Files
LocalAI/backend/python/diffusers/backend.py
Ettore Di Giacinto 0fa0ac4797 fix(videogen): drop incomplete endpoint, add GGUF support for LTX-2 (#8160)
* Debug

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Drop openai video endpoint (is not complete)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add download button

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-22 14:09:20 +01:00

980 lines
41 KiB
Python
Executable File

#!/usr/bin/env python3
"""
LocalAI Diffusers Backend
This backend provides gRPC access to diffusers pipelines with dynamic pipeline loading.
New pipelines added to diffusers become available automatically without code changes.
"""
from concurrent import futures
import traceback
import argparse
from collections import defaultdict
from enum import Enum
import signal
import sys
import time
import os
from PIL import Image
import torch
import backend_pb2
import backend_pb2_grpc
import grpc
# Import dynamic loader for pipeline discovery
from diffusers_dynamic_loader import (
get_pipeline_registry,
resolve_pipeline_class,
get_available_pipelines,
load_diffusers_pipeline,
)
# Import specific items still needed for special cases and safety checker
from diffusers import DiffusionPipeline, ControlNetModel
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKLWan
from diffusers.pipelines.stable_diffusion import safety_checker
from diffusers.utils import load_image, export_to_video
from compel import Compel, ReturnedEmbeddingsType
from optimum.quanto import freeze, qfloat8, quantize
from transformers import T5EncoderModel
from safetensors.torch import load_file
# Import LTX-2 specific utilities
from diffusers.pipelines.ltx2.export_utils import encode_video as ltx2_encode_video
from diffusers import LTX2VideoTransformer3DModel, GGUFQuantizationConfig
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
COMPEL = os.environ.get("COMPEL", "0") == "1"
XPU = os.environ.get("XPU", "0") == "1"
CLIPSKIP = os.environ.get("CLIPSKIP", "1") == "1"
SAFETENSORS = os.environ.get("SAFETENSORS", "1") == "1"
CHUNK_SIZE = os.environ.get("CHUNK_SIZE", "8")
FPS = os.environ.get("FPS", "7")
DISABLE_CPU_OFFLOAD = os.environ.get("DISABLE_CPU_OFFLOAD", "0") == "1"
FRAMES = os.environ.get("FRAMES", "64")
if XPU:
print(torch.xpu.get_device_name(0))
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# https://github.com/CompVis/stable-diffusion/issues/239#issuecomment-1627615287
def sc(self, clip_input, images): return images, [False for i in images]
# edit the StableDiffusionSafetyChecker class so that, when called, it just returns the images and an array of True values
safety_checker.StableDiffusionSafetyChecker.forward = sc
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler,
)
def is_float(s):
"""Check if a string can be converted to float."""
try:
float(s)
return True
except ValueError:
return False
def is_int(s):
"""Check if a string can be converted to int."""
try:
int(s)
return True
except ValueError:
return False
# The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39
# Credits to https://github.com/neggles
# See https://github.com/huggingface/diffusers/issues/4167 for more details on sched mapping from A1111
class DiffusionScheduler(str, Enum):
ddim = "ddim" # DDIM
pndm = "pndm" # PNDM
heun = "heun" # Heun
unipc = "unipc" # UniPC
euler = "euler" # Euler
euler_a = "euler_a" # Euler a
lms = "lms" # LMS
k_lms = "k_lms" # LMS Karras
dpm_2 = "dpm_2" # DPM2
k_dpm_2 = "k_dpm_2" # DPM2 Karras
dpm_2_a = "dpm_2_a" # DPM2 a
k_dpm_2_a = "k_dpm_2_a" # DPM2 a Karras
dpmpp_2m = "dpmpp_2m" # DPM++ 2M
k_dpmpp_2m = "k_dpmpp_2m" # DPM++ 2M Karras
dpmpp_sde = "dpmpp_sde" # DPM++ SDE
k_dpmpp_sde = "k_dpmpp_sde" # DPM++ SDE Karras
dpmpp_2m_sde = "dpmpp_2m_sde" # DPM++ 2M SDE
k_dpmpp_2m_sde = "k_dpmpp_2m_sde" # DPM++ 2M SDE Karras
def get_scheduler(name: str, config: dict = {}):
is_karras = name.startswith("k_")
if is_karras:
# strip the k_ prefix and add the karras sigma flag to config
name = name.lstrip("k_")
config["use_karras_sigmas"] = True
if name == DiffusionScheduler.ddim:
sched_class = DDIMScheduler
elif name == DiffusionScheduler.pndm:
sched_class = PNDMScheduler
elif name == DiffusionScheduler.heun:
sched_class = HeunDiscreteScheduler
elif name == DiffusionScheduler.unipc:
sched_class = UniPCMultistepScheduler
elif name == DiffusionScheduler.euler:
sched_class = EulerDiscreteScheduler
elif name == DiffusionScheduler.euler_a:
sched_class = EulerAncestralDiscreteScheduler
elif name == DiffusionScheduler.lms:
sched_class = LMSDiscreteScheduler
elif name == DiffusionScheduler.dpm_2:
# Equivalent to DPM2 in K-Diffusion
sched_class = KDPM2DiscreteScheduler
elif name == DiffusionScheduler.dpm_2_a:
# Equivalent to `DPM2 a`` in K-Diffusion
sched_class = KDPM2AncestralDiscreteScheduler
elif name == DiffusionScheduler.dpmpp_2m:
# Equivalent to `DPM++ 2M` in K-Diffusion
sched_class = DPMSolverMultistepScheduler
config["algorithm_type"] = "dpmsolver++"
config["solver_order"] = 2
elif name == DiffusionScheduler.dpmpp_sde:
# Equivalent to `DPM++ SDE` in K-Diffusion
sched_class = DPMSolverSinglestepScheduler
elif name == DiffusionScheduler.dpmpp_2m_sde:
# Equivalent to `DPM++ 2M SDE` in K-Diffusion
sched_class = DPMSolverMultistepScheduler
config["algorithm_type"] = "sde-dpmsolver++"
else:
raise ValueError(f"Invalid scheduler '{'k_' if is_karras else ''}{name}'")
return sched_class.from_config(config)
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def _load_pipeline(self, request, modelFile, fromSingleFile, torchType, variant):
"""
Load a diffusers pipeline dynamically using the dynamic loader.
This method uses load_diffusers_pipeline() for most pipelines, falling back
to explicit handling only for pipelines requiring custom initialization
(e.g., quantization, special VAE handling).
Args:
request: The gRPC request containing pipeline configuration
modelFile: Path to the model file (for single file loading)
fromSingleFile: Whether to use from_single_file() vs from_pretrained()
torchType: The torch dtype to use
variant: Model variant (e.g., "fp16")
Returns:
The loaded pipeline instance
"""
pipeline_type = request.PipelineType
# Handle IMG2IMG request flag with default pipeline
if request.IMG2IMG and pipeline_type == "":
pipeline_type = "StableDiffusionImg2ImgPipeline"
# ================================================================
# Special cases requiring custom initialization logic
# Only handle pipelines that truly need custom code (quantization,
# special VAE handling, etc.). All other pipelines use dynamic loading.
# ================================================================
# FluxTransformer2DModel - requires quantization and custom transformer loading
if pipeline_type == "FluxTransformer2DModel":
dtype = torch.bfloat16
bfl_repo = os.environ.get("BFL_REPO", "ChuckMcSneed/FLUX.1-dev")
transformer = FluxTransformer2DModel.from_single_file(modelFile, torch_dtype=dtype)
quantize(transformer, weights=qfloat8)
freeze(transformer)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, text_encoder_2=None, torch_dtype=dtype)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
if request.LowVRAM:
pipe.enable_model_cpu_offload()
return pipe
# WanPipeline - requires special VAE with float32 dtype
if pipeline_type == "WanPipeline":
vae = AutoencoderKLWan.from_pretrained(
request.Model,
subfolder="vae",
torch_dtype=torch.float32
)
pipe = load_diffusers_pipeline(
class_name="WanPipeline",
model_id=request.Model,
vae=vae,
torch_dtype=torchType
)
self.txt2vid = True
return pipe
# WanImageToVideoPipeline - requires special VAE with float32 dtype
if pipeline_type == "WanImageToVideoPipeline":
vae = AutoencoderKLWan.from_pretrained(
request.Model,
subfolder="vae",
torch_dtype=torch.float32
)
pipe = load_diffusers_pipeline(
class_name="WanImageToVideoPipeline",
model_id=request.Model,
vae=vae,
torch_dtype=torchType
)
self.img2vid = True
return pipe
# SanaPipeline - requires special VAE and text encoder dtype conversion
if pipeline_type == "SanaPipeline":
pipe = load_diffusers_pipeline(
class_name="SanaPipeline",
model_id=request.Model,
variant="bf16",
torch_dtype=torch.bfloat16
)
pipe.vae.to(torch.bfloat16)
pipe.text_encoder.to(torch.bfloat16)
return pipe
# VideoDiffusionPipeline - alias for DiffusionPipeline with txt2vid flag
if pipeline_type == "VideoDiffusionPipeline":
self.txt2vid = True
pipe = load_diffusers_pipeline(
class_name="DiffusionPipeline",
model_id=request.Model,
torch_dtype=torchType
)
return pipe
# StableVideoDiffusionPipeline - needs img2vid flag and CPU offload
if pipeline_type == "StableVideoDiffusionPipeline":
self.img2vid = True
pipe = load_diffusers_pipeline(
class_name="StableVideoDiffusionPipeline",
model_id=request.Model,
torch_dtype=torchType,
variant=variant
)
if not DISABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
return pipe
# LTX2ImageToVideoPipeline - needs img2vid flag, CPU offload, and special handling
if pipeline_type == "LTX2ImageToVideoPipeline":
self.img2vid = True
self.ltx2_pipeline = True
# Check if loading from single file (GGUF)
if fromSingleFile and LTX2VideoTransformer3DModel is not None:
_, single_file_ext = os.path.splitext(modelFile)
if single_file_ext == ".gguf":
# Load transformer from single GGUF file with quantization
transformer_kwargs = {}
quantization_config = GGUFQuantizationConfig(compute_dtype=torchType)
transformer_kwargs["quantization_config"] = quantization_config
transformer = LTX2VideoTransformer3DModel.from_single_file(
modelFile,
config=request.Model, # Use request.Model as the config/model_id
subfolder="transformer",
**transformer_kwargs,
)
# Load pipeline with custom transformer
pipe = load_diffusers_pipeline(
class_name="LTX2ImageToVideoPipeline",
model_id=request.Model,
transformer=transformer,
torch_dtype=torchType,
)
else:
# Single file but not GGUF - use standard single file loading
pipe = load_diffusers_pipeline(
class_name="LTX2ImageToVideoPipeline",
model_id=modelFile,
from_single_file=True,
torch_dtype=torchType,
)
else:
# Standard loading from pretrained
pipe = load_diffusers_pipeline(
class_name="LTX2ImageToVideoPipeline",
model_id=request.Model,
torch_dtype=torchType,
variant=variant
)
if not DISABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
return pipe
# LTX2Pipeline - text-to-video pipeline, needs txt2vid flag, CPU offload, and special handling
if pipeline_type == "LTX2Pipeline":
self.txt2vid = True
self.ltx2_pipeline = True
# Check if loading from single file (GGUF)
if fromSingleFile and LTX2VideoTransformer3DModel is not None:
_, single_file_ext = os.path.splitext(modelFile)
if single_file_ext == ".gguf":
# Load transformer from single GGUF file with quantization
transformer_kwargs = {}
quantization_config = GGUFQuantizationConfig(compute_dtype=torchType)
transformer_kwargs["quantization_config"] = quantization_config
transformer = LTX2VideoTransformer3DModel.from_single_file(
modelFile,
config=request.Model, # Use request.Model as the config/model_id
subfolder="transformer",
**transformer_kwargs,
)
# Load pipeline with custom transformer
pipe = load_diffusers_pipeline(
class_name="LTX2Pipeline",
model_id=request.Model,
transformer=transformer,
torch_dtype=torchType,
)
else:
# Single file but not GGUF - use standard single file loading
pipe = load_diffusers_pipeline(
class_name="LTX2Pipeline",
model_id=modelFile,
from_single_file=True,
torch_dtype=torchType,
)
else:
# Standard loading from pretrained
pipe = load_diffusers_pipeline(
class_name="LTX2Pipeline",
model_id=request.Model,
torch_dtype=torchType,
variant=variant
)
if not DISABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
return pipe
# ================================================================
# Dynamic pipeline loading - the default path for most pipelines
# Uses the dynamic loader to instantiate any pipeline by class name
# ================================================================
# Build kwargs for dynamic loading
load_kwargs = {"torch_dtype": torchType}
# Add variant if not loading from single file
if not fromSingleFile and variant:
load_kwargs["variant"] = variant
# Add use_safetensors for from_pretrained
if not fromSingleFile:
load_kwargs["use_safetensors"] = SAFETENSORS
# Determine pipeline class name - default to AutoPipelineForText2Image
effective_pipeline_type = pipeline_type if pipeline_type else "AutoPipelineForText2Image"
# Use dynamic loader for all pipelines
try:
pipe = load_diffusers_pipeline(
class_name=effective_pipeline_type,
model_id=modelFile if fromSingleFile else request.Model,
from_single_file=fromSingleFile,
**load_kwargs
)
except Exception as e:
# Provide helpful error with available pipelines
available = get_available_pipelines()
raise ValueError(
f"Failed to load pipeline '{effective_pipeline_type}': {e}\n"
f"Available pipelines: {', '.join(available[:30])}..."
) from e
# Apply LowVRAM optimization if supported and requested
if request.LowVRAM and hasattr(pipe, 'enable_model_cpu_offload'):
pipe.enable_model_cpu_offload()
return pipe
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
print(f"Loading model {request.Model}...", file=sys.stderr)
print(f"Request {request}", file=sys.stderr)
torchType = torch.float32
variant = None
if request.F16Memory:
torchType = torch.float16
variant = "fp16"
options = request.Options
# empty dict
self.options = {}
# The options are a list of strings in this form optname:optvalue
# We are storing all the options in a dict so we can use it later when
# generating the images
for opt in options:
if ":" not in opt:
continue
key, value = opt.split(":")
# if value is a number, convert it to the appropriate type
if is_float(value):
value = float(value)
elif is_int(value):
value = int(value)
elif value.lower() in ["true", "false"]:
value = value.lower() == "true"
self.options[key] = value
# From options, extract if present "torch_dtype" and set it to the appropriate type
if "torch_dtype" in self.options:
if self.options["torch_dtype"] == "fp16":
torchType = torch.float16
elif self.options["torch_dtype"] == "bf16":
torchType = torch.bfloat16
elif self.options["torch_dtype"] == "fp32":
torchType = torch.float32
# remove it from options
del self.options["torch_dtype"]
print(f"Options: {self.options}", file=sys.stderr)
local = False
modelFile = request.Model
self.cfg_scale = 7
self.PipelineType = request.PipelineType
if request.CFGScale != 0:
self.cfg_scale = request.CFGScale
clipmodel = "Lykon/dreamshaper-8"
if request.CLIPModel != "":
clipmodel = request.CLIPModel
clipsubfolder = "text_encoder"
if request.CLIPSubfolder != "":
clipsubfolder = request.CLIPSubfolder
# Check if ModelFile exists
if request.ModelFile != "":
if os.path.exists(request.ModelFile):
local = True
modelFile = request.ModelFile
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
self.img2vid = False
self.txt2vid = False
self.ltx2_pipeline = False
print(f"LoadModel: PipelineType from request: {request.PipelineType}", file=sys.stderr)
# Load pipeline using dynamic loader
# Special cases that require custom initialization are handled first
self.pipe = self._load_pipeline(
request=request,
modelFile=modelFile,
fromSingleFile=fromSingleFile,
torchType=torchType,
variant=variant
)
print(f"LoadModel: After loading - ltx2_pipeline: {self.ltx2_pipeline}, img2vid: {self.img2vid}, txt2vid: {self.txt2vid}, PipelineType: {self.PipelineType}", file=sys.stderr)
if CLIPSKIP and request.CLIPSkip != 0:
self.clip_skip = request.CLIPSkip
else:
self.clip_skip = 0
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
# TODO: this needs to be customized
if request.SchedulerType != "":
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
if COMPEL:
self.compel = Compel(
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
if request.ControlNet:
self.controlnet = ControlNetModel.from_pretrained(
request.ControlNet, torch_dtype=torchType, variant=variant
)
self.pipe.controlnet = self.controlnet
else:
self.controlnet = None
if request.LoraAdapter and not os.path.isabs(request.LoraAdapter):
# modify LoraAdapter to be relative to modelFileBase
request.LoraAdapter = os.path.join(request.ModelPath, request.LoraAdapter)
device = "cpu" if not request.CUDA else "cuda"
