fix(gptq): use upstream integration (#297)

* wip

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>

* feat: GPTQ transformers integration

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>

* fix: only load if variable is available and add changelog

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>

* chore: remove boilerplate check

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>

---------

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>
This commit is contained in:
Aaron Pham
2023-09-04 14:05:50 -04:00
committed by GitHub
parent 3da869e728
commit 956b3a53bc
23 changed files with 197 additions and 248 deletions

View File

@@ -37,6 +37,7 @@ def load_tokenizer(llm: openllm.LLM[t.Any, T], **tokenizer_attrs: t.Any) -> T:
from .transformers._helpers import process_config
config, *_ = process_config(llm._bentomodel.path, llm.trust_remote_code)
bentomodel_fs = fs.open_fs(llm._bentomodel.path)
if bentomodel_fs.isfile(CUSTOM_OBJECTS_FILENAME):
with bentomodel_fs.open(CUSTOM_OBJECTS_FILENAME, 'rb') as cofile:

View File

@@ -14,13 +14,14 @@ import openllm
from bentoml._internal.configuration.containers import BentoMLContainer
from bentoml._internal.models.model import ModelOptions
from openllm_core._typing_compat import M
from openllm_core._typing_compat import T
from ._helpers import check_unintialised_params
from ._helpers import infer_autoclass_from_llm
from ._helpers import infer_tokenizers_from_llm
from ._helpers import make_model_signatures
from ._helpers import process_config
from ._helpers import update_model
from .weights import HfIgnore
if t.TYPE_CHECKING:
@@ -32,8 +33,6 @@ if t.TYPE_CHECKING:
from bentoml._internal.models import ModelStore
from openllm_core._typing_compat import DictStrAny
from openllm_core._typing_compat import M
from openllm_core._typing_compat import T
else:
autogptq = openllm.utils.LazyLoader('autogptq', globals(), 'auto_gptq')
torch = openllm.utils.LazyLoader('torch', globals(), 'torch')
@@ -63,16 +62,23 @@ def import_model(llm: openllm.LLM[M, T], *decls: t.Any, trust_remote_code: bool,
"""
config, hub_attrs, attrs = process_config(llm.model_id, trust_remote_code, **attrs)
_, tokenizer_attrs = llm.llm_parameters
quantize_method = llm._quantize_method
safe_serialisation = openllm.utils.first_not_none(attrs.get('safe_serialization'), default=llm._serialisation_format == 'safetensors')
quantize = llm._quantize
safe_serialisation = openllm.utils.first_not_none(attrs.get('safe_serialization'), default=llm._serialisation == 'safetensors')
# Disable safe serialization with vLLM
if llm.__llm_backend__ == 'vllm': safe_serialisation = False
metadata: DictStrAny = {'safe_serialisation': safe_serialisation, '_quantize': quantize_method is not None and quantize_method}
metadata: DictStrAny = {'safe_serialisation': safe_serialisation}
if quantize: metadata['_quantize'] = quantize
architectures = getattr(config, 'architectures', [])
if not architectures: raise RuntimeError('Failed to determine the architecture for this model. Make sure the `config.json` is valid and can be loaded with `transformers.AutoConfig`')
metadata['_pretrained_class'] = architectures[0]
signatures: DictStrAny = {}
if quantize_method == 'gptq':
if not openllm.utils.is_autogptq_available():
raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if quantize == 'gptq':
if not openllm.utils.is_autogptq_available() or not openllm.utils.is_optimum_supports_gptq():
raise openllm.exceptions.OpenLLMException(
"GPTQ quantisation requires 'auto-gptq' and 'optimum' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\" --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/'"
)
if llm.config['model_type'] != 'causal_lm':
raise openllm.exceptions.OpenLLMException(f"GPTQ only support Causal LM (got {llm.__class__} of {llm.config['model_type']})")
signatures['generate'] = {'batchable': False}
@@ -82,7 +88,8 @@ def import_model(llm: openllm.LLM[M, T], *decls: t.Any, trust_remote_code: bool,
if 'quantization_config' in attrs and getattr(attrs['quantization_config'], 'load_in_4bit', False):
attrs.pop('quantization_config')
if llm.__llm_backend__ != 'flax': attrs['use_safetensors'] = safe_serialisation
metadata['_framework'] = 'pt' if llm.__llm_backend__ == 'vllm' else llm.__llm_backend__
metadata['_framework'] = llm.__llm_backend__
signatures.update(make_model_signatures(llm))
tokenizer = infer_tokenizers_from_llm(llm).from_pretrained(llm.model_id, trust_remote_code=trust_remote_code, **hub_attrs, **tokenizer_attrs)
if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token
@@ -95,42 +102,22 @@ def import_model(llm: openllm.LLM[M, T], *decls: t.Any, trust_remote_code: bool,
options=ModelOptions(),
context=openllm.utils.generate_context(framework_name='openllm'),
labels=openllm.utils.generate_labels(llm),
signatures=signatures if signatures else make_model_signatures(llm))
metadata=metadata,
signatures=signatures)
with openllm.utils.analytics.set_bentoml_tracking():
try:
bentomodel.enter_cloudpickle_context(external_modules, imported_modules)
tokenizer.save_pretrained(bentomodel.path)
if quantize_method == 'gptq':
if not openllm.utils.is_autogptq_available():
raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if llm.config['model_type'] != 'causal_lm':
raise openllm.exceptions.OpenLLMException(f"GPTQ only support Causal LM (got {llm.__class__} of {llm.config['model_type']})")
logger.debug('Saving model with GPTQ quantisation will require loading model into memory.')
model = autogptq.AutoGPTQForCausalLM.from_quantized(llm.model_id,
