mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-02-19 07:06:02 -05:00
chore(logger): fix warnings and streamline style (#717)
Sorry but there are too much wasted spacing in `_llm.py`, and I'm unhappy and not productive anytime I look or want to do anything with it --------- Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com> Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -1,2 +1,2 @@
|
||||
# fmt: off
|
||||
if __name__ == '__main__':from openllm_cli.entrypoint import cli;cli() # noqa
|
||||
if __name__ == '__main__':from openllm_cli.entrypoint import cli;cli()
|
||||
|
||||
@@ -1,15 +1,8 @@
|
||||
from __future__ import annotations
|
||||
import functools
|
||||
import logging
|
||||
import os
|
||||
import functools, logging, os, warnings
|
||||
import typing as t
|
||||
|
||||
import attr
|
||||
import inflection
|
||||
import orjson
|
||||
|
||||
import bentoml
|
||||
import openllm
|
||||
import attr, inflection, orjson
|
||||
import bentoml, openllm
|
||||
from openllm_core._schemas import GenerationOutput
|
||||
from openllm_core._typing_compat import (
|
||||
AdapterMap,
|
||||
@@ -35,8 +28,6 @@ from openllm_core.utils import (
|
||||
flatten_attrs,
|
||||
gen_random_uuid,
|
||||
generate_hash_from_file,
|
||||
get_disable_warnings,
|
||||
get_quiet_mode,
|
||||
getenv,
|
||||
is_ctranslate_available,
|
||||
is_peft_available,
|
||||
@@ -49,365 +40,18 @@ from .exceptions import ForbiddenAttributeError, OpenLLMException
|
||||
from .serialisation.constants import PEFT_CONFIG_NAME
|
||||
|
||||
if t.TYPE_CHECKING:
|
||||
import torch
|
||||
import transformers
|
||||
import torch, transformers
|
||||
from peft.config import PeftConfig
|
||||
|
||||
from openllm_core._configuration import LLMConfig
|
||||
|
||||
from ._runners import Runner
|
||||
|
||||
ResolvedAdapterMap = t.Dict[AdapterType, t.Dict[str, t.Tuple['PeftConfig', str]]]
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def normalise_model_name(name: str) -> str:
|
||||
if validate_is_path(name):
|
||||
return os.path.basename(resolve_filepath(name))
|
||||
name = name.replace('/', '--')
|
||||
return inflection.dasherize(name)
|
||||
|
||||
|
||||
def _resolve_peft_config_type(adapter_map: dict[str, str]) -> AdapterMap:
|
||||
if not is_peft_available():
|
||||
raise RuntimeError("Requires 'peft' to be installed. Do 'pip install \"openllm[fine-tune]\"'")
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
resolved: AdapterMap = {}
|
||||
for path_or_adapter_id, name in adapter_map.items():
|
||||
if name is None:
|
||||
raise ValueError('Adapter name must be specified.')
|
||||
if os.path.isfile(os.path.join(path_or_adapter_id, PEFT_CONFIG_NAME)):
|
||||
config_file = os.path.join(path_or_adapter_id, PEFT_CONFIG_NAME)
|
||||
else:
|
||||
try:
|
||||
config_file = hf_hub_download(path_or_adapter_id, PEFT_CONFIG_NAME)
|
||||
except Exception as err:
|
||||
raise ValueError(f"Can't find '{PEFT_CONFIG_NAME}' at '{path_or_adapter_id}'") from err
|
||||
with open(config_file, 'r') as file:
|
||||
resolved_config = orjson.loads(file.read())
|
||||
# all peft_type should be available in PEFT_CONFIG_NAME
|
||||
_peft_type = resolved_config['peft_type'].lower()
|
||||
if _peft_type not in resolved:
|
||||
resolved[_peft_type] = ()
|
||||
resolved[_peft_type] += (_AdapterTuple((path_or_adapter_id, name, resolved_config)),)
|
||||
return resolved
|
||||
|
||||
|
||||
_reserved_namespace = {'model', 'tokenizer', 'runner', 'import_kwargs'}
|
||||
_AdapterTuple: type[AdapterTuple] = codegen.make_attr_tuple_class('AdapterTuple', ['adapter_id', 'name', 'config'])
|
||||
|
||||
|
||||
@functools.lru_cache(maxsize=1)
|
||||
def _torch_dtype_mapping():
|
||||
import torch
|
||||
|
||||
return {
|
||||
'half': torch.float16,
|
||||
'float': torch.float32,
|
||||
'float16': torch.float16,
|
||||
'float32': torch.float32,
|
||||
'bfloat16': torch.bfloat16,
|
||||
}
|
||||
ResolvedAdapterMap = t.Dict[AdapterType, t.Dict[str, t.Tuple['PeftConfig', str]]]
|
||||
|
||||
|
||||
@attr.define(slots=True, repr=False, init=False)
|
||||
class LLM(t.Generic[M, T], ReprMixin):
|
||||
_model_id: str
|
||||
_revision: str | None
|
||||
_quantization_config: transformers.BitsAndBytesConfig | transformers.GPTQConfig | transformers.AwqConfig | None
|
||||
_quantise: LiteralQuantise | None
|
||||
_model_decls: TupleAny
|
||||
__model_attrs: DictStrAny
|
||||
__tokenizer_attrs: DictStrAny
|
||||
_tag: bentoml.Tag
|
||||
_adapter_map: AdapterMap | None
|
||||
_serialisation: LiteralSerialisation
|
||||
_local: bool
|
||||
_max_model_len: int | None
|
||||
|
||||
__llm_dtype__: LiteralDtype | t.Literal['auto', 'half', 'float'] = 'auto'
|
||||
__llm_torch_dtype__: 'torch.dtype' = None
|
||||
__llm_config__: LLMConfig | None = None
|
||||
__llm_backend__: LiteralBackend = None # type: ignore
|
||||
