mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-02-19 15:18:12 -05:00
refactor(cli): move out to its own packages (#619)
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
This commit is contained in:
@@ -14,6 +14,10 @@ import os as _os
|
||||
import pathlib as _pathlib
|
||||
import warnings as _warnings
|
||||
|
||||
import openllm_cli as _cli
|
||||
|
||||
from openllm_cli import _sdk
|
||||
|
||||
from . import utils as utils
|
||||
|
||||
|
||||
@@ -55,7 +59,6 @@ __lazy = utils.LazyModule(
|
||||
'_strategies': ['CascadingResourceStrategy', 'get_resource'],
|
||||
'entrypoints': ['mount_entrypoints'],
|
||||
'serialisation': ['ggml', 'transformers'],
|
||||
'cli._sdk': ['start', 'start_grpc', 'build', 'import_model', 'list_models'],
|
||||
'_quantisation': ['infer_quantisation_config'],
|
||||
'_llm': ['LLM', 'LLMRunner', 'LLMRunnable'],
|
||||
'_generation': [
|
||||
@@ -66,7 +69,15 @@ __lazy = utils.LazyModule(
|
||||
'prepare_logits_processor',
|
||||
],
|
||||
},
|
||||
extra_objects={'COMPILED': COMPILED},
|
||||
extra_objects={
|
||||
'COMPILED': COMPILED,
|
||||
'cli': _cli,
|
||||
'start': _sdk.start,
|
||||
'start_grpc': _sdk.start_grpc,
|
||||
'build': _sdk.build,
|
||||
'import_model': _sdk.import_model,
|
||||
'list_models': _sdk.list_models,
|
||||
},
|
||||
)
|
||||
__all__ = __lazy.__all__
|
||||
__dir__ = __lazy.__dir__
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import openllm_cli as _cli
|
||||
from openllm_core._configuration import GenerationConfig as GenerationConfig
|
||||
from openllm_core._configuration import LLMConfig as LLMConfig
|
||||
from openllm_core._configuration import SamplingParams as SamplingParams
|
||||
@@ -21,7 +22,6 @@ from openllm_core.config import StableLMConfig as StableLMConfig
|
||||
from openllm_core.config import StarCoderConfig as StarCoderConfig
|
||||
from . import exceptions as exceptions
|
||||
from . import bundle as bundle
|
||||
from . import cli as cli
|
||||
from . import client as client
|
||||
from . import playground as playground
|
||||
from . import serialisation as serialisation
|
||||
@@ -39,11 +39,11 @@ from ._llm import LLMRunner as LLMRunner
|
||||
from ._quantisation import infer_quantisation_config as infer_quantisation_config
|
||||
from ._strategies import CascadingResourceStrategy as CascadingResourceStrategy
|
||||
from ._strategies import get_resource as get_resource
|
||||
from .cli._sdk import build as build
|
||||
from .cli._sdk import import_model as import_model
|
||||
from .cli._sdk import list_models as list_models
|
||||
from .cli._sdk import start as start
|
||||
from .cli._sdk import start_grpc as start_grpc
|
||||
from openllm_cli._sdk import build as build
|
||||
from openllm_cli._sdk import import_model as import_model
|
||||
from openllm_cli._sdk import list_models as list_models
|
||||
from openllm_cli._sdk import start as start
|
||||
from openllm_cli._sdk import start_grpc as start_grpc
|
||||
from .client import AsyncHTTPClient as AsyncHTTPClient
|
||||
from .client import HTTPClient as HTTPClient
|
||||
from .entrypoints import mount_entrypoints as mount_entrypoints
|
||||
@@ -51,4 +51,5 @@ from .protocol import openai as openai
|
||||
from .serialisation import ggml as ggml
|
||||
from .serialisation import transformers as transformers
|
||||
|
||||
cli = _cli
|
||||
COMPILED: bool = ...
|
||||
|
||||
@@ -8,6 +8,6 @@ To start any OpenLLM model:
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
from openllm.cli.entrypoint import cli
|
||||
from openllm_cli.entrypoint import cli
|
||||
|
||||
cli()
|
||||
|
||||
@@ -130,7 +130,7 @@ def construct_docker_options(
|
||||
container_registry: LiteralContainerRegistry,
|
||||
container_version_strategy: LiteralContainerVersionStrategy,
|
||||
) -> DockerOptions:
|
||||
from openllm.cli._factory import parse_config_options
|
||||
from openllm_cli._factory import parse_config_options
|
||||
|
||||
environ = parse_config_options(llm.config, llm.config['timeout'], 1.0, None, True, os.environ.copy())
|
||||
env_dict = {
|
||||
|
||||
@@ -1,4 +0,0 @@
|
||||
"""OpenLLM CLI.
|
||||
|
||||
For more information see ``openllm -h``.
