mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-05 20:23:20 -05:00
Add Python gRPC backend using WhisperX for speech-to-text with word-level timestamps, forced alignment, and speaker diarization via pyannote-audio when HF_TOKEN is provided. Signed-off-by: eureka928 <meobius123@gmail.com>
170 lines
5.8 KiB
Python
170 lines
5.8 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
This is an extra gRPC server of LocalAI for WhisperX transcription
|
|
with speaker diarization, word-level timestamps, and forced alignment.
|
|
"""
|
|
from concurrent import futures
|
|
import time
|
|
import argparse
|
|
import signal
|
|
import sys
|
|
import os
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
|
|
import grpc
|
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
"""
|
|
BackendServicer is the class that implements the gRPC service
|
|
"""
|
|
def Health(self, request, context):
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
|
|
def LoadModel(self, request, context):
|
|
import whisperx
|
|
import torch
|
|
|
|
device = "cpu"
|
|
if request.CUDA:
|
|
device = "cuda"
|
|
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
|
if mps_available:
|
|
device = "mps"
|
|
|
|
try:
|
|
print("Preparing WhisperX model, please wait", file=sys.stderr)
|
|
compute_type = "float16" if device != "cpu" else "int8"
|
|
self.model = whisperx.load_model(
|
|
request.Model,
|
|
device,
|
|
compute_type=compute_type,
|
|
)
|
|
self.device = device
|
|
self.model_name = request.Model
|
|
|
|
# Store HF token for diarization if available
|
|
self.hf_token = os.environ.get("HF_TOKEN", None)
|
|
self.diarize_pipeline = None
|
|
|
|
# Cache for alignment models keyed by language code
|
|
self.align_cache = {}
|
|
|
|
print(f"WhisperX model loaded: {request.Model} on {device}", file=sys.stderr)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
def _get_align_model(self, language_code):
|
|
"""Load or return cached alignment model for a given language."""
|
|
import whisperx
|
|
if language_code not in self.align_cache:
|
|
model_a, metadata = whisperx.load_align_model(
|
|
language_code=language_code,
|
|
device=self.device,
|
|
)
|
|
self.align_cache[language_code] = (model_a, metadata)
|
|
return self.align_cache[language_code]
|
|
|
|
def AudioTranscription(self, request, context):
|
|
import whisperx
|
|
|
|
resultSegments = []
|
|
text = ""
|
|
try:
|
|
audio = whisperx.load_audio(request.dst)
|
|
|
|
# Transcribe
|
|
transcript = self.model.transcribe(
|
|
audio,
|
|
batch_size=16,
|
|
language=request.language if request.language else None,
|
|
)
|
|
|
|
# Align for word-level timestamps
|
|
model_a, metadata = self._get_align_model(transcript["language"])
|
|
transcript = whisperx.align(
|
|
transcript["segments"],
|
|
model_a,
|
|
metadata,
|
|
audio,
|
|
self.device,
|
|
return_char_alignments=False,
|
|
)
|
|
|
|
# Diarize if requested and HF token is available
|
|
if request.diarize and self.hf_token:
|
|
if self.diarize_pipeline is None:
|
|
self.diarize_pipeline = whisperx.DiarizationPipeline(
|
|
use_auth_token=self.hf_token,
|
|
device=self.device,
|
|
)
|
|
diarize_segments = self.diarize_pipeline(audio)
|
|
transcript = whisperx.assign_word_speakers(diarize_segments, transcript)
|
|
|
|
# Build result segments
|
|
for idx, seg in enumerate(transcript["segments"]):
|
|
seg_text = seg.get("text", "")
|
|
start = int(seg.get("start", 0))
|
|
end = int(seg.get("end", 0))
|
|
speaker = seg.get("speaker", "")
|
|
|
|
resultSegments.append(backend_pb2.TranscriptSegment(
|
|
id=idx,
|
|
start=start,
|
|
end=end,
|
|
text=seg_text,
|
|
speaker=speaker,
|
|
))
|
|
text += seg_text
|
|
|
|
except Exception as err:
|
|
print(f"Unexpected {err=}, {type(err)=}", file=sys.stderr)
|
|
return backend_pb2.TranscriptResult(segments=[], text="")
|
|
|
|
return backend_pb2.TranscriptResult(segments=resultSegments, text=text)
|
|
|
|
def serve(address):
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
|
|
options=[
|
|
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
|
|
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
|
|
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
|
|
])
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
server.add_insecure_port(address)
|
|
server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
# Define the signal handler function
|
|
def signal_handler(sig, frame):
|
|
print("Received termination signal. Shutting down...")
|
|
server.stop(0)
|
|
sys.exit(0)
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
try:
|
|
while True:
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
except KeyboardInterrupt:
|
|
server.stop(0)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
serve(args.addr)
|