__llm_quantization_config__: transformers.BitsAndBytesConfig | transformers.GPTQConfig | transformers.AwqConfig | None = None
|
||||
__llm_runner__: t.Optional[Runner[M, T]] = None
|
||||
__llm_model__: t.Optional[M] = None
|
||||
__llm_tokenizer__: t.Optional[T] = None
|
||||
__llm_adapter_map__: t.Optional[ResolvedAdapterMap] = None
|
||||
__llm_trust_remote_code__: bool = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_id,
|
||||
model_version=None,
|
||||
model_tag=None,
|
||||
llm_config=None,
|
||||
backend=None,
|
||||
*args,
|
||||
quantize=None,
|
||||
quantization_config=None,
|
||||
adapter_map=None,
|
||||
serialisation='safetensors',
|
||||
trust_remote_code=False,
|
||||
embedded=False,
|
||||
dtype='auto',
|
||||
low_cpu_mem_usage=True,
|
||||
max_model_len=None,
|
||||
_eager=True,
|
||||
**attrs,
|
||||
):
|
||||
# fmt: off
|
||||
torch_dtype = attrs.pop('torch_dtype',None) # backward compatible
|
||||
if torch_dtype is not None:logger.warning('The argument "torch_dtype" is deprecated and will be removed in the future. Please use "dtype" instead.');dtype=torch_dtype
|
||||
_local = False
|
||||
if validate_is_path(model_id):model_id,_local=resolve_filepath(model_id),True
|
||||
backend=first_not_none(getenv('backend',default=backend),default=self._cascade_backend())
|
||||
dtype=first_not_none(getenv('dtype',default=dtype,var=['TORCH_DTYPE']),default='auto')
|
||||
quantize=first_not_none(getenv('quantize',default=quantize,var=['QUANITSE']),default=None)
|
||||
attrs.update({'low_cpu_mem_usage':low_cpu_mem_usage})
|
||||
# parsing tokenizer and model kwargs, as the hierarchy is param pass > default
|
||||
model_attrs, tokenizer_attrs = flatten_attrs(**attrs)
|
||||
if model_tag is None:
|
||||
model_tag,model_version=self._make_tag_components(model_id,model_version,backend=backend)
|
||||
if model_version:model_tag=f'{model_tag}:{model_version}'
|
||||
# fmt: on
|
||||
|
||||
self.__attrs_init__(
|
||||
model_id=model_id,
|
||||
revision=model_version,
|
||||
tag=bentoml.Tag.from_taglike(model_tag),
|
||||
quantization_config=quantization_config,
|
||||
quantise=self._resolve_quantise(quantize, backend),
|
||||
model_decls=args,
|
||||
adapter_map=_resolve_peft_config_type(adapter_map) if adapter_map is not None else None,
|
||||
serialisation=serialisation,
|
||||
local=_local,
|
||||
max_model_len=max_model_len,
|
||||
LLM__model_attrs=model_attrs,
|
||||
LLM__tokenizer_attrs=tokenizer_attrs,
|
||||
llm_dtype__=dtype.lower(),
|
||||
llm_backend__=backend,
|
||||
llm_config__=llm_config,
|
||||
llm_trust_remote_code__=trust_remote_code,
|
||||
)
|
||||
|
||||
if _eager:
|
||||
try:
|
||||
model = bentoml.models.get(self.tag)
|
||||
except bentoml.exceptions.NotFound:
|
||||
model = openllm.serialisation.import_model(self, trust_remote_code=self.trust_remote_code)
|
||||
# resolve the tag
|
||||
self._tag = model.tag
|
||||
if not _eager and embedded:
|
||||
raise RuntimeError("Embedded mode is not supported when '_eager' is False.")
|
||||
if embedded and not get_disable_warnings() and not get_quiet_mode():
|
||||
logger.warning(
|
||||
'You are using embedded mode, which means the models will be loaded into memory. This is often not recommended in production and should only be used for local development only.'
|
||||
)
|
||||
self.runner.init_local(quiet=True)
|
||||
|
||||
# fmt: off
|
||||
def _resolve_quantise(self, quantise, backend):
|
||||
if backend in ('pt', 'vllm'):return quantise
|
||||
if backend=='ctranslate':return self._resolve_ctranslate_quantise(quantise)
|
||||
raise NotImplementedError(f"Quantisation is not supported for backend '{backend}'")
|
||||
def _resolve_ctranslate_quantise(self,quantise):
|
||||
if quantise in {'int4', 'awq', 'gptq', 'squeezellm'}:raise ValueError(f"Quantisation '{quantise}' is not supported for backend 'ctranslate'")
|
||||
if quantise == 'int8':quantise='int8_float16' if self._has_gpus else 'int8_float32'
|
||||
return quantise
|
||||
@apply(lambda val:tuple(str.lower(i) if i else i for i in val))
|
||||
def _make_tag_components(self,model_id:str,model_version:str|None,backend:str)->tuple[str,str|None]:
|
||||
model_id,*maybe_revision=model_id.rsplit(':')
|
||||
if len(maybe_revision)>0:
|
||||
if model_version is not None:logger.warning("revision is specified within 'model_id' (%s), and 'model_version=%s' will be ignored.",maybe_revision[0],model_version)
|
||||
model_version = maybe_revision[0]
|
||||
if validate_is_path(model_id):model_id,model_version=resolve_filepath(model_id),first_not_none(model_version,default=generate_hash_from_file(model_id))
|
||||
return f'{backend}-{normalise_model_name(model_id)}',model_version
|
||||
@functools.cached_property
|
||||
def _has_gpus(self):
|
||||
try:
|
||||
from cuda import cuda
|
||||
err,*_=cuda.cuInit(0)
|
||||
if err!=cuda.CUresult.CUDA_SUCCESS:raise RuntimeError('Failed to initialise CUDA runtime binding.')