|
||||
"""
|
||||
@@ -1,501 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import functools
|
||||
import logging
|
||||
import os
|
||||
import typing as t
|
||||
|
||||
import click
|
||||
import click_option_group as cog
|
||||
import inflection
|
||||
|
||||
from bentoml_cli.utils import BentoMLCommandGroup
|
||||
from click import ClickException
|
||||
from click import shell_completion as sc
|
||||
|
||||
import bentoml
|
||||
import openllm
|
||||
|
||||
from openllm_core._configuration import LLMConfig
|
||||
from openllm_core._typing_compat import Concatenate
|
||||
from openllm_core._typing_compat import DictStrAny
|
||||
from openllm_core._typing_compat import LiteralBackend
|
||||
from openllm_core._typing_compat import LiteralQuantise
|
||||
from openllm_core._typing_compat import LiteralSerialisation
|
||||
from openllm_core._typing_compat import ParamSpec
|
||||
from openllm_core._typing_compat import get_literal_args
|
||||
from openllm_core.utils import DEBUG
|
||||
|
||||
|
||||
class _OpenLLM_GenericInternalConfig(LLMConfig):
|
||||
__config__ = {
|
||||
'name_type': 'lowercase',
|
||||
'default_id': 'openllm/generic',
|
||||
'model_ids': ['openllm/generic'],
|
||||
'architecture': 'PreTrainedModel',
|
||||
}
|
||||
|
||||
class GenerationConfig:
|
||||
top_k: int = 15
|
||||
top_p: float = 0.9
|
||||
temperature: float = 0.75
|
||||
max_new_tokens: int = 128
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
P = ParamSpec('P')
|
||||
LiteralOutput = t.Literal['json', 'pretty', 'porcelain']
|
||||
|
||||
_AnyCallable = t.Callable[..., t.Any]
|
||||
FC = t.TypeVar('FC', bound=t.Union[_AnyCallable, click.Command])
|
||||
|
||||
|
||||
def bento_complete_envvar(ctx: click.Context, param: click.Parameter, incomplete: str) -> list[sc.CompletionItem]:
|
||||
return [
|
||||
sc.CompletionItem(str(it.tag), help='Bento')
|
||||
for it in bentoml.list()
|
||||
if str(it.tag).startswith(incomplete) and all(k in it.info.labels for k in {'start_name', 'bundler'})
|
||||
]
|
||||
|
||||
|
||||
def model_complete_envvar(ctx: click.Context, param: click.Parameter, incomplete: str) -> list[sc.CompletionItem]:
|
||||
return [
|
||||
sc.CompletionItem(inflection.dasherize(it), help='Model')
|
||||
for it in openllm.CONFIG_MAPPING
|
||||
if it.startswith(incomplete)
|
||||
]
|
||||
|
||||
|
||||
def parse_config_options(
|
||||
config: LLMConfig,
|
||||
server_timeout: int,
|
||||
workers_per_resource: float,
|
||||
device: t.Tuple[str, ...] | None,
|
||||
cors: bool,
|
||||
environ: DictStrAny,
|
||||
) -> DictStrAny:
|
||||
# TODO: Support amd.com/gpu on k8s
|
||||
_bentoml_config_options_env = environ.pop('BENTOML_CONFIG_OPTIONS', '')
|
||||
_bentoml_config_options_opts = [
|
||||
'tracing.sample_rate=1.0',
|
||||
'api_server.max_runner_connections=25',
|
||||
f'runners."llm-{config["start_name"]}-runner".batching.max_batch_size=128',
|
||||
f'api_server.traffic.timeout={server_timeout}',
|
||||
f'runners."llm-{config["start_name"]}-runner".traffic.timeout={config["timeout"]}',
|
||||
f'runners."llm-{config["start_name"]}-runner".workers_per_resource={workers_per_resource}',
|
||||
]
|
||||
if device:
|
||||
if len(device) > 1:
|
||||
_bentoml_config_options_opts.extend(
|
||||
[
|
||||
f'runners."llm-{config["start_name"]}-runner".resources."nvidia.com/gpu"[{idx}]={dev}'
|
||||
for idx, dev in enumerate(device)
|
||||
]
|
||||
)
|
||||
else:
|
||||
_bentoml_config_options_opts.append(
|
||||
f'runners."llm-{config["start_name"]}-runner".resources."nvidia.com/gpu"=[{device[0]}]'
|
||||
)
|
||||
if cors:
|
||||
_bentoml_config_options_opts.extend(
|
||||
['api_server.http.cors.enabled=true', 'api_server.http.cors.access_control_allow_origins="*"']
|
||||
)
|
||||
_bentoml_config_options_opts.extend(
|
||||
[
|
||||
f'api_server.http.cors.access_control_allow_methods[{idx}]="{it}"'
|
||||
for idx, it in enumerate(['GET', 'OPTIONS', 'POST', 'HEAD', 'PUT'])
|
||||
]
|
||||
)
|
||||
_bentoml_config_options_env += ' ' if _bentoml_config_options_env else '' + ' '.join(_bentoml_config_options_opts)
|
||||
environ['BENTOML_CONFIG_OPTIONS'] = _bentoml_config_options_env
|
||||
if DEBUG:
|
||||
logger.debug('Setting BENTOML_CONFIG_OPTIONS=%s', _bentoml_config_options_env)
|
||||
return environ
|
||||
|
||||
|
||||
_adapter_mapping_key = 'adapter_map'
|
||||
|
||||
|
||||
def _id_callback(ctx: click.Context, _: click.Parameter, value: t.Tuple[str, ...] | None) -> None:
|
||||
if not value:
|
||||
return None
|
||||
if _adapter_mapping_key not in ctx.params:
|
||||
ctx.params[_adapter_mapping_key] = {}
|
||||
for v in value:
|
||||
adapter_id, *adapter_name = v.rsplit(':', maxsplit=1)
|
||||
# try to resolve the full path if users pass in relative,
|
||||
# currently only support one level of resolve path with current directory
|
||||
try:
|
||||
adapter_id = openllm.utils.resolve_user_filepath(adapter_id, os.getcwd())
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
if len(adapter_name) == 0:
|
||||
raise ClickException(f'Adapter name is required for {adapter_id}')
|
||||
ctx.params[_adapter_mapping_key][adapter_id] = adapter_name[0]
|
||||
return None
|
||||
|
||||
|
||||
def start_decorator(serve_grpc: bool = False) -> t.Callable[[FC], t.Callable[[FC], FC]]:
|
||||
def wrapper(fn: FC) -> t.Callable[[FC], FC]:
|
||||
composed = openllm.utils.compose(
|
||||
_OpenLLM_GenericInternalConfig().to_click_options,
|
||||
_http_server_args if not serve_grpc else _grpc_server_args,
|
||||
cog.optgroup.group('General LLM Options', help='The following options are related to running LLM Server.'),
|
||||
model_version_option(factory=cog.optgroup),
|
||||
system_message_option(factory=cog.optgroup),
|
||||
prompt_template_file_option(factory=cog.optgroup),
|
||||
cog.optgroup.option('--server-timeout', type=int, default=None, help='Server timeout in seconds'),
|
||||
workers_per_resource_option(factory=cog.optgroup),
|
||||
cors_option(factory=cog.optgroup),
|
||||
backend_option(factory=cog.optgroup),
|
||||
cog.optgroup.group(
|
||||
'LLM Optimization Options',
|
||||
help="""Optimization related options.
