from __future__ import annotations from typing import Dict, Any, Optional, Type, List from pydantic import BaseModel def pydantic_to_json_schema(model: Type[BaseModel], mode: str = "validation") -> Dict[str, Any]: """ Convert a Pydantic model to JSON Schema (OpenAPI 3.1 compatible). Uses Pydantic's built-in schema generation which produces JSON Schema Draft 2020-12 compatible output. Args: model: Pydantic BaseModel class mode: Schema mode - "validation" (for inputs) or "serialization" (for outputs) Returns: JSON Schema dictionary """ # Pydantic v2 uses model_json_schema() schema = model.model_json_schema(mode=mode) # Remove $defs if empty (cleaner output) if "$defs" in schema and not schema["$defs"]: del schema["$defs"] return schema def build_parameters(entry: Dict[str, Any]) -> List[Dict[str, Any]]: """Build OpenAPI parameters array from path and query params.""" parameters = [] # Path parameters for param in entry.get("path_params", []): parameters.append({ "name": param["name"], "in": "path", "required": True, "description": param.get("description", ""), "schema": param.get("schema", {"type": "string"}) }) # Query parameters for param in entry.get("query_params", []): parameters.append({ "name": param["name"], "in": "query", "required": param.get("required", False), "description": param.get("description", ""), "schema": param.get("schema", {"type": "string"}) }) return parameters def extract_definitions(schema: Dict[str, Any], definitions: Dict[str, Any]) -> Dict[str, Any]: """ Recursively extract $defs from a schema and move them to the definitions dict. Also rewrite $ref to point to #/components/schemas/. """ if not isinstance(schema, dict): return schema # Extract definitions if "$defs" in schema: for name, definition in schema["$defs"].items(): # Recursively process the definition itself before adding it definitions[name] = extract_definitions(definition, definitions) del schema["$defs"] # Rewrite references if "$ref" in schema and schema["$ref"].startswith("#/$defs/"): ref_name = schema["$ref"].split("/")[-1] schema["$ref"] = f"#/components/schemas/{ref_name}" # Recursively process properties for key, value in schema.items(): if isinstance(value, dict): schema[key] = extract_definitions(value, definitions) elif isinstance(value, list): schema[key] = [extract_definitions(item, definitions) for item in value] return schema def build_request_body( model: Optional[Type[BaseModel]], definitions: Dict[str, Any], allow_multipart_payload: bool = False ) -> Optional[Dict[str, Any]]: """Build OpenAPI requestBody from Pydantic model.""" if model is None: return None schema = pydantic_to_json_schema(model) schema = extract_definitions(schema, definitions) content = { "application/json": { "schema": schema } } if allow_multipart_payload: content["multipart/form-data"] = { "schema": schema } return { "required": True, "content": content } def strip_validation(schema: Dict[str, Any]) -> Dict[str, Any]: """ Recursively remove validation constraints from a JSON schema. Keeps structure and descriptions, but removes pattern, minLength, etc. This saves context tokens for LLMs which don't validate server output. """ if not isinstance(schema, dict): return schema # Keys to remove validation_keys = [ "pattern", "minLength", "maxLength", "minimum", "maximum", "exclusiveMinimum", "exclusiveMaximum", "multipleOf", "minItems", "maxItems", "uniqueItems", "minProperties", "maxProperties" ] clean_schema = {k: v for k, v in schema.items() if k not in validation_keys} # Recursively clean sub-schemas if "properties" in clean_schema: clean_schema["properties"] = { k: strip_validation(v) for k, v in clean_schema["properties"].items() } if "items" in clean_schema: clean_schema["items"] = strip_validation(clean_schema["items"]) if "allOf" in clean_schema: clean_schema["allOf"] = [strip_validation(x) for x in clean_schema["allOf"]] if "anyOf" in clean_schema: clean_schema["anyOf"] = [strip_validation(x) for x in clean_schema["anyOf"]] if "oneOf" in clean_schema: clean_schema["oneOf"] = [strip_validation(x) for x in clean_schema["oneOf"]] if "$defs" in clean_schema: clean_schema["$defs"] = { k: strip_validation(v) for k, v in clean_schema["$defs"].items() } if "additionalProperties" in clean_schema and isinstance(clean_schema["additionalProperties"], dict): clean_schema["additionalProperties"] = strip_validation(clean_schema["additionalProperties"]) return clean_schema def build_responses( response_model: Optional[Type[BaseModel]], definitions: Dict[str, Any] ) -> Dict[str, Any]: """Build OpenAPI responses object.""" responses = {} # Success response (200) if response_model: # Strip validation from response schema to save tokens schema = strip_validation(pydantic_to_json_schema(response_model, mode="serialization")) schema = extract_definitions(schema, definitions) responses["200"] = { "description": "Successful response", "content": { "application/json": { "schema": schema } } } else: responses["200"] = { "description": "Successful response", "content": { "application/json": { "schema": { "type": "object", "properties": { "success": {"type": "boolean"}, "message": {"type": "string"} } } } } } # Standard error responses - MINIMIZED context # Annotate that these errors can occur, but provide no schema/content to save tokens. # The LLM knows what "Bad Request" or "Not Found" means. error_codes = { "400": "Bad Request", "401": "Unauthorized", "403": "Forbidden", "404": "Not Found", "422": "Validation Error", "500": "Internal Server Error" } for code, desc in error_codes.items(): responses[code] = { "description": desc # No "content" schema provided } return responses