mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-02-19 15:18:12 -05:00
feat(type): provide structured annotations stubs (#663)
* feat(type): provide client stubs separation of concern for more brevity code base Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com> * docs: update changelog Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com> --------- Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
This commit is contained in:
@@ -1,12 +1,5 @@
|
||||
# mypy: disable-error-code="name-defined,no-redef"
|
||||
from __future__ import annotations
|
||||
import logging
|
||||
import typing as t
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from openllm_core._typing_compat import LiteralQuantise, overload
|
||||
from openllm_core.exceptions import MissingDependencyError
|
||||
from openllm_core.utils import (
|
||||
is_autoawq_available,
|
||||
@@ -15,35 +8,11 @@ from openllm_core.utils import (
|
||||
is_optimum_supports_gptq,
|
||||
)
|
||||
|
||||
if t.TYPE_CHECKING:
|
||||
from openllm_core._typing_compat import DictStrAny
|
||||
|
||||
from ._llm import LLM
|
||||
def infer_quantisation_config(llm, quantise, **attrs):
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@overload
|
||||
def infer_quantisation_config(
|
||||
self: LLM[t.Any, t.Any], quantise: t.Literal['int8', 'int4'], **attrs: t.Any
|
||||
) -> tuple[transformers.BitsAndBytesConfig, DictStrAny]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def infer_quantisation_config(
|
||||
self: LLM[t.Any, t.Any], quantise: t.Literal['gptq'], **attrs: t.Any
|
||||
) -> tuple[transformers.GPTQConfig, DictStrAny]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def infer_quantisation_config(
|
||||
self: LLM[t.Any, t.Any], quantise: t.Literal['awq'], **attrs: t.Any
|
||||
) -> tuple[transformers.AwqConfig, DictStrAny]: ...
|
||||
|
||||
|
||||
def infer_quantisation_config(
|
||||
self: LLM[t.Any, t.Any], quantise: LiteralQuantise, **attrs: t.Any
|
||||
) -> tuple[transformers.BitsAndBytesConfig | transformers.GPTQConfig | transformers.AwqConfig, DictStrAny]:
|
||||
# 8 bit configuration
|
||||
int8_threshold = attrs.pop('llm_int8_threshhold', 6.0)
|
||||
int8_enable_fp32_cpu_offload = attrs.pop('llm_int8_enable_fp32_cpu_offload', False)
|
||||
@@ -54,12 +23,17 @@ def infer_quantisation_config(
|
||||
bits = attrs.pop('bits', 4)
|
||||
group_size = attrs.pop('group_size', 128)
|
||||
|
||||
def create_awq_config() -> transformers.AwqConfig:
|
||||
# 4 bit configuration
|
||||
int4_compute_dtype = attrs.pop('bnb_4bit_compute_dtype', torch.bfloat16)
|
||||
int4_quant_type = attrs.pop('bnb_4bit_quant_type', 'nf4')
|
||||
int4_use_double_quant = attrs.pop('bnb_4bit_use_double_quant', True)
|
||||
|
||||
def create_awq_config():
|
||||
zero_point = attrs.pop('zero_point', True)
|
||||
return transformers.AwqConfig(bits=bits, group_size=group_size, zero_point=zero_point)
|
||||
|
||||
def create_gptq_config() -> transformers.GPTQConfig:
|
||||
gptq_tokenizer = attrs.pop('tokenizer', self.model_id)
|
||||
def create_gptq_config():
|
||||
gptq_tokenizer = attrs.pop('tokenizer', llm.model_id)
|
||||
gptq_dataset = attrs.pop('dataset', 'c4')
|
||||
gptq_damp_percent = attrs.pop('damp_percent', 0.1)
|
||||
gptq_desc_act = attrs.pop('desc_act', False)
|
||||
@@ -94,10 +68,9 @@ def infer_quantisation_config(
|
||||
exllama_config={'version': 1},
|
||||
) # XXX: See how to migrate to v2
|
||||
|
||||
def create_int8_config(int8_skip_modules: list[str] | None) -> transformers.BitsAndBytesConfig:
|
||||
def create_int8_config(int8_skip_modules):
|
||||
# if int8_skip_modules is None: int8_skip_modules = []
|
||||
# if 'lm_head' not in int8_skip_modules and self.config_class.__openllm_model_type__ == 'causal_lm':
|
||||
# logger.debug("Skipping 'lm_head' for quantization for %s", self.__name__)
|
||||
# int8_skip_modules.append('lm_head')
|
||||
return transformers.BitsAndBytesConfig(
|
||||
load_in_8bit=True,
|
||||
@@ -107,10 +80,13 @@ def infer_quantisation_config(
|
||||
llm_int8_has_fp16_weight=int8_has_fp16_weight,
|
||||
)
|
||||
|
||||
# 4 bit configuration
|
||||
int4_compute_dtype = attrs.pop('bnb_4bit_compute_dtype', torch.bfloat16)
|
||||
int4_quant_type = attrs.pop('bnb_4bit_quant_type', 'nf4')
|
||||
int4_use_double_quant = attrs.pop('bnb_4bit_use_double_quant', True)
|
||||
def create_int4_config():
|
||||
return transformers.BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=int4_compute_dtype,
|
||||
bnb_4bit_quant_type=int4_quant_type,
|
||||
bnb_4bit_use_double_quant=int4_use_double_quant,
|
||||
)
|
||||
|
||||
# NOTE: Quantization setup quantize is a openllm.LLM feature, where we can quantize the model with bitsandbytes or quantization aware training.
|
||||
if not is_bitsandbytes_available():
|
||||
@@ -120,23 +96,18 @@ def infer_quantisation_config(
|
||||
if quantise == 'int8':
|
||||
quantisation_config = create_int8_config(int8_skip_modules)
|
||||
elif quantise == 'int4':
|
||||
quantisation_config = transformers.BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=int4_compute_dtype,
|
||||
bnb_4bit_quant_type=int4_quant_type,
|
||||
bnb_4bit_use_double_quant=int4_use_double_quant,
|
||||
)
|
||||
quantisation_config = create_int4_config()
|
||||
elif quantise == 'gptq':
|
||||
if not is_autogptq_available() or not is_optimum_supports_gptq():
|
||||
raise MissingDependencyError(
|
||||
"'quantize=\"gptq\"' requires 'auto-gptq' and 'optimum>=0.12' to be installed (missing or failed to import). Make sure to do 'pip install \"openllm[gptq]\"'"
|
||||
"GPTQ requires 'auto-gptq' and 'optimum>=0.12' to be installed. Do it with 'pip install \"openllm[gptq]\"'"
|
||||
)
|
||||
else:
|
||||
quantisation_config = create_gptq_config()
|
||||
elif quantise == 'awq':
|
||||
if not is_autoawq_available():
|
||||
raise MissingDependencyError(
|
||||
"quantize='awq' requires 'auto-awq' to be installed (missing or failed to import). Make sure to do 'pip install \"openllm[awq]\"'."
|
||||
"AWQ requires 'auto-awq' to be installed. Do it with 'pip install \"openllm[awq]\"'."
|
||||
)
|
||||
else:
|
||||
quantisation_config = create_awq_config()
|
||||
|
||||
Reference in New Issue
Block a user