|
||||
|
||||
OpenLLM supports running model k-bit quantization (8-bit, 4-bit), GPTQ quantization, PagedAttention via vLLM.
|
||||
|
||||
The following are either in our roadmap or currently being worked on:
|
||||
|
||||
- DeepSpeed Inference: [link](https://www.deepspeed.ai/inference/)
|
||||
- GGML: Fast inference on [bare metal](https://github.com/ggerganov/ggml)
|
||||
""",
|
||||
),
|
||||
quantize_option(factory=cog.optgroup),
|
||||
serialisation_option(factory=cog.optgroup),
|
||||
cog.optgroup.option(
|
||||
'--device',
|
||||
type=openllm.utils.dantic.CUDA,
|
||||
multiple=True,
|
||||
envvar='CUDA_VISIBLE_DEVICES',
|
||||
callback=parse_device_callback,
|
||||
help='Assign GPU devices (if available)',
|
||||
show_envvar=True,
|
||||
),
|
||||
cog.optgroup.group(
|
||||
'Fine-tuning related options',
|
||||
help="""\
|
||||
Note that the argument `--adapter-id` can accept the following format:
|
||||
|
||||
- `--adapter-id /path/to/adapter` (local adapter)
|
||||
|
||||
- `--adapter-id remote/adapter` (remote adapter from HuggingFace Hub)
|
||||
|
||||
- `--adapter-id remote/adapter:eng_lora` (two previous adapter options with the given adapter_name)
|
||||
|
||||
```bash
|
||||
|
||||
$ openllm start opt --adapter-id /path/to/adapter_dir --adapter-id remote/adapter:eng_lora
|
||||
|
||||
```
|
||||
""",
|
||||
),
|
||||
cog.optgroup.option(
|
||||
'--adapter-id',
|
||||
default=None,
|
||||
help='Optional name or path for given LoRA adapter',
|
||||
multiple=True,
|
||||
callback=_id_callback,
|
||||
metavar='[PATH | [remote/][adapter_name:]adapter_id][, ...]',
|
||||
),
|
||||
click.option('--return-process', is_flag=True, default=False, help='Internal use only.', hidden=True),
|
||||
)
|
||||
return composed(fn)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def parse_device_callback(
|
||||
ctx: click.Context, param: click.Parameter, value: tuple[tuple[str], ...] | None
|
||||
) -> t.Tuple[str, ...] | None:
|
||||
if value is None:
|
||||
return value
|
||||
if not isinstance(value, tuple):
|
||||
ctx.fail(f'{param} only accept multiple values, not {type(value)} (value: {value})')
|
||||
el: t.Tuple[str, ...] = tuple(i for k in value for i in k)
|
||||
# NOTE: --device all is a special case
|
||||
if len(el) == 1 and el[0] == 'all':
|
||||
return tuple(map(str, openllm.utils.available_devices()))
|
||||
return el
|
||||
|
||||
|
||||
# NOTE: A list of bentoml option that is not needed for parsing.
|
||||
# NOTE: User shouldn't set '--working-dir', as OpenLLM will setup this.
|
||||
# NOTE: production is also deprecated
|
||||
_IGNORED_OPTIONS = {'working_dir', 'production', 'protocol_version'}
|
||||
|
||||
|
||||
def parse_serve_args(serve_grpc: bool) -> t.Callable[[t.Callable[..., LLMConfig]], t.Callable[[FC], FC]]:
|
||||
"""Parsing `bentoml serve|serve-grpc` click.Option to be parsed via `openllm start`."""