|
||||
err,num_gpus=cuda.cuDeviceGetCount()
|
||||
if err!=cuda.CUresult.CUDA_SUCCESS:raise RuntimeError('Failed to get CUDA device count.')
|
||||
return True
|
||||
except (ImportError, RuntimeError):return False
|
||||
@property
|
||||
def _torch_dtype(self):
|
||||
import torch, transformers # noqa: I001
|
||||
_map=_torch_dtype_mapping()
|
||||
if not isinstance(self.__llm_torch_dtype__,torch.dtype):
|
||||
try:hf_config=transformers.AutoConfig.from_pretrained(self.bentomodel.path,trust_remote_code=self.trust_remote_code)
|
||||
except OpenLLMException:hf_config=transformers.AutoConfig.from_pretrained(self.model_id,trust_remote_code=self.trust_remote_code)
|
||||
config_dtype=getattr(hf_config,'torch_dtype',None)
|
||||
if config_dtype is None:config_dtype=torch.float32
|
||||
if self.__llm_dtype__=='auto':
|
||||
if config_dtype==torch.float32:torch_dtype=torch.float16
|
||||
else:torch_dtype=config_dtype
|
||||
else:
|
||||
if self.__llm_dtype__ not in _map:raise ValueError(f"Unknown dtype '{self.__llm_dtype__}'")
|
||||
torch_dtype=_map[self.__llm_dtype__]
|
||||
self.__llm_torch_dtype__=torch_dtype
|
||||
return self.__llm_torch_dtype__
|
||||
@property
|
||||
def _model_attrs(self):return {**self.import_kwargs[0],**self.__model_attrs}
|
||||
@_model_attrs.setter
|
||||
def _model_attrs(self, value):self.__model_attrs = value
|
||||
@property
|
||||
def _tokenizer_attrs(self):return {**self.import_kwargs[1],**self.__tokenizer_attrs}
|
||||
def _cascade_backend(self)->LiteralBackend:
|
||||
if self._has_gpus:
|
||||
if is_vllm_available():return 'vllm'
|
||||
elif is_ctranslate_available():return 'ctranslate' # XXX: base OpenLLM image should always include vLLM
|
||||
elif is_ctranslate_available():return 'ctranslate'
|
||||
else:return 'pt'
|
||||
def __setattr__(self,attr,value):
|
||||
if attr in _reserved_namespace:raise ForbiddenAttributeError(f'{attr} should not be set during runtime.')
|
||||
super().__setattr__(attr, value)
|
||||
def __del__(self):del self.__llm_model__,self.__llm_tokenizer__,self.__llm_adapter_map__
|
||||
@property
|
||||
def __repr_keys__(self):return {'model_id','revision','backend','type'}
|
||||
def __repr_args__(self):
|
||||
yield 'model_id',self._model_id if not self._local else self.tag.name
|
||||
yield 'revision',self._revision if self._revision else self.tag.version
|
||||
yield 'backend',self.__llm_backend__
|
||||
yield 'type',self.llm_type
|
||||
@property
|
||||
def import_kwargs(self):return {'device_map':'auto' if self._has_gpus else None,'torch_dtype':self._torch_dtype},{'padding_side':'left','truncation_side':'left'}
|
||||
@property
|
||||
def trust_remote_code(self):
|
||||
env=os.getenv('TRUST_REMOTE_CODE')
|
||||
if env is not None:return str(env).upper() in ENV_VARS_TRUE_VALUES
|
||||
return self.__llm_trust_remote_code__
|
||||
@property
|
||||
def model_id(self):return self._model_id
|
||||
@property
|
||||
def revision(self):return self._revision
|
||||
@property
|
||||
def tag(self):return self._tag
|
||||
@property
|
||||
def bentomodel(self):return openllm.serialisation.get(self)
|
||||
@property
|
||||
def quantization_config(self):
|
||||
if self.__llm_quantization_config__ is None:
|
||||
from ._quantisation import infer_quantisation_config
|
||||
if self._quantization_config is not None:self.__llm_quantization_config__ = self._quantization_config
|
||||
elif self._quantise is not None:self.__llm_quantization_config__, self._model_attrs = infer_quantisation_config(self,self._quantise,**self._model_attrs)
|
||||
else:raise ValueError("Either 'quantization_config' or 'quantise' must be specified.")