*decls,
quantize_config=t.cast('autogptq.BaseQuantizeConfig', llm.quantization_config),
trust_remote_code=trust_remote_code,
use_safetensors=safe_serialisation,
**hub_attrs,
**attrs)
update_model(bentomodel, metadata={'_pretrained_class': model.__class__.__name__, '_framework': model.model.framework})
model.save_quantized(bentomodel.path, use_safetensors=safe_serialisation)
if llm._local:
# possible local path
logger.debug('Model will be loaded into memory to save to target store as it is from local path.')
model = infer_autoclass_from_llm(llm, config).from_pretrained(llm.model_id, *decls, config=config, trust_remote_code=trust_remote_code, **hub_attrs, **attrs)
# for trust_remote_code to work
bentomodel.enter_cloudpickle_context([importlib.import_module(model.__module__)], imported_modules)
model.save_pretrained(bentomodel.path, max_shard_size='5GB', safe_serialization=safe_serialisation)
else:
architectures = getattr(config, 'architectures', [])
if not architectures:
raise RuntimeError('Failed to determine the architecture for this model. Make sure the `config.json` is valid and can be loaded with `transformers.AutoConfig`')
architecture = architectures[0]
update_model(bentomodel, metadata={'_pretrained_class': architecture})
if llm._local:
# possible local path
logger.debug('Model will be loaded into memory to save to target store as it is from local path.')
model = infer_autoclass_from_llm(llm, config).from_pretrained(llm.model_id, *decls, config=config, trust_remote_code=trust_remote_code, **hub_attrs, **attrs)
# for trust_remote_code to work
bentomodel.enter_cloudpickle_context([importlib.import_module(model.__module__)], imported_modules)
model.save_pretrained(bentomodel.path, max_shard_size='5GB', safe_serialization=safe_serialisation)
else:
# we will clone the all tings into the bentomodel path without loading model into memory
snapshot_download(llm.model_id, local_dir=bentomodel.path, local_dir_use_symlinks=False, ignore_patterns=HfIgnore.ignore_patterns(llm))
# we will clone the all tings into the bentomodel path without loading model into memory
snapshot_download(llm.model_id, local_dir=bentomodel.path, local_dir_use_symlinks=False, ignore_patterns=HfIgnore.ignore_patterns(llm))
except Exception:
raise
else:
@@ -165,29 +152,27 @@ def get(llm: openllm.LLM[M, T], auto_import: bool = False) -> bentoml.Model:
def load_model(llm: openllm.LLM[M, T], *decls: t.Any, **attrs: t.Any) -> M:
config, hub_attrs, attrs = process_config(llm.model_id, llm.trust_remote_code, **attrs)
safe_serialization = openllm.utils.first_not_none(t.cast(t.Optional[bool], llm._bentomodel.info.metadata.get('safe_serialisation', None)),
attrs.pop('safe_serialization', None),
default=llm._serialisation_format == 'safetensors')
if '_quantize' in llm._bentomodel.info.metadata and llm._bentomodel.info.metadata['_quantize'] == 'gptq':
if not openllm.utils.is_autogptq_available():
raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if llm.config['model_type'] != 'causal_lm':
raise openllm.exceptions.OpenLLMException(f"GPTQ only support Causal LM (got {llm.__class__} of {llm.config['model_type']})")
return autogptq.AutoGPTQForCausalLM.from_quantized(llm._bentomodel.path,
*decls,
quantize_config=t.cast('autogptq.BaseQuantizeConfig', llm.quantization_config),
trust_remote_code=llm.trust_remote_code,
use_safetensors=safe_serialization,
**hub_attrs,
**attrs)
auto_class = infer_autoclass_from_llm(llm, config)
device_map: str | None = attrs.pop('device_map', 'auto' if torch.cuda.is_available() and torch.cuda.device_count() > 1 else None)
device_map = attrs.pop('device_map', 'auto' if torch.cuda.is_available() and torch.cuda.device_count() > 1 else None)
model = infer_autoclass_from_llm(llm, config).from_pretrained(llm._bentomodel.path,
*decls,
config=config,
trust_remote_code=llm.trust_remote_code,
device_map=device_map,
**hub_attrs,
**attrs).eval()
if llm.__llm_backend__ in {'pt', 'vllm'}: check_unintialised_params(model)
if '_quantize' in llm._bentomodel.info.metadata and llm._bentomodel.info.metadata['_quantize'] == 'gptq':
if not openllm.utils.is_autogptq_available() or not openllm.utils.is_optimum_supports_gptq():
raise openllm.exceptions.OpenLLMException(
"GPTQ quantisation requires 'auto-gptq' and 'optimum' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\" --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/'"
)
if llm.config['model_type'] != 'causal_lm': raise openllm.exceptions.OpenLLMException(f"GPTQ only support Causal LM (got {llm.__class__} of {llm.config['model_type']})")
model = auto_class.from_pretrained(llm._bentomodel.path, device_map='auto', **hub_attrs, **attrs)
# TODO: Use the below logic once TheBloke finished migration to new GPTQConfig from transformers
# from accelerate import init_empty_weights
# from optimum.gptq import load_quantized_model
# # disable exllama if gptq is loaded on CPU
# disable_exllama = not torch.cuda.is_available()
# with init_empty_weights():
# empty = auto_class.from_pretrained(llm.model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map='auto')
# empty.tie_weights()
# model = load_quantized_model(empty, save_folder=llm._bentomodel.path, device_map='auto', disable_exllama=disable_exllama)
else:
model = auto_class.from_pretrained(llm._bentomodel.path, *decls, config=config, trust_remote_code=llm.trust_remote_code, device_map=device_map, **hub_attrs, **attrs).eval()
if llm.__llm_backend__ in {'pt', 'vllm'}: check_unintialised_params(model)
return t.cast('M', model)

View File

@@ -5,7 +5,6 @@ import typing as t
import openllm
import openllm_core
from bentoml._internal.models.model import ModelInfo
from bentoml._internal.models.model import ModelSignature
from openllm.serialisation.constants import FRAMEWORK_TO_AUTOCLASS_MAPPING
from openllm.serialisation.constants import HUB_ATTRS
@@ -16,8 +15,6 @@ if t.TYPE_CHECKING:
from transformers.models.auto.auto_factory import _BaseAutoModelClass
import bentoml
from bentoml._internal.models.model import ModelSignaturesType
from openllm_core._typing_compat import DictStrAny
from openllm_core._typing_compat import M
@@ -25,8 +22,6 @@ if t.TYPE_CHECKING:
else:
transformers, torch = openllm_core.utils.LazyLoader('transformers', globals(), 'transformers'), openllm_core.utils.LazyLoader('torch', globals(), 'torch')
_object_setattr = object.__setattr__
def process_config(model_id: str, trust_remote_code: bool, **attrs: t.Any) -> tuple[transformers.PretrainedConfig, DictStrAny, DictStrAny]:
'''A helper function that correctly parse config and attributes for transformers.PretrainedConfig.
@@ -73,24 +68,6 @@ def check_unintialised_params(model: torch.nn.Module) -> None:
if len(unintialized) > 0:
raise RuntimeError(f'Found the following unintialized parameters in {model}: {unintialized}')
def update_model(bentomodel: bentoml.Model, metadata: DictStrAny) -> bentoml.Model:
based: DictStrAny = copy.deepcopy(bentomodel.info.metadata)
based.update(metadata)
_object_setattr(
bentomodel,
'_info',
ModelInfo( # type: ignore[call-arg] # XXX: remove me once upstream is merged
tag=bentomodel.info.tag,
module=bentomodel.info.module,
labels=bentomodel.info.labels,
options=bentomodel.info.options.to_dict(),
signatures=bentomodel.info.signatures,
context=bentomodel.info.context,
api_version=bentomodel.info.api_version,
creation_time=bentomodel.info.creation_time,
metadata=based))
return bentomodel
# NOTE: sync with bentoml/_internal/frameworks/transformers.py#make_default_signatures
def make_model_signatures(llm: openllm.LLM[M, T]) -> ModelSignaturesType:
infer_fn: tuple[str, ...] = ('__call__',)