Files
LocalAI/backend/python/qwen-asr/backend.py
Ettore Di Giacinto 1e08e02598 feat(qwen-asr): add support to qwen-asr (#8281)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-29 21:50:35 +01:00

213 lines
7.6 KiB
Python

#!/usr/bin/env python3
"""
gRPC server of LocalAI for Qwen3-ASR (transformers backend, non-vLLM).
"""
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import backend_pb2
import backend_pb2_grpc
import torch
from qwen_asr import Qwen3ASRModel
import grpc
def is_float(s):
try:
float(s)
return True
except ValueError:
return False
def is_int(s):
try:
int(s)
return True
except ValueError:
return False
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
self.device = device
self.options = {}
for opt in request.Options:
if ":" not in opt:
continue
key, value = opt.split(":", 1)
if is_float(value):
value = float(value)
elif is_int(value):
value = int(value)
elif value.lower() in ["true", "false"]:
value = value.lower() == "true"
self.options[key] = value
model_path = request.Model or "Qwen/Qwen3-ASR-1.7B"
default_dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
load_dtype = default_dtype
if "torch_dtype" in self.options:
d = str(self.options["torch_dtype"]).lower()
if d == "fp16":
load_dtype = torch.float16
elif d == "bf16":
load_dtype = torch.bfloat16
elif d == "fp32":
load_dtype = torch.float32
del self.options["torch_dtype"]
self.max_inference_batch_size = self.options.get("max_inference_batch_size", 32)
self.max_new_tokens = self.options.get("max_new_tokens", 256)
forced_aligner = self.options.get("forced_aligner")
if forced_aligner is not None and isinstance(forced_aligner, str):
forced_aligner = forced_aligner.strip() or None
attn_implementation = self.options.get("attn_implementation")
if attn_implementation is not None and isinstance(attn_implementation, str):
attn_implementation = attn_implementation.strip() or None
if self.device == "mps":
device_map = None
elif self.device == "cuda":
device_map = "cuda:0"
else:
device_map = "cpu"
load_kwargs = dict(
dtype=load_dtype,
device_map=device_map,
max_inference_batch_size=self.max_inference_batch_size,
max_new_tokens=self.max_new_tokens,
)
if attn_implementation:
load_kwargs["attn_implementation"] = attn_implementation
if forced_aligner:
load_kwargs["forced_aligner"] = forced_aligner
forced_aligner_kwargs = dict(
dtype=load_dtype,
device_map=device_map,
)
if attn_implementation:
forced_aligner_kwargs["attn_implementation"] = attn_implementation
load_kwargs["forced_aligner_kwargs"] = forced_aligner_kwargs
try:
print(f"Loading Qwen3-ASR from {model_path}", file=sys.stderr)
if attn_implementation:
print(f"Using attn_implementation: {attn_implementation}", file=sys.stderr)
if forced_aligner:
print(f"Loading with forced_aligner: {forced_aligner}", file=sys.stderr)
self.model = Qwen3ASRModel.from_pretrained(model_path, **load_kwargs)
print("Qwen3-ASR model loaded successfully", file=sys.stderr)
except Exception as err:
print(f"[ERROR] LoadModel failed: {err}", file=sys.stderr)
import traceback
traceback.print_exc(file=sys.stderr)
return backend_pb2.Result(success=False, message=str(err))
return backend_pb2.Result(message="Model loaded successfully", success=True)
def AudioTranscription(self, request, context):
result_segments = []
text = ""
try:
audio_path = request.dst
if not audio_path or not os.path.exists(audio_path):
print(f"Error: Audio file not found: {audio_path}", file=sys.stderr)
return backend_pb2.TranscriptResult(segments=[], text="")
language = None
if request.language and request.language.strip():
language = request.language.strip()
results = self.model.transcribe(audio=audio_path, language=language)
if not results:
return backend_pb2.TranscriptResult(segments=[], text="")
r = results[0]
text = r.text or ""
if getattr(r, 'time_stamps', None) and len(r.time_stamps) > 0:
for idx, ts in enumerate(r.time_stamps):
start_ms = 0
end_ms = 0
seg_text = text
if isinstance(ts, (list, tuple)) and len(ts) >= 3:
start_ms = int(float(ts[0]) * 1000) if ts[0] is not None else 0
end_ms = int(float(ts[1]) * 1000) if ts[1] is not None else 0
seg_text = ts[2] if len(ts) > 2 and ts[2] is not None else ""
result_segments.append(backend_pb2.TranscriptSegment(
id=idx, start=start_ms, end=end_ms, text=seg_text
))
else:
if text:
result_segments.append(backend_pb2.TranscriptSegment(
id=0, start=0, end=0, text=text
))
except Exception as err:
print(f"Error in AudioTranscription: {err}", file=sys.stderr)
import traceback
traceback.print_exc(file=sys.stderr)
return backend_pb2.TranscriptResult(segments=[], text="")
return backend_pb2.TranscriptResult(segments=result_segments, text=text)
def serve(address):
server = grpc.server(
futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024),
('grpc.max_send_message_length', 50 * 1024 * 1024),
('grpc.max_receive_message_length', 50 * 1024 * 1024),
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument("--addr", default="localhost:50051", help="The address to bind the server to.")
args = parser.parse_args()
serve(args.addr)