Files
LocalAI/backend/python/voxcpm/backend.py
Ettore Di Giacinto 9b973b79f6 feat: add VoxCPM tts backend (#8109)
* feat: add VoxCPM tts backend

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Disable voxcpm on arm64 cpu

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-28 14:44:04 +01:00

246 lines
9.4 KiB
Python

#!/usr/bin/env python3
"""
This is an extra gRPC server of LocalAI for VoxCPM
"""
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import traceback
import numpy as np
import soundfile as sf
from voxcpm import VoxCPM
import backend_pb2
import backend_pb2_grpc
import torch
import grpc
def is_float(s):
"""Check if a string can be converted to float."""
try:
float(s)
return True
except ValueError:
return False
def is_int(s):
"""Check if a string can be converted to int."""
try:
int(s)
return True
except ValueError:
return False
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
BackendServicer is the class that implements the gRPC service
"""
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
# Get device
if torch.cuda.is_available():
print("CUDA is available", file=sys.stderr)
device = "cuda"
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
# Normalize potential 'mpx' typo to 'mps'
if device == "mpx":
print("Note: device 'mpx' detected, treating it as 'mps'.", file=sys.stderr)
device = "mps"
# Validate mps availability if requested
if device == "mps" and not torch.backends.mps.is_available():
print("Warning: MPS not available. Falling back to CPU.", file=sys.stderr)
device = "cpu"
self.device = device
options = request.Options
# empty dict
self.options = {}
# The options are a list of strings in this form optname:optvalue
# We are storing all the options in a dict so we can use it later when
# generating the audio
for opt in options:
if ":" not in opt:
continue
key, value = opt.split(":", 1) # Split only on first colon
# if value is a number, convert it to the appropriate type
if is_float(value):
value = float(value)
elif is_int(value):
value = int(value)
elif value.lower() in ["true", "false"]:
value = value.lower() == "true"
self.options[key] = value
# Get model path from request
model_path = request.Model
if not model_path:
model_path = "openbmb/VoxCPM1.5"
try:
print(f"Loading model from {model_path}", file=sys.stderr)
self.model = VoxCPM.from_pretrained(model_path)
print(f"Model loaded successfully on device: {self.device}", file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def TTS(self, request, context):
try:
# Get generation parameters from options with defaults
cfg_value = self.options.get("cfg_value", 2.0)
inference_timesteps = self.options.get("inference_timesteps", 10)
normalize = self.options.get("normalize", False)
denoise = self.options.get("denoise", False)
retry_badcase = self.options.get("retry_badcase", True)
retry_badcase_max_times = self.options.get("retry_badcase_max_times", 3)
retry_badcase_ratio_threshold = self.options.get("retry_badcase_ratio_threshold", 6.0)
use_streaming = self.options.get("streaming", False)
# Handle voice cloning via prompt_wav_path and prompt_text
prompt_wav_path = None
prompt_text = None
# Priority: request.voice > AudioPath > options
if hasattr(request, 'voice') and request.voice:
# If voice is provided, try to use it as a path
if os.path.exists(request.voice):
prompt_wav_path = request.voice
elif hasattr(request, 'ModelFile') and request.ModelFile:
model_file_base = os.path.dirname(request.ModelFile)
potential_path = os.path.join(model_file_base, request.voice)
if os.path.exists(potential_path):
prompt_wav_path = potential_path
elif hasattr(request, 'ModelPath') and request.ModelPath:
potential_path = os.path.join(request.ModelPath, request.voice)
if os.path.exists(potential_path):
prompt_wav_path = potential_path
if hasattr(request, 'AudioPath') and request.AudioPath:
if os.path.isabs(request.AudioPath):
prompt_wav_path = request.AudioPath
elif hasattr(request, 'ModelFile') and request.ModelFile:
model_file_base = os.path.dirname(request.ModelFile)
prompt_wav_path = os.path.join(model_file_base, request.AudioPath)
elif hasattr(request, 'ModelPath') and request.ModelPath:
prompt_wav_path = os.path.join(request.ModelPath, request.AudioPath)
else:
prompt_wav_path = request.AudioPath
# Get prompt_text from options if available
if "prompt_text" in self.options:
prompt_text = self.options["prompt_text"]
# Prepare text
text = request.text.strip()
print(f"Generating audio with cfg_value: {cfg_value}, inference_timesteps: {inference_timesteps}, streaming: {use_streaming}", file=sys.stderr)
# Generate audio
if use_streaming:
# Streaming generation
chunks = []
for chunk in self.model.generate_streaming(
text=text,
prompt_wav_path=prompt_wav_path,
prompt_text=prompt_text,
cfg_value=cfg_value,
inference_timesteps=inference_timesteps,
normalize=normalize,
denoise=denoise,
retry_badcase=retry_badcase,
retry_badcase_max_times=retry_badcase_max_times,
retry_badcase_ratio_threshold=retry_badcase_ratio_threshold,
):
chunks.append(chunk)
wav = np.concatenate(chunks)
else:
# Non-streaming generation
wav = self.model.generate(
text=text,
prompt_wav_path=prompt_wav_path,
prompt_text=prompt_text,
cfg_value=cfg_value,
inference_timesteps=inference_timesteps,
normalize=normalize,
denoise=denoise,
retry_badcase=retry_badcase,
retry_badcase_max_times=retry_badcase_max_times,
retry_badcase_ratio_threshold=retry_badcase_ratio_threshold,
)
# Get sample rate from model
sample_rate = self.model.tts_model.sample_rate
# Save output
sf.write(request.dst, wav, sample_rate)
print(f"Saved output to {request.dst}", file=sys.stderr)
except Exception as err:
print(f"Error in TTS: {err}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)