|
||||
return self.__llm_quantization_config__
|
||||
@property
|
||||
def has_adapters(self):return self._adapter_map is not None
|
||||
@property
|
||||
def local(self):return self._local
|
||||
@property
|
||||
def quantise(self):return self._quantise
|
||||
@property
|
||||
def llm_type(self):return normalise_model_name(self._model_id)
|
||||
@property
|
||||
def llm_parameters(self):return (self._model_decls,self._model_attrs),self._tokenizer_attrs
|
||||
@property
|
||||
def identifying_params(self):return {'configuration':self.config.model_dump_json().decode(),'model_ids':orjson.dumps(self.config['model_ids']).decode(),'model_id':self.model_id}
|
||||
@property
|
||||
def tokenizer(self):
|
||||
if self.__llm_tokenizer__ is None:self.__llm_tokenizer__=openllm.serialisation.load_tokenizer(self, **self.llm_parameters[-1])
|
||||
return self.__llm_tokenizer__
|
||||
@property
|
||||
def runner(self):
|
||||
from ._runners import runner
|
||||
if self.__llm_runner__ is None:self.__llm_runner__=runner(self)
|
||||
return self.__llm_runner__
|
||||
def prepare(self,adapter_type='lora',use_gradient_checking=True,**attrs):
|
||||
if self.__llm_backend__!='pt':raise RuntimeError('Fine tuning is only supported for PyTorch backend.')
|
||||
from peft.mapping import get_peft_model
|
||||
from peft.utils.other import prepare_model_for_kbit_training
|
||||
model=get_peft_model(
|
||||
prepare_model_for_kbit_training(self.model,use_gradient_checkpointing=use_gradient_checking),
|
||||
self.config['fine_tune_strategies']
|
||||
.get(adapter_type,self.config.make_fine_tune_config(adapter_type))
|
||||
.train()
|
||||
.with_config(**attrs)
|
||||
.build(),
|
||||
)
|
||||
if DEBUG:model.print_trainable_parameters()
|
||||
return model,self.tokenizer
|
||||
def prepare_for_training(self,*args,**attrs):logger.warning('`prepare_for_training` is deprecated and will be removed in the future. Please use `prepare` instead.');return self.prepare(*args,**attrs)
|
||||
# fmt: on
|
||||
|
||||
@property
|
||||
def adapter_map(self):
|
||||
if not is_peft_available():
|
||||
raise MissingDependencyError("Failed to import 'peft'. Make sure to do 'pip install \"openllm[fine-tune]\"'")
|
||||
if not self.has_adapters:
|
||||
raise AttributeError('Adapter map is not available.')
|
||||
assert self._adapter_map is not None
|
||||
if self.__llm_adapter_map__ is None:
|
||||
_map: ResolvedAdapterMap = {k: {} for k in self._adapter_map}
|
||||
for adapter_type, adapter_tuple in self._adapter_map.items():
|
||||
base = first_not_none(
|
||||
self.config['fine_tune_strategies'].get(adapter_type),
|
||||
default=self.config.make_fine_tune_config(adapter_type),
|
||||
)
|
||||
for adapter in adapter_tuple:
|
||||
_map[adapter_type][adapter.name] = (base.with_config(**adapter.config).build(), adapter.adapter_id)
|
||||
self.__llm_adapter_map__ = _map
|
||||
return self.__llm_adapter_map__
|
||||
|
||||
@property
|
||||
def model(self):
|
||||
if self.__llm_model__ is None:
|
||||
model = openllm.serialisation.load_model(self, *self._model_decls, **self._model_attrs)
|
||||
# If OOM, then it is probably you don't have enough VRAM to run this model.
|
||||
if self.__llm_backend__ == 'pt':
|
||||
import torch
|
||||
|
||||
loaded_in_kbit = (
|
||||
getattr(model, 'is_loaded_in_8bit', False)
|
||||
or getattr(model, 'is_loaded_in_4bit', False)
|
||||
or getattr(model, 'is_quantized', False)
|
||||
)
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() == 1 and not loaded_in_kbit:
|
||||
try:
|
||||
model = model.to('cuda')
|
||||
except Exception as err:
|
||||
raise OpenLLMException(f'Failed to load model into GPU: {err}.\n') from err
|
||||
if self.has_adapters:
|
||||
logger.debug('Applying the following adapters: %s', self.adapter_map)
|
||||
for adapter_dict in self.adapter_map.values():
|
||||
for adapter_name, (peft_config, peft_model_id) in adapter_dict.items():
|
||||
model.load_adapter(peft_model_id, adapter_name, peft_config=peft_config)
|
||||
self.__llm_model__ = model
|
||||
return self.__llm_model__
|
||||
|
||||
@property
|
||||
def config(self):
|
||||
import transformers
|
||||
|
||||
if self.__llm_config__ is None:
|
||||
if self.__llm_backend__ == 'ctranslate':
|
||||
try:
|
||||
config = transformers.AutoConfig.from_pretrained(
|
||||
self.bentomodel.path_of('/hf'), trust_remote_code=self.trust_remote_code
|
||||
)
|
||||
except OpenLLMException:
|
||||
config = transformers.AutoConfig.from_pretrained(self.model_id, trust_remote_code=self.trust_remote_code)
|
||||
for architecture in config.architectures:
|
||||
if architecture in openllm.AutoConfig._CONFIG_MAPPING_NAMES_TO_ARCHITECTURE():
|
||||
config = openllm.AutoConfig.infer_class_from_name(
|
||||
openllm.AutoConfig._CONFIG_MAPPING_NAMES_TO_ARCHITECTURE()[architecture]
|
||||
).model_construct_env(**self._model_attrs)
|
||||
break
|
||||
else:
|
||||
raise OpenLLMException(
|
||||
f"Failed to infer the configuration class from the given model. Make sure the model is a supported model. Supported models are: {', '.join(openllm.AutoConfig._CONFIG_MAPPING_NAMES_TO_ARCHITECTURE.keys())}"
|
||||
)
|
||||
else:
|
||||
config = openllm.AutoConfig.infer_class_from_llm(self).model_construct_env(**self._model_attrs)
|
||||
self.__llm_config__ = config
|
||||
return self.__llm_config__
|
||||
|
||||
async def generate(
|
||||
self, prompt, prompt_token_ids=None, stop=None, stop_token_ids=None, request_id=None, adapter_name=None, **attrs
|
||||
) -> GenerationOutput:
|
||||
@@ -495,3 +139,325 @@ class LLM(t.Generic[M, T], ReprMixin):
|
||||
yield generated.with_options(outputs=delta_outputs)
|
||||
except Exception as err:
|
||||
raise RuntimeError(f'Exception caught during generation: {err}') from err
|
||||
|
||||
# NOTE: If you are here to see how generate_iterator and generate works, see above.
|
||||
# The below are mainly for internal implementation that you don't have to worry about.
|
||||
# fmt: off
|
||||
|
||||
_model_id:str
|
||||
_revision:t.Optional[str]
|
||||
_quantization_config:t.Optional[t.Union[transformers.BitsAndBytesConfig,transformers.GPTQConfig,transformers.AwqConfig]]
|
||||
_quantise: t.Optional[LiteralQuantise]
|
||||
_model_decls:TupleAny
|
||||
__model_attrs:DictStrAny
|
||||
__tokenizer_attrs:DictStrAny
|
||||
_tag:bentoml.Tag
|
||||
_adapter_map:t.Optional[AdapterMap]
|
||||
_serialisation:LiteralSerialisation
|
||||
_local:bool
|
||||
_max_model_len:t.Optional[int]
|
||||
|
||||
__llm_dtype__: t.Union[LiteralDtype,t.Literal['auto', 'half', 'float']]='auto'
|
||||
__llm_torch_dtype__:'torch.dtype'=None
|
||||
__llm_config__:t.Optional[LLMConfig]=None
|
||||
__llm_backend__:LiteralBackend=None
|
||||
__llm_quantization_config__:t.Optional[t.Union[transformers.BitsAndBytesConfig,transformers.GPTQConfig,transformers.AwqConfig]]=None
|
||||
__llm_runner__:t.Optional[Runner[M, T]]=None
|
||||
__llm_model__:t.Optional[M]=None
|
||||
__llm_tokenizer__:t.Optional[T]=None
|
||||
__llm_adapter_map__:t.Optional[ResolvedAdapterMap]=None
|
||||
__llm_trust_remote_code__:bool=False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_id,
|
||||
model_version=None,
|
||||
model_tag=None,
|
||||
llm_config=None,
|
||||
backend=None,
|
||||
*args,
|
||||
quantize=None,
|
||||
quantization_config=None,
|
||||
adapter_map=None,
|
||||
serialisation='safetensors',
|
||||
trust_remote_code=False,
|
||||
embedded=False,
|
||||
dtype='auto',
|
||||
low_cpu_mem_usage=True,
|
||||
max_model_len=None,
|
||||
_eager=True,
|
||||
**attrs,
|
||||
):
|
||||
torch_dtype=attrs.pop('torch_dtype',None) # backward compatible
|
||||
if torch_dtype is not None:warnings.warns('The argument "torch_dtype" is deprecated and will be removed in the future. Please use "dtype" instead.',DeprecationWarning,stacklevel=3);dtype=torch_dtype
|
||||
_local = False
|
||||
if validate_is_path(model_id):model_id,_local=resolve_filepath(model_id),True
|
||||
backend=first_not_none(getenv('backend',default=backend),default=self._cascade_backend())
|
||||
dtype=first_not_none(getenv('dtype',default=dtype,var=['TORCH_DTYPE']),default='auto')
|
||||
quantize=first_not_none(getenv('quantize',default=quantize,var=['QUANITSE']),default=None)
|
||||
attrs.update({'low_cpu_mem_usage':low_cpu_mem_usage})
|
||||
# parsing tokenizer and model kwargs, as the hierarchy is param pass > default
|
||||
model_attrs,tokenizer_attrs=flatten_attrs(**attrs)
|
||||
if model_tag is None:
|
||||
model_tag,model_version=self._make_tag_components(model_id,model_version,backend=backend)
|
||||
if model_version:model_tag=f'{model_tag}:{model_version}'
|
||||
|
||||
self.__attrs_init__(
|
||||
model_id=model_id,
|
||||
revision=model_version,
|
||||
tag=bentoml.Tag.from_taglike(model_tag),
|
||||
quantization_config=quantization_config,
|
||||
quantise=getattr(self._Quantise,backend)(self,quantize),
|
||||
model_decls=args,
|
||||
adapter_map=convert_peft_config_type(adapter_map) if adapter_map is not None else None,
|
||||
serialisation=serialisation,
|
||||
local=_local,
|
||||
max_model_len=max_model_len,
|
||||
LLM__model_attrs=model_attrs,
|
||||
LLM__tokenizer_attrs=tokenizer_attrs,
|
||||
llm_dtype__=dtype.lower(),
|
||||
llm_backend__=backend,
|
||||
llm_config__=llm_config,
|
||||
llm_trust_remote_code__=trust_remote_code,
|
||||
)
|
||||
|
||||
if _eager:
|
||||
try:
|
||||
model=bentoml.models.get(self.tag)
|
||||
except bentoml.exceptions.NotFound:
|
||||
model=openllm.serialisation.import_model(self,trust_remote_code=self.trust_remote_code)
|
||||
# resolve the tag
|
||||
self._tag=model.tag
|
||||
if not _eager and embedded:raise RuntimeError("Embedded mode is not supported when '_eager' is False.")
|
||||
if embedded:logger.warning('Models will be loaded into memory. NOT RECOMMENDED in production and SHOULD ONLY used for development.');self.runner.init_local(quiet=True)
|
||||
class _Quantise:
|
||||
@staticmethod
|
||||
def pt(llm:LLM,quantise=None):return quantise
|
||||
@staticmethod
|
||||
def vllm(llm:LLM,quantise=None):return quantise
|
||||
@staticmethod
|
||||
def ctranslate(llm:LLM,quantise=None):
|
||||
if quantise in {'int4','awq','gptq','squeezellm'}:raise ValueError(f"Quantisation '{quantise}' is not supported for backend 'ctranslate'")
|
||||
if quantise=='int8':quantise='int8_float16' if llm._has_gpus else 'int8_float32'
|
||||
return quantise
|
||||
@apply(lambda val:tuple(str.lower(i) if i else i for i in val))
|
||||
def _make_tag_components(self,model_id:str,model_version:str|None,backend:str)->tuple[str,str|None]:
|
||||
model_id,*maybe_revision=model_id.rsplit(':')
|
||||
if len(maybe_revision)>0:
|
||||
if model_version is not None:logger.warning("revision is specified within 'model_id' (%s), and 'model_version=%s' will be ignored.",maybe_revision[0],model_version)
|
||||
model_version = maybe_revision[0]
|
||||
if validate_is_path(model_id):model_id,model_version=resolve_filepath(model_id),first_not_none(model_version,default=generate_hash_from_file(model_id))
|
||||
return f'{backend}-{normalise_model_name(model_id)}',model_version
|
||||
@functools.cached_property
|
||||
def _has_gpus(self):
|
||||
try:
|
||||
from cuda import cuda
|
||||
err,*_=cuda.cuInit(0)
|
||||
if err!=cuda.CUresult.CUDA_SUCCESS:raise RuntimeError('Failed to initialise CUDA runtime binding.')
|
||||
err,num_gpus=cuda.cuDeviceGetCount()
|
||||
if err!=cuda.CUresult.CUDA_SUCCESS:raise RuntimeError('Failed to get CUDA device count.')
|
||||
return True
|
||||
except (ImportError, RuntimeError):return False
|
||||
@property
|
||||
def _torch_dtype(self):
|
||||
import torch, transformers
|
||||
_map=_torch_dtype_mapping()
|
||||
if not isinstance(self.__llm_torch_dtype__,torch.dtype):
|
||||
try:hf_config=transformers.AutoConfig.from_pretrained(self.bentomodel.path,trust_remote_code=self.trust_remote_code)
|
||||
except OpenLLMException:hf_config=transformers.AutoConfig.from_pretrained(self.model_id,trust_remote_code=self.trust_remote_code)
|
||||
config_dtype=getattr(hf_config,'torch_dtype',None)
|
||||
if config_dtype is None:config_dtype=torch.float32
|
||||
if self.__llm_dtype__=='auto':
|
||||
if config_dtype==torch.float32:torch_dtype=torch.float16
|
||||
else:torch_dtype=config_dtype
|
||||
else:
|
||||
if self.__llm_dtype__ not in _map:raise ValueError(f"Unknown dtype '{self.__llm_dtype__}'")
|
||||
torch_dtype=_map[self.__llm_dtype__]
|
||||
self.__llm_torch_dtype__=torch_dtype
|
||||
return self.__llm_torch_dtype__
|
||||
@property
|
||||
def _model_attrs(self):return {**self.import_kwargs[0],**self.__model_attrs}
|
||||
@_model_attrs.setter
|
||||
def _model_attrs(self, value):self.__model_attrs = value
|
||||
@property
|
||||
def _tokenizer_attrs(self):return {**self.import_kwargs[1],**self.__tokenizer_attrs}
|
||||
def _cascade_backend(self)->LiteralBackend:
|
||||
if self._has_gpus:
|
||||
if is_vllm_available():return 'vllm'
|
||||
elif is_ctranslate_available():return 'ctranslate' # XXX: base OpenLLM image should always include vLLM
|
||||
elif is_ctranslate_available():return 'ctranslate'
|
||||
else:return 'pt'
|
||||
def __setattr__(self,attr,value):
|
||||
if attr in {'model', 'tokenizer', 'runner', 'import_kwargs'}:raise ForbiddenAttributeError(f'{attr} should not be set during runtime.')