if XPU:
device = "xpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
self.device = device
if request.LoraAdapter:
# Check if its a local file and not a directory ( we load lora differently for a safetensor file )
if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter):
self.pipe.load_lora_weights(request.LoraAdapter)
else:
self.pipe.unet.load_attn_procs(request.LoraAdapter)
if len(request.LoraAdapters) > 0:
i = 0
adapters_name = []
adapters_weights = []
for adapter in request.LoraAdapters:
if not os.path.isabs(adapter):
adapter = os.path.join(request.ModelPath, adapter)
self.pipe.load_lora_weights(adapter, adapter_name=f"adapter_{i}")
adapters_name.append(f"adapter_{i}")
i += 1
for adapters_weight in request.LoraScales:
adapters_weights.append(adapters_weight)
self.pipe.set_adapters(adapters_name, adapter_weights=adapters_weights)
if device != "cpu":
self.pipe.to(device)
if self.controlnet:
self.controlnet.to(device)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
# https://github.com/huggingface/diffusers/issues/3064
def load_lora_weights(self, checkpoint_path, multiplier, device, dtype):
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
# load LoRA weight from .safetensors
state_dict = load_file(checkpoint_path, device=device)
updates = defaultdict(dict)
for key, value in state_dict.items():
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
layer, elem = key.split('.', 1)
updates[layer][elem] = value
# directly update weight in diffusers model
for layer, elems in updates.items():
if "text" in layer:
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
curr_layer = self.pipe.text_encoder
else:
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = self.pipe.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# get elements for this layer
weight_up = elems['lora_up.weight'].to(dtype)
weight_down = elems['lora_down.weight'].to(dtype)
alpha = elems['alpha'] if 'alpha' in elems else None
if alpha:
alpha = alpha.item() / weight_up.shape[1]
else:
alpha = 1.0
# update weight
if len(weight_up.shape) == 4:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
else:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down)
def GenerateImage(self, request, context):
prompt = request.positive_prompt
steps = 1
if request.step != 0:
steps = request.step
# create a dictionary of values for the parameters
options = {
"num_inference_steps": steps,
}
if hasattr(request, 'negative_prompt') and request.negative_prompt != "":
options["negative_prompt"] = request.negative_prompt
# Handle image source: prioritize RefImages over request.src
image_src = None
if hasattr(request, 'ref_images') and request.ref_images and len(request.ref_images) > 0:
# Use the first reference image if available
image_src = request.ref_images[0]
print(f"Using reference image: {image_src}", file=sys.stderr)
elif request.src != "":
# Fall back to request.src if no ref_images
image_src = request.src
print(f"Using source image: {image_src}", file=sys.stderr)
else:
print("No image source provided", file=sys.stderr)
if image_src and not self.controlnet and not self.img2vid:
image = Image.open(image_src)
options["image"] = image
elif self.controlnet and image_src:
pose_image = load_image(image_src)
options["image"] = pose_image
if CLIPSKIP and self.clip_skip != 0:
options["clip_skip"] = self.clip_skip
kwargs = {}
# populate kwargs from self.options.
kwargs.update(self.options)
# Set seed
if request.seed > 0:
kwargs["generator"] = torch.Generator(device=self.device).manual_seed(
request.seed
)
if self.PipelineType == "FluxPipeline":
kwargs["max_sequence_length"] = 256
if request.width:
kwargs["width"] = request.width
if request.height:
kwargs["height"] = request.height
if self.PipelineType == "FluxTransformer2DModel":
kwargs["output_type"] = "pil"
kwargs["generator"] = torch.Generator("cpu").manual_seed(0)
if self.img2vid:
# Load the conditioning image
if image_src:
image = load_image(image_src)
else:
# Fallback to request.src for img2vid if no ref_images
image = load_image(request.src)
image = image.resize((1024, 576))
generator = torch.manual_seed(request.seed)
frames = self.pipe(image, guidance_scale=self.cfg_scale, decode_chunk_size=CHUNK_SIZE, generator=generator).frames[0]
export_to_video(frames, request.dst, fps=FPS)
return backend_pb2.Result(message="Media generated successfully", success=True)
if self.txt2vid:
video_frames = self.pipe(prompt, guidance_scale=self.cfg_scale, num_inference_steps=steps, num_frames=int(FRAMES)).frames
export_to_video(video_frames, request.dst)
return backend_pb2.Result(message="Media generated successfully", success=True)
print(f"Generating image with {kwargs=}", file=sys.stderr)
image = {}
if COMPEL:
conditioning, pooled = self.compel.build_conditioning_tensor(prompt)
kwargs["prompt_embeds"] = conditioning
kwargs["pooled_prompt_embeds"] = pooled
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
guidance_scale=self.cfg_scale,
**kwargs
).images[0]
else:
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
prompt,
guidance_scale=self.cfg_scale,
**kwargs
).images[0]
# save the result
image.save(request.dst)
return backend_pb2.Result(message="Media generated", success=True)
def GenerateVideo(self, request, context):
try:
prompt = request.prompt
if not prompt:
print(f"GenerateVideo: No prompt provided for video generation.", file=sys.stderr)
return backend_pb2.Result(success=False, message="No prompt provided for video generation")
# Debug: Print raw request values
print(f"GenerateVideo: Raw request values - num_frames: {request.num_frames}, fps: {request.fps}, cfg_scale: {request.cfg_scale}, step: {request.step}", file=sys.stderr)
# Set default values from request or use defaults
num_frames = request.num_frames if request.num_frames > 0 else 81
fps = request.fps if request.fps > 0 else 16
cfg_scale = request.cfg_scale if request.cfg_scale > 0 else 4.0
num_inference_steps = request.step if request.step > 0 else 40
print(f"GenerateVideo: Using values - num_frames: {num_frames}, fps: {fps}, cfg_scale: {cfg_scale}, num_inference_steps: {num_inference_steps}", file=sys.stderr)
# Prepare generation parameters
kwargs = {
"prompt": prompt,
"negative_prompt": request.negative_prompt if request.negative_prompt else "",
"height": request.height if request.height > 0 else 720,
"width": request.width if request.width > 0 else 1280,
"num_frames": num_frames,
"guidance_scale": cfg_scale,
"num_inference_steps": num_inference_steps,
}
# Add custom options from self.options (including guidance_scale_2 if specified)
kwargs.update(self.options)
# Set seed if provided
if request.seed > 0:
kwargs["generator"] = torch.Generator(device=self.device).manual_seed(request.seed)
# Handle start and end images for video generation
if request.start_image:
kwargs["start_image"] = load_image(request.start_image)
if request.end_image:
kwargs["end_image"] = load_image(request.end_image)
print(f"Generating video with {kwargs=}", file=sys.stderr)
print(f"GenerateVideo: Pipeline type: {self.PipelineType}, ltx2_pipeline flag: {self.ltx2_pipeline}", file=sys.stderr)
# Generate video frames based on pipeline type
if self.ltx2_pipeline or self.PipelineType in ["LTX2Pipeline", "LTX2ImageToVideoPipeline"]:
# LTX-2 generation with audio (supports both text-to-video and image-to-video)
# Determine if this is text-to-video (no image) or image-to-video (has image)
has_image = bool(request.start_image)
# Remove image-related parameters that might have been added earlier
kwargs.pop("start_image", None)
kwargs.pop("end_image", None)
# LTX2ImageToVideoPipeline uses 'image' parameter for image-to-video
# LTX2Pipeline (text-to-video) doesn't need an image parameter
if has_image:
# Image-to-video: use 'image' parameter
if self.PipelineType == "LTX2ImageToVideoPipeline":
image = load_image(request.start_image)
kwargs["image"] = image
print(f"LTX-2: Using image-to-video mode with image", file=sys.stderr)
else:
# If pipeline type is LTX2Pipeline but we have an image, we can't do image-to-video
return backend_pb2.Result(success=False, message="LTX2Pipeline does not support image-to-video. Use LTX2ImageToVideoPipeline for image-to-video generation.")