|
||||
from bentoml_cli.cli import cli
|
||||
|
||||
command = 'serve' if not serve_grpc else 'serve-grpc'
|
||||
group = cog.optgroup.group(
|
||||
f"Start a {'HTTP' if not serve_grpc else 'gRPC'} server options",
|
||||
help=f"Related to serving the model [synonymous to `bentoml {'serve-http' if not serve_grpc else command }`]",
|
||||
)
|
||||
|
||||
def decorator(f: t.Callable[Concatenate[int, t.Optional[str], P], LLMConfig]) -> t.Callable[[FC], FC]:
|
||||
serve_command = cli.commands[command]
|
||||
# The first variable is the argument bento
|
||||
# The last five is from BentoMLCommandGroup.NUMBER_OF_COMMON_PARAMS
|
||||
serve_options = [
|
||||
p
|
||||
for p in serve_command.params[1 : -BentoMLCommandGroup.NUMBER_OF_COMMON_PARAMS]
|
||||
if p.name not in _IGNORED_OPTIONS
|
||||
]
|
||||
for options in reversed(serve_options):
|
||||
attrs = options.to_info_dict()
|
||||
# we don't need param_type_name, since it should all be options
|
||||
attrs.pop('param_type_name')
|
||||
# name is not a valid args
|
||||
attrs.pop('name')
|
||||
# type can be determine from default value
|
||||
attrs.pop('type')
|
||||
param_decls = (*attrs.pop('opts'), *attrs.pop('secondary_opts'))
|
||||
f = cog.optgroup.option(*param_decls, **attrs)(f)
|
||||
return group(f)
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
_http_server_args, _grpc_server_args = parse_serve_args(False), parse_serve_args(True)
|
||||
|
||||
|
||||
def _click_factory_type(*param_decls: t.Any, **attrs: t.Any) -> t.Callable[[FC | None], FC]:
|
||||
"""General ``@click`` decorator with some sauce.
|
||||
|
||||
This decorator extends the default ``@click.option`` plus a factory option and factory attr to
|
||||
provide type-safe click.option or click.argument wrapper for all compatible factory.
|
||||
"""
|
||||
factory = attrs.pop('factory', click)
|
||||
factory_attr = attrs.pop('attr', 'option')
|
||||
if factory_attr != 'argument':
|
||||
attrs.setdefault('help', 'General option for OpenLLM CLI.')
|
||||
|
||||
def decorator(f: FC | None) -> FC:
|
||||
callback = getattr(factory, factory_attr, None)
|
||||
if callback is None:
|
||||
raise ValueError(f'Factory {factory} has no attribute {factory_attr}.')
|
||||
return t.cast(FC, callback(*param_decls, **attrs)(f) if f is not None else callback(*param_decls, **attrs))
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
cli_option = functools.partial(_click_factory_type, attr='option')
|
||||
cli_argument = functools.partial(_click_factory_type, attr='argument')
|
||||
|
||||
|
||||
def cors_option(f: _AnyCallable | None = None, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_option(
|
||||
'--cors/--no-cors',
|
||||
show_default=True,
|
||||
default=False,
|
||||
envvar='OPENLLM_CORS',
|
||||
show_envvar=True,
|
||||
help='Enable CORS for the server.',
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def machine_option(f: _AnyCallable | None = None, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_option('--machine', is_flag=True, default=False, hidden=True, **attrs)(f)
|
||||
|
||||
|
||||
def model_id_option(f: _AnyCallable | None = None, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_option(
|
||||
'--model-id',
|
||||
type=click.STRING,
|
||||
default=None,
|
||||
envvar='OPENLLM_MODEL_ID',
|
||||
show_envvar=True,
|
||||
help='Optional model_id name or path for (fine-tune) weight.',
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def model_version_option(f: _AnyCallable | None = None, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_option(
|
||||
'--model-version',
|
||||
type=click.STRING,
|
||||
default=None,
|
||||
help='Optional model version to save for this model. It will be inferred automatically from model-id.',
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def system_message_option(f: _AnyCallable | None = None, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_option(
|
||||
'--system-message',
|
||||
type=click.STRING,
|
||||
default=None,
|
||||
envvar='OPENLLM_SYSTEM_MESSAGE',
|
||||
help='Optional system message for supported LLMs. If given LLM supports system message, OpenLLM will provide a default system message.',
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def prompt_template_file_option(f: _AnyCallable | None = None, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_option(
|
||||
'--prompt-template-file',
|
||||
type=click.File(),
|
||||
default=None,
|
||||
help='Optional file path containing user-defined custom prompt template. By default, the prompt template for the specified LLM will be used.',
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def backend_option(f: _AnyCallable | None = None, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
# NOTE: LiteralBackend needs to remove the last two item as ggml and mlc is wip
|
||||
# XXX: remove the check for __args__ once we have ggml and mlc supports
|
||||
return cli_option(
|
||||
'--backend',
|
||||
type=click.Choice(get_literal_args(LiteralBackend)[:2]),
|
||||
default=None,
|
||||
envvar='OPENLLM_BACKEND',
|
||||
show_envvar=True,
|
||||
help='The implementation for saving this LLM.',
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def model_name_argument(f: _AnyCallable | None = None, required: bool = True, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_argument(
|
||||
'model_name',
|
||||
type=click.Choice([inflection.dasherize(name) for name in openllm.CONFIG_MAPPING]),
|
||||
required=required,
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def quantize_option(f: _AnyCallable | None = None, *, build: bool = False, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_option(
|
||||
'--quantise',
|
||||
'--quantize',
|
||||
'quantize',
|
||||
type=click.Choice(get_literal_args(LiteralQuantise)),
|
||||
default=None,
|
||||
envvar='OPENLLM_QUANTIZE',
|
||||
show_envvar=True,
|
||||
help="""Dynamic quantization for running this LLM.
|
||||
|
||||
The following quantization strategies are supported:
|
||||
|
||||
- ``int8``: ``LLM.int8`` for [8-bit](https://arxiv.org/abs/2208.07339) quantization.
|
||||
|
||||
- ``int4``: ``SpQR`` for [4-bit](https://arxiv.org/abs/2306.03078) quantization.
|
||||
|
||||
- ``gptq``: ``GPTQ`` [quantization](https://arxiv.org/abs/2210.17323)
|
||||
|
||||
> [!NOTE] that the model can also be served with quantized weights.
|
||||
"""
|
||||
+ (
|
||||
"""
|
||||
> [!NOTE] that this will set the mode for serving within deployment."""
|
||||
if build
|
||||
else ''
|
||||
)
|
||||
+ """
|
||||
> [!NOTE] that quantization are currently only available in *PyTorch* models.""",
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def workers_per_resource_option(
|
||||
f: _AnyCallable | None = None, *, build: bool = False, **attrs: t.Any
|
||||
) -> t.Callable[[FC], FC]:
|
||||
return cli_option(
|
||||
'--workers-per-resource',
|
||||
default=None,
|
||||
callback=workers_per_resource_callback,
|
||||
type=str,
|
||||
required=False,
|
||||
help="""Number of workers per resource assigned.
|
||||
|
||||
See https://docs.bentoml.org/en/latest/guides/scheduling.html#resource-scheduling-strategy
|
||||
for more information. By default, this is set to 1.
|
||||
|
||||
> [!NOTE] ``--workers-per-resource`` will also accept the following strategies:
|
||||
|
||||
- ``round_robin``: Similar behaviour when setting ``--workers-per-resource 1``. This is useful for smaller models.
|
||||
|
||||
- ``conserved``: This will determine the number of available GPU resources, and only assign one worker for the LLMRunner. For example, if ther are 4 GPUs available, then ``conserved`` is equivalent to ``--workers-per-resource 0.25``.
|
||||
"""
|
||||
+ (
|
||||
"""\n
|
||||
> [!NOTE] The workers value passed into 'build' will determine how the LLM can
|
||||
> be provisioned in Kubernetes as well as in standalone container. This will
|
||||
> ensure it has the same effect with 'openllm start --api-workers ...'"""
|
||||
if build
|
||||
else ''
|
||||
),
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def serialisation_option(f: _AnyCallable | None = None, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_option(
|
||||
'--serialisation',
|
||||
'--serialization',
|
||||
'serialisation',
|
||||
type=click.Choice(get_literal_args(LiteralSerialisation)),
|
||||
default=None,
|
||||
show_default=True,
|
||||
show_envvar=True,
|
||||
envvar='OPENLLM_SERIALIZATION',
|
||||
help="""Serialisation format for save/load LLM.
|
||||
|
||||
Currently the following strategies are supported:
|
||||
|
||||
- ``safetensors``: This will use safetensors format, which is synonymous to ``safe_serialization=True``.
|
||||
|
||||
> [!NOTE] Safetensors might not work for every cases, and you can always fallback to ``legacy`` if needed.
|
||||
|
||||
- ``legacy``: This will use PyTorch serialisation format, often as ``.bin`` files. This should be used if the model doesn't yet support safetensors.
|
||||
""",
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
def container_registry_option(f: _AnyCallable | None = None, **attrs: t.Any) -> t.Callable[[FC], FC]:
|
||||
return cli_option(
|
||||
'--container-registry',
|
||||
'container_registry',
|
||||
type=click.Choice(list(openllm.bundle.CONTAINER_NAMES)),
|
||||
default='ecr',
|
||||
show_default=True,
|
||||
show_envvar=True,
|
||||
envvar='OPENLLM_CONTAINER_REGISTRY',
|
||||
callback=container_registry_callback,
|
||||
help='The default container registry to get the base image for building BentoLLM. Currently, it supports ecr, ghcr, docker',
|
||||
**attrs,
|
||||
)(f)
|
||||
|
||||
|
||||
_wpr_strategies = {'round_robin', 'conserved'}
|
||||
|
||||
|
||||
def workers_per_resource_callback(ctx: click.Context, param: click.Parameter, value: str | None) -> str | None:
|
||||
if value is None:
|
||||
return value
|
||||
value = inflection.underscore(value)
|
||||
if value in _wpr_strategies:
|
||||
return value
|
||||
else:
|
||||
try:
|
||||
float(value) # type: ignore[arg-type]
|
||||
except ValueError:
|
||||
raise click.BadParameter(
|
||||
f"'workers_per_resource' only accept '{_wpr_strategies}' as possible strategies, otherwise pass in float.",
|
||||
ctx,
|
||||
param,
|
||||
) from None
|
||||
else:
|
||||
return value
|
||||
|
||||
|
||||
def container_registry_callback(ctx: click.Context, param: click.Parameter, value: str | None) -> str | None:
|
||||
if value is None:
|
||||
return value
|
||||
if value not in openllm.bundle.supported_registries:
|
||||
raise click.BadParameter(f'Value must be one of {openllm.bundle.supported_registries}', ctx, param)
|
||||
return value
|
||||
@@ -1,330 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import itertools
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
import typing as t
|
||||
|
||||
import orjson
|
||||
|
||||
from simple_di import Provide
|
||||
from simple_di import inject
|
||||
|
||||
import bentoml
|
||||
import openllm_core
|
||||
|
||||
from bentoml._internal.configuration.containers import BentoMLContainer
|
||||
from openllm_core._typing_compat import LiteralSerialisation
|
||||
from openllm_core.exceptions import OpenLLMException
|
||||
from openllm_core.utils import WARNING_ENV_VAR
|
||||
from openllm_core.utils import codegen
|
||||
from openllm_core.utils import first_not_none
|
||||
from openllm_core.utils import get_disable_warnings
|
||||
from openllm_core.utils import is_vllm_available
|
||||
|
||||
|
||||
if t.TYPE_CHECKING:
|
||||
from bentoml._internal.bento import BentoStore
|
||||
from openllm_core._configuration import LLMConfig
|
||||
from openllm_core._typing_compat import LiteralBackend
|
||||
from openllm_core._typing_compat import LiteralContainerRegistry
|
||||
from openllm_core._typing_compat import LiteralContainerVersionStrategy
|
||||
from openllm_core._typing_compat import LiteralQuantise
|
||||
from openllm_core._typing_compat import LiteralString
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _start(
|
||||
model_id: str,
|
||||
timeout: int = 30,
|
||||
workers_per_resource: t.Literal['conserved', 'round_robin'] | float | None = None,
|
||||
device: tuple[str, ...] | t.Literal['all'] | None = None,
|
||||
quantize: LiteralQuantise | None = None,
|
||||
system_message: str | None = None,
|
||||
prompt_template_file: str | None = None,
|
||||
adapter_map: dict[LiteralString, str | None] | None = None,
|
||||
backend: LiteralBackend | None = None,
|
||||
additional_args: list[str] | None = None,
|
||||
cors: bool = False,
|
||||
_serve_grpc: bool = False,
|
||||
__test__: bool = False,
|
||||
**_: t.Any,
|
||||
) -> LLMConfig | subprocess.Popen[bytes]:
|
||||
"""Python API to start a LLM server. These provides one-to-one mapping to CLI arguments.
|
||||
|
||||
For all additional arguments, pass it as string to ``additional_args``. For example, if you want to
|
||||
pass ``--port 5001``, you can pass ``additional_args=["--port", "5001"]``
|
||||
|
||||
> [!NOTE] This will create a blocking process, so if you use this API, you can create a running sub thread
|
||||
> to start the server instead of blocking the main thread.
|
||||
|
||||
``openllm.start`` will invoke ``click.Command`` under the hood, so it behaves exactly the same as the CLI interaction.
|
||||
|
||||
Args:
|
||||
model_id: The model id to start this LLMServer
|
||||
timeout: The server timeout
|
||||
system_message: Optional system message for supported LLMs. If given LLM supports system message, OpenLLM will provide a default system message.
|
||||
prompt_template_file: Optional file path containing user-defined custom prompt template. By default, the prompt template for the specified LLM will be used..
|
||||
workers_per_resource: Number of workers per resource assigned.
|
||||
See [resource scheduling](https://docs.bentoml.org/en/latest/guides/scheduling.html#resource-scheduling-strategy)
|
||||
for more information. By default, this is set to 1.
|
||||
|
||||
> [!NOTE] ``--workers-per-resource`` will also accept the following strategies:
|
||||
> - ``round_robin``: Similar behaviour when setting ``--workers-per-resource 1``. This is useful for smaller models.
|
||||
> - ``conserved``: This will determine the number of available GPU resources, and only assign
|
||||
> one worker for the LLMRunner. For example, if ther are 4 GPUs available, then ``conserved`` is
|
||||
> equivalent to ``--workers-per-resource 0.25``.
|
||||
device: Assign GPU devices (if available) to this LLM. By default, this is set to ``None``. It also accepts 'all'
|
||||
argument to assign all available GPUs to this LLM.
|
||||
quantize: Quantize the model weights. This is only applicable for PyTorch models.
|
||||
Possible quantisation strategies:
|
||||
- int8: Quantize the model with 8bit (bitsandbytes required)
|
||||
- int4: Quantize the model with 4bit (bitsandbytes required)
|
||||
- gptq: Quantize the model with GPTQ (auto-gptq required)
|
||||
cors: Whether to enable CORS for this LLM. By default, this is set to ``False``.
|
||||
adapter_map: The adapter mapping of LoRA to use for this LLM. It accepts a dictionary of ``{adapter_id: adapter_name}``.
|
||||
backend: The backend to use for this LLM. By default, this is set to ``pt``.
|
||||
additional_args: Additional arguments to pass to ``openllm start``.
|
||||
"""
|
||||
from .entrypoint import start_command
|
||||
from .entrypoint import start_grpc_command
|
||||
|
||||
os.environ['OPENLLM_BACKEND'] = openllm_core.utils.first_not_none(
|
||||
backend, default='vllm' if is_vllm_available() else 'pt'
|
||||
)
|
||||
|
||||
args: list[str] = [model_id]
|
||||
if system_message:
|
||||
args.extend(['--system-message', system_message])
|
||||
if prompt_template_file:
|
||||
args.extend(['--prompt-template-file', openllm_core.utils.resolve_filepath(prompt_template_file)])
|
||||
if timeout:
|
||||
args.extend(['--server-timeout', str(timeout)])
|
||||
if workers_per_resource:
|
||||
args.extend(
|
||||
[
|
||||
'--workers-per-resource',
|
||||
str(workers_per_resource) if not isinstance(workers_per_resource, str) else workers_per_resource,
|
||||
]
|
||||
)
|
||||
if device and not os.environ.get('CUDA_VISIBLE_DEVICES'):
|
||||
args.extend(['--device', ','.join(device)])
|
||||
if quantize:
|
||||
args.extend(['--quantize', str(quantize)])
|
||||
if cors:
|
||||
args.append('--cors')
|
||||
if adapter_map:
|
||||
args.extend(
|
||||
list(
|
||||
itertools.chain.from_iterable([['--adapter-id', f"{k}{':'+v if v else ''}"] for k, v in adapter_map.items()])
|
||||
)
|
||||
)
|
||||
if additional_args:
|
||||
args.extend(additional_args)
|
||||
if __test__:
|
||||
args.append('--return-process')
|
||||
|
||||
cmd = start_command if not _serve_grpc else start_grpc_command
|
||||
return cmd.main(args=args, standalone_mode=False)
|
||||
|
||||
|
||||
@inject
|
||||
def _build(
|
||||
model_id: str,
|
||||
model_version: str | None = None,
|
||||
bento_version: str | None = None,
|
||||
quantize: LiteralQuantise | None = None,
|
||||
adapter_map: dict[str, str | None] | None = None,
|
||||
system_message: str | None = None,
|
||||
prompt_template_file: str | None = None,
|
||||
build_ctx: str | None = None,
|
||||
enable_features: tuple[str, ...] | None = None,
|
||||
dockerfile_template: str | None = None,
|
||||
overwrite: bool = False,
|
||||
container_registry: LiteralContainerRegistry | None = None,
|
||||
container_version_strategy: LiteralContainerVersionStrategy | None = None,
|
||||
push: bool = False,
|
||||
force_push: bool = False,
|
||||
containerize: bool = False,
|
||||
serialisation: LiteralSerialisation | None = None,
|
||||
additional_args: list[str] | None = None,
|
||||
bento_store: BentoStore = Provide[BentoMLContainer.bento_store],
|
||||
) -> bentoml.Bento:
|
||||
"""Package a LLM into a BentoLLM.
|
||||
|
||||
The LLM will be built into a BentoService with the following structure:
|
||||
if ``quantize`` is passed, it will instruct the model to be quantized dynamically during serving time.
|
||||
|
||||
``openllm.build`` will invoke ``click.Command`` under the hood, so it behaves exactly the same as ``openllm build`` CLI.
|
||||
|
||||
Args:
|
||||
model_id: The model id to build this BentoLLM
|
||||
model_version: Optional model version for this given LLM
|
||||
bento_version: Optional bento veresion for this given BentoLLM
|
||||
system_message: Optional system message for supported LLMs. If given LLM supports system message, OpenLLM will provide a default system message.
|
||||
prompt_template_file: Optional file path containing user-defined custom prompt template. By default, the prompt template for the specified LLM will be used..
|
||||
quantize: Quantize the model weights. This is only applicable for PyTorch models.
|
||||
Possible quantisation strategies:
|
||||
- int8: Quantize the model with 8bit (bitsandbytes required)
|
||||
- int4: Quantize the model with 4bit (bitsandbytes required)
|
||||
- gptq: Quantize the model with GPTQ (auto-gptq required)
|
||||
adapter_map: The adapter mapping of LoRA to use for this LLM. It accepts a dictionary of ``{adapter_id: adapter_name}``.
|
||||
build_ctx: The build context to use for building BentoLLM. By default, it sets to current directory.
|
||||
enable_features: Additional OpenLLM features to be included with this BentoLLM.
|
||||
dockerfile_template: The dockerfile template to use for building BentoLLM. See https://docs.bentoml.com/en/latest/guides/containerization.html#dockerfile-template.
|
||||
overwrite: Whether to overwrite the existing BentoLLM. By default, this is set to ``False``.
|
||||
push: Whether to push the result bento to BentoCloud. Make sure to login with 'bentoml cloud login' first.
|
||||
containerize: Whether to containerize the Bento after building. '--containerize' is the shortcut of 'openllm build && bentoml containerize'.
|
||||
Note that 'containerize' and 'push' are mutually exclusive
|
||||
container_registry: Container registry to choose the base OpenLLM container image to build from. Default to ECR.
|
||||
container_registry: Container registry to choose the base OpenLLM container image to build from. Default to ECR.
|
||||
container_version_strategy: The container version strategy. Default to the latest release of OpenLLM.
|
||||
serialisation: Serialisation for saving models. Default to 'safetensors', which is equivalent to `safe_serialization=True`
|
||||
additional_args: Additional arguments to pass to ``openllm build``.
|
||||
bento_store: Optional BentoStore for saving this BentoLLM. Default to the default BentoML local store.
|
||||
|
||||
Returns:
|
||||
``bentoml.Bento | str``: BentoLLM instance. This can be used to serve the LLM or can be pushed to BentoCloud.
|
||||
"""
|
||||
from ..serialisation.transformers.weights import has_safetensors_weights
|
||||
|
||||
args: list[str] = [
|
||||
sys.executable,
|
||||
'-m',
|
||||
'openllm',
|
||||
'build',
|
||||
model_id,
|
||||
'--machine',
|
||||
'--serialisation',
|
||||
first_not_none(
|
||||
serialisation, default='safetensors' if has_safetensors_weights(model_id, model_version) else 'legacy'
|
||||
),
|
||||
]
|
||||
if quantize:
|
||||
args.extend(['--quantize', quantize])
|
||||
if containerize and push:
|
||||
raise OpenLLMException("'containerize' and 'push' are currently mutually exclusive.")
|
||||
if push:
|
||||
args.extend(['--push'])
|
||||
if containerize:
|
||||
args.extend(['--containerize'])
|
||||
if build_ctx:
|
||||
args.extend(['--build-ctx', build_ctx])
|
||||
if enable_features:
|
||||
args.extend([f'--enable-features={f}' for f in enable_features])
|
||||
if overwrite:
|
||||
args.append('--overwrite')
|
||||
if system_message:
|
||||
args.extend(['--system-message', system_message])
|
||||
if prompt_template_file:
|
||||
args.extend(['--prompt-template-file', openllm_core.utils.resolve_filepath(prompt_template_file)])
|
||||
if adapter_map:
|
||||
args.extend([f"--adapter-id={k}{':'+v if v is not None else ''}" for k, v in adapter_map.items()])
|
||||
if model_version:
|
||||
args.extend(['--model-version', model_version])
|
||||
if bento_version:
|
||||
args.extend(['--bento-version', bento_version])
|
||||
if dockerfile_template:
|
||||
args.extend(['--dockerfile-template', dockerfile_template])
|
||||
if container_registry is None:
|
||||
container_registry = 'ecr'
|
||||
if container_version_strategy is None:
|
||||
container_version_strategy = 'release'
|
||||
args.extend(['--container-registry', container_registry, '--container-version-strategy', container_version_strategy])
|
||||
if additional_args:
|
||||
args.extend(additional_args)
|
||||
if force_push:
|
||||
args.append('--force-push')
|
||||
|
||||
current_disable_warning = get_disable_warnings()
|
||||
os.environ[WARNING_ENV_VAR] = str(True)
|
||||
try:
|
||||
output = subprocess.check_output(args, env=os.environ.copy(), cwd=build_ctx or os.getcwd())
|
||||
except subprocess.CalledProcessError as e:
|
||||
logger.error("Exception caught while building Bento for '%s'", model_id, exc_info=e)
|
||||
if e.stderr:
|
||||
raise OpenLLMException(e.stderr.decode('utf-8')) from None
|
||||
raise OpenLLMException(str(e)) from None
|
||||
matched = re.match(r'__object__:(\{.*\})$', output.decode('utf-8').strip())
|
||||
if matched is None:
|
||||
raise ValueError(
|
||||
f"Failed to find tag from output: {output.decode('utf-8').strip()}\nNote: Output from 'openllm build' might not be correct. Please open an issue on GitHub."
|
||||
)
|
||||
os.environ[WARNING_ENV_VAR] = str(current_disable_warning)
|
||||
try:
|
||||
result = orjson.loads(matched.group(1))
|
||||
except orjson.JSONDecodeError as e:
|
||||
raise ValueError(
|
||||
f"Failed to decode JSON from output: {output.decode('utf-8').strip()}\nNote: Output from 'openllm build' might not be correct. Please open an issue on GitHub."
|
||||
) from e
|
||||
return bentoml.get(result['tag'], _bento_store=bento_store)
|
||||
|
||||
|
||||
def _import_model(
|
||||
model_id: str,
|
||||
model_version: str | None = None,
|
||||
backend: LiteralBackend | None = None,
|
||||
quantize: LiteralQuantise | None = None,
|
||||
serialisation: LiteralSerialisation | None = None,
|
||||
additional_args: t.Sequence[str] | None = None,
|
||||
) -> dict[str, t.Any]:
|
||||
"""Import a LLM into local store.
|
||||
|
||||
> [!NOTE]
|
||||
> If ``quantize`` is passed, the model weights will be saved as quantized weights. You should
|
||||
> only use this option if you want the weight to be quantized by default. Note that OpenLLM also
|
||||
> support on-demand quantisation during initial startup.
|
||||
|
||||
``openllm.import_model`` will invoke ``click.Command`` under the hood, so it behaves exactly the same as the CLI ``openllm import``.
|
||||
|
||||
> [!NOTE]
|
||||
> ``openllm.start`` will automatically invoke ``openllm.import_model`` under the hood.
|
||||
|
||||
Args:
|
||||
model_id: required model id for this given LLM
|
||||
model_version: Optional model version for this given LLM
|
||||
backend: The backend to use for this LLM. By default, this is set to ``pt``.
|
||||
quantize: Quantize the model weights. This is only applicable for PyTorch models.
|
||||
Possible quantisation strategies:
|
||||
- int8: Quantize the model with 8bit (bitsandbytes required)
|
||||
- int4: Quantize the model with 4bit (bitsandbytes required)
|
||||
- gptq: Quantize the model with GPTQ (auto-gptq required)
|
||||
serialisation: Type of model format to save to local store. If set to 'safetensors', then OpenLLM will save model using safetensors. Default behