) free(input_image_buffer);
return 1;
}
stbir_resize(mask_image_buffer, mask_width, mask_height, 0,
resized_mask_buffer, width, height, 0, STBIR_TYPE_UINT8,
1, STBIR_ALPHA_CHANNEL_NONE, 0,
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,
STBIR_FILTER_BOX, STBIR_FILTER_BOX,
STBIR_COLORSPACE_SRGB, nullptr);
free(mask_image_buffer);
mask_image_buffer = resized_mask_buffer;
}
p->mask_image = {(uint32_t)width, (uint32_t)height, 1, mask_image_buffer};
fprintf(stderr, "Using inpainting with mask\n");
} else {
// No mask image, create default full mask
default_mask_image_vec.resize(width * height, 255);
p->mask_image = {(uint32_t)width, (uint32_t)height, 1, default_mask_image_vec.data()};
}
// Handle reference images
std::vector<sd_image_t> ref_images_vec;
std::vector<uint8_t*> ref_image_buffers;
if (ref_images_count > 0 && ref_images != NULL) {
fprintf(stderr, "Loading %d reference images\n", ref_images_count);
for (int i = 0; i < ref_images_count; i++) {
if (ref_images[i] == NULL || strlen(ref_images[i]) == 0) {
continue;
}
fprintf(stderr, "Loading reference image %d: %s\n", i + 1, ref_images[i]);
int c = 0;
int ref_width = 0;
int ref_height = 0;
uint8_t* ref_image_buffer = stbi_load(ref_images[i], &ref_width, &ref_height, &c, 3);
if (ref_image_buffer == NULL) {
fprintf(stderr, "Failed to load reference image from '%s'\n", ref_images[i]);
continue;
}
if (c < 3) {
fprintf(stderr, "Reference image must have at least 3 channels, got %d\n", c);
free(ref_image_buffer);
continue;
}
// Resize reference image if dimensions don't match
if (ref_width != width || ref_height != height) {
fprintf(stderr, "Resizing reference image from %dx%d to %dx%d\n", ref_width, ref_height, width, height);
uint8_t* resized_ref_buffer = (uint8_t*)malloc(height * width * 3);
if (resized_ref_buffer == NULL) {
fprintf(stderr, "Failed to allocate memory for resized reference image\n");
free(ref_image_buffer);
continue;
}
stbir_resize(ref_image_buffer, ref_width, ref_height, 0,
resized_ref_buffer, width, height, 0, STBIR_TYPE_UINT8,
3, STBIR_ALPHA_CHANNEL_NONE, 0,
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,
STBIR_FILTER_BOX, STBIR_FILTER_BOX,
STBIR_COLORSPACE_SRGB, nullptr);
free(ref_image_buffer);
ref_image_buffer = resized_ref_buffer;
}
ref_image_buffers.push_back(ref_image_buffer);
ref_images_vec.push_back({(uint32_t)width, (uint32_t)height, 3, ref_image_buffer});
}
if (!ref_images_vec.empty()) {
p->ref_images = ref_images_vec.data();
p->ref_images_count = ref_images_vec.size();
fprintf(stderr, "Using %zu reference images\n", ref_images_vec.size());
}
}
// Log LoRA information
if (p->loras && p->lora_count > 0) {
fprintf(stderr, "Using %u LoRA(s) in generation:\n", p->lora_count);
for (uint32_t i = 0; i < p->lora_count; i++) {
fprintf(stderr, " LoRA[%u]: path='%s', multiplier=%.2f, is_high_noise=%s\n",
i,
p->loras[i].path ? p->loras[i].path : "(null)",
p->loras[i].multiplier,
p->loras[i].is_high_noise ? "true" : "false");
}
} else {
fprintf(stderr, "No LoRAs specified for this generation\n");
}
fprintf(stderr, "Generating image with params: \nctx\n---\n%s\ngen\n---\n%s\n",
sd_ctx_params_to_str(&ctx_params),
sd_img_gen_params_to_str(p));
results = generate_image(sd_c, p);
std::free(p);
if (results == NULL) {
fprintf (stderr, "NO results\n");
if (input_image_buffer) free(input_image_buffer);
if (mask_image_buffer) free(mask_image_buffer);
for (auto buffer : ref_image_buffers) {
if (buffer) free(buffer);
}
return 1;
}
if (results[0].data == NULL) {
fprintf (stderr, "Results with no data\n");
if (input_image_buffer) free(input_image_buffer);
if (mask_image_buffer) free(mask_image_buffer);
for (auto buffer : ref_image_buffers) {
if (buffer) free(buffer);
}
return 1;
}
fprintf (stderr, "Writing PNG\n");
fprintf (stderr, "DST: %s\n", dst);
fprintf (stderr, "Width: %d\n", results[0].width);
fprintf (stderr, "Height: %d\n", results[0].height);
fprintf (stderr, "Channel: %d\n", results[0].channel);
fprintf (stderr, "Data: %p\n", results[0].data);
int ret = stbi_write_png(dst, results[0].width, results[0].height, results[0].channel,
results[0].data, 0, NULL);
if (ret)
fprintf (stderr, "Saved resulting image to '%s'\n", dst);
else
fprintf(stderr, "Failed to write image to '%s'\n", dst);
// Clean up
free(results[0].data);
results[0].data = NULL;
free(results);
if (input_image_buffer) free(input_image_buffer);
if (mask_image_buffer) free(mask_image_buffer);
for (auto buffer : ref_image_buffers) {
if (buffer) free(buffer);
}
fprintf (stderr, "gen_image is done: %s\n", dst);
fflush(stderr);
return !ret;
}
int unload() {
free_sd_ctx(sd_c);
return 0;
}