else:
# Text-to-video: no image parameter needed
# Ensure no image-related kwargs are present
kwargs.pop("image", None)
print(f"LTX-2: Using text-to-video mode (no image)", file=sys.stderr)
# LTX-2 uses 'frame_rate' instead of 'fps'
frame_rate = float(fps)
kwargs["frame_rate"] = frame_rate
# LTX-2 requires output_type="np" and return_dict=False
kwargs["output_type"] = "np"
kwargs["return_dict"] = False
# Generate video and audio
print(f"LTX-2: Generating with kwargs: {kwargs}", file=sys.stderr)
try:
video, audio = self.pipe(**kwargs)
print(f"LTX-2: Generated video shape: {video.shape}, audio shape: {audio.shape}", file=sys.stderr)
except Exception as e:
print(f"LTX-2: Error during pipe() call: {e}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Error generating video with LTX-2 pipeline: {e}")
# Convert video to uint8 format
video = (video * 255).round().astype("uint8")
video = torch.from_numpy(video)
print(f"LTX-2: Converting video, shape after conversion: {video.shape}", file=sys.stderr)
print(f"LTX-2: Audio sample rate: {self.pipe.vocoder.config.output_sampling_rate}", file=sys.stderr)
print(f"LTX-2: Output path: {request.dst}", file=sys.stderr)
# Use LTX-2's encode_video function which handles audio
try:
ltx2_encode_video(
video[0],
fps=frame_rate,
audio=audio[0].float().cpu(),
audio_sample_rate=self.pipe.vocoder.config.output_sampling_rate,
output_path=request.dst,
)
# Verify file was created and has content
import os
if os.path.exists(request.dst):
file_size = os.path.getsize(request.dst)
print(f"LTX-2: Video file created successfully, size: {file_size} bytes", file=sys.stderr)
if file_size == 0:
return backend_pb2.Result(success=False, message=f"Video file was created but is empty (0 bytes). Check LTX-2 encode_video function.")
else:
return backend_pb2.Result(success=False, message=f"Video file was not created at {request.dst}")
except Exception as e:
print(f"LTX-2: Error encoding video: {e}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Error encoding video: {e}")
return backend_pb2.Result(message="Video generated successfully", success=True)
elif self.PipelineType == "WanPipeline":
# WAN2.2 text-to-video generation
output = self.pipe(**kwargs)
frames = output.frames[0] # WAN2.2 returns frames in this format
elif self.PipelineType == "WanImageToVideoPipeline":
# WAN2.2 image-to-video generation
if request.start_image:
# Load and resize the input image according to WAN2.2 requirements
image = load_image(request.start_image)
# Use request dimensions or defaults, but respect WAN2.2 constraints
request_height = request.height if request.height > 0 else 480
request_width = request.width if request.width > 0 else 832
max_area = request_height * request_width
aspect_ratio = image.height / image.width
mod_value = self.pipe.vae_scale_factor_spatial * self.pipe.transformer.config.patch_size[1]
height = round((max_area * aspect_ratio) ** 0.5 / mod_value) * mod_value
width = round((max_area / aspect_ratio) ** 0.5 / mod_value) * mod_value
image = image.resize((width, height))
kwargs["image"] = image
kwargs["height"] = height
kwargs["width"] = width
output = self.pipe(**kwargs)
frames = output.frames[0]
elif self.img2vid:
# Generic image-to-video generation
if request.start_image:
image = load_image(request.start_image)
image = image.resize((request.width if request.width > 0 else 1024,
request.height if request.height > 0 else 576))
kwargs["image"] = image
output = self.pipe(**kwargs)
frames = output.frames[0]
elif self.txt2vid:
# Generic text-to-video generation
output = self.pipe(**kwargs)
frames = output.frames[0]
else:
print(f"GenerateVideo: Pipeline {self.PipelineType} does not match any known video pipeline handler", file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Pipeline {self.PipelineType} does not support video generation")
# Export video (for non-LTX-2 pipelines)
print(f"GenerateVideo: Exporting video to {request.dst} with fps={fps}", file=sys.stderr)
export_to_video(frames, request.dst, fps=fps)
# Verify file was created
import os
if os.path.exists(request.dst):
file_size = os.path.getsize(request.dst)
print(f"GenerateVideo: Video file created, size: {file_size} bytes", file=sys.stderr)
if file_size == 0:
return backend_pb2.Result(success=False, message=f"Video file was created but is empty (0 bytes)")
else:
return backend_pb2.Result(success=False, message=f"Video file was not created at {request.dst}")
return backend_pb2.Result(message="Video generated successfully", success=True)
except Exception as err:
print(f"Error generating video: {err}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Error generating video: {err}")
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)