|
||||
super().__setattr__(attr, value)
|
||||
def __del__(self):del self.__llm_model__,self.__llm_tokenizer__,self.__llm_adapter_map__
|
||||
@property
|
||||
def __repr_keys__(self):return {'model_id','revision','backend','type'}
|
||||
def __repr_args__(self):
|
||||
yield 'model_id',self._model_id if not self._local else self.tag.name
|
||||
yield 'revision',self._revision if self._revision else self.tag.version
|
||||
yield 'backend',self.__llm_backend__
|
||||
yield 'type',self.llm_type
|
||||
@property
|
||||
def import_kwargs(self):return {'device_map':'auto' if self._has_gpus else None,'torch_dtype':self._torch_dtype},{'padding_side':'left','truncation_side':'left'}
|
||||
@property
|
||||
def trust_remote_code(self):
|
||||
env=os.getenv('TRUST_REMOTE_CODE')
|
||||
if env is not None:return str(env).upper() in ENV_VARS_TRUE_VALUES
|
||||
return self.__llm_trust_remote_code__
|
||||
@property
|
||||
def model_id(self):return self._model_id
|
||||
@property
|
||||
def revision(self):return self._revision
|
||||
@property
|
||||
def tag(self):return self._tag
|
||||
@property
|
||||
def bentomodel(self):return openllm.serialisation.get(self)
|
||||
@property
|
||||
def quantization_config(self):
|
||||
if self.__llm_quantization_config__ is None:
|
||||
from ._quantisation import infer_quantisation_config
|
||||
if self._quantization_config is not None:self.__llm_quantization_config__ = self._quantization_config
|
||||
elif self._quantise is not None:self.__llm_quantization_config__, self._model_attrs = infer_quantisation_config(self,self._quantise,**self._model_attrs)
|
||||
else:raise ValueError("Either 'quantization_config' or 'quantise' must be specified.")
|
||||
return self.__llm_quantization_config__
|
||||
@property
|
||||
def has_adapters(self):return self._adapter_map is not None
|
||||
@property
|
||||
def local(self):return self._local
|
||||
@property
|
||||
def quantise(self):return self._quantise
|
||||
@property
|
||||
def llm_type(self):return normalise_model_name(self._model_id)
|
||||
@property
|
||||
def llm_parameters(self):return (self._model_decls,self._model_attrs),self._tokenizer_attrs
|
||||
@property
|
||||
def identifying_params(self):return {'configuration':self.config.model_dump_json().decode(),'model_ids':orjson.dumps(self.config['model_ids']).decode(),'model_id':self.model_id}
|
||||
@property
|
||||
def tokenizer(self):
|
||||
if self.__llm_tokenizer__ is None:self.__llm_tokenizer__=openllm.serialisation.load_tokenizer(self, **self.llm_parameters[-1])
|
||||
return self.__llm_tokenizer__
|
||||
@property
|
||||
def runner(self):
|
||||
from ._runners import runner
|
||||
if self.__llm_runner__ is None:self.__llm_runner__=runner(self)
|
||||
return self.__llm_runner__
|
||||
def prepare(self,adapter_type='lora',use_gradient_checking=True,**attrs):
|
||||
if self.__llm_backend__!='pt':raise RuntimeError('Fine tuning is only supported for PyTorch backend.')
|
||||
from peft.mapping import get_peft_model
|
||||
from peft.utils.other import prepare_model_for_kbit_training
|
||||
model=get_peft_model(
|
||||
prepare_model_for_kbit_training(self.model,use_gradient_checkpointing=use_gradient_checking),
|
||||
self.config['fine_tune_strategies']
|
||||
.get(adapter_type,self.config.make_fine_tune_config(adapter_type))
|
||||
.train()
|
||||
.with_config(**attrs)
|
||||
.build(),
|
||||
)
|
||||
if DEBUG:model.print_trainable_parameters()
|
||||
return model,self.tokenizer
|
||||
def prepare_for_training(self,*args,**attrs):logger.warning('`prepare_for_training` is deprecated and will be removed in the future. Please use `prepare` instead.');return self.prepare(*args,**attrs)
|
||||
|
||||
@property
|
||||
def adapter_map(self):
|
||||
if not is_peft_available():
|
||||
raise MissingDependencyError("Failed to import 'peft'. Make sure to do 'pip install \"openllm[fine-tune]\"'")
|
||||
if not self.has_adapters:
|
||||
raise AttributeError('Adapter map is not available.')
|
||||
assert self._adapter_map is not None
|
||||
if self.__llm_adapter_map__ is None:
|
||||
_map: ResolvedAdapterMap = {k: {} for k in self._adapter_map}
|
||||
for adapter_type, adapter_tuple in self._adapter_map.items():
|
||||
base = first_not_none(
|
||||
self.config['fine_tune_strategies'].get(adapter_type),
|
||||
default=self.config.make_fine_tune_config(adapter_type),
|
||||
)
|
||||
for adapter in adapter_tuple:
|
||||
_map[adapter_type][adapter.name] = (base.with_config(**adapter.config).build(), adapter.adapter_id)
|
||||
self.__llm_adapter_map__ = _map
|
||||
return self.__llm_adapter_map__
|
||||
|
||||
@property
|
||||
def model(self):
|
||||
if self.__llm_model__ is None:
|
||||
model = openllm.serialisation.load_model(self, *self._model_decls, **self._model_attrs)
|
||||
# If OOM, then it is probably you don't have enough VRAM to run this model.
|
||||
if self.__llm_backend__ == 'pt':
|
||||
import torch
|
||||
|
||||
loaded_in_kbit = (
|
||||
getattr(model, 'is_loaded_in_8bit', False)
|
||||
or getattr(model, 'is_loaded_in_4bit', False)
|
||||
or getattr(model, 'is_quantized', False)
|
||||
)
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() == 1 and not loaded_in_kbit:
|
||||
try:
|
||||
model = model.to('cuda')
|
||||
except Exception as err:
|
||||
raise OpenLLMException(f'Failed to load model into GPU: {err}.\n') from err
|
||||
if self.has_adapters:
|
||||
logger.debug('Applying the following adapters: %s', self.adapter_map)
|
||||
for adapter_dict in self.adapter_map.values():
|
||||
for adapter_name, (peft_config, peft_model_id) in adapter_dict.items():
|
||||
model.load_adapter(peft_model_id, adapter_name, peft_config=peft_config)
|
||||
self.__llm_model__ = model
|
||||
return self.__llm_model__
|
||||
|
||||
@property
|
||||
def config(self):
|
||||
import transformers
|
||||
|
||||
if self.__llm_config__ is None:
|
||||
if self.__llm_backend__ == 'ctranslate':
|
||||
try:
|
||||
config = transformers.AutoConfig.from_pretrained(
|
||||
self.bentomodel.path_of('/hf'), trust_remote_code=self.trust_remote_code
|
||||
)
|
||||
except OpenLLMException:
|
||||
config = transformers.AutoConfig.from_pretrained(self.model_id, trust_remote_code=self.trust_remote_code)
|
||||
for architecture in config.architectures:
|
||||
if architecture in openllm.AutoConfig._CONFIG_MAPPING_NAMES_TO_ARCHITECTURE():
|
||||
config = openllm.AutoConfig.infer_class_from_name(
|
||||
openllm.AutoConfig._CONFIG_MAPPING_NAMES_TO_ARCHITECTURE()[architecture]
|
||||
).model_construct_env(**self._model_attrs)
|
||||
break
|
||||
else:
|
||||
raise OpenLLMException(
|
||||
f"Failed to infer the configuration class from the given model. Make sure the model is a supported model. Supported models are: {', '.join(openllm.AutoConfig._CONFIG_MAPPING_NAMES_TO_ARCHITECTURE.keys())}"
|
||||
)
|
||||
else:
|
||||
config = openllm.AutoConfig.infer_class_from_llm(self).model_construct_env(**self._model_attrs)
|
||||
self.__llm_config__ = config
|
||||
return self.__llm_config__
|
||||
|
||||
|
||||
# fmt: off
|
||||
@functools.lru_cache(maxsize=1)
|
||||
def _torch_dtype_mapping()->dict[str,torch.dtype]:
|
||||
import torch; return {
|
||||
'half': torch.float16,
|
||||
'float': torch.float32,
|
||||
'float16': torch.float16,
|
||||
'float32': torch.float32,
|
||||
'bfloat16': torch.bfloat16,
|
||||
}
|
||||
def normalise_model_name(name:str)->str:return os.path.basename(resolve_filepath(name)) if validate_is_path(name) else inflection.dasherize(name.replace('/','--'))
|
||||
def convert_peft_config_type(adapter_map:dict[str, str])->AdapterMap:
|
||||
if not is_peft_available():raise RuntimeError("LoRA adapter requires 'peft' to be installed. Make sure to do 'pip install \"openllm[fine-tune]\"'")
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
resolved:AdapterMap={}
|
||||
for path_or_adapter_id, name in adapter_map.items():
|
||||
if name is None:raise ValueError('Adapter name must be specified.')
|
||||
if os.path.isfile(os.path.join(path_or_adapter_id, PEFT_CONFIG_NAME)):
|
||||
config_file=os.path.join(path_or_adapter_id, PEFT_CONFIG_NAME)
|
||||
else:
|
||||
try:
|
||||
config_file=hf_hub_download(path_or_adapter_id, PEFT_CONFIG_NAME)
|
||||
except Exception as err:
|
||||
raise ValueError(f"Can't find '{PEFT_CONFIG_NAME}' at '{path_or_adapter_id}'") from err
|
||||
with open(config_file, 'r') as file:resolved_config=orjson.loads(file.read())
|
||||
_peft_type=resolved_config['peft_type'].lower()
|
||||
if _peft_type not in resolved:resolved[_peft_type]=()
|
||||
resolved[_peft_type]+=(_AdapterTuple((path_or_adapter_id, name, resolved_config)),)
|
||||
return resolved
|
||||
|
||||
@@ -6,7 +6,6 @@ import typing as t
|
||||
import transformers
|
||||
|
||||
from openllm.serialisation.constants import HUB_ATTRS
|
||||
from openllm_core.utils import get_disable_warnings, get_quiet_mode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -44,10 +43,9 @@ def infer_autoclass_from_llm(llm, config, /):
|
||||
# in case this model doesn't use the correct auto class for model type, for example like chatglm
|
||||
# where it uses AutoModel instead of AutoModelForCausalLM. Then we fallback to AutoModel
|
||||
if autoclass not in config.auto_map:
|
||||
if not get_disable_warnings() and not get_quiet_mode():
|
||||
logger.warning(
|
||||
"OpenLLM failed to determine compatible Auto classes to load %s. Falling back to 'AutoModel'.\nTip: Make sure to specify 'AutoModelForCausalLM' or 'AutoModelForSeq2SeqLM' in your 'config.auto_map'. If your model type is yet to be supported, please file an issues on our GitHub tracker.",
|
||||
llm._model_id,
|
||||
)
|
||||
logger.warning(
|
||||
"OpenLLM failed to determine compatible Auto classes to load %s. Falling back to 'AutoModel'.\nTip: Make sure to specify 'AutoModelForCausalLM' or 'AutoModelForSeq2SeqLM' in your 'config.auto_map'. If your model type is yet to be supported, please file an issues on our GitHub tracker.",
|
||||
llm._model_id,
|
||||
)
|
||||
autoclass = 'AutoModel'
|
||||
return getattr(transformers, autoclass)
|
||||
|
||||
Reference in New Issue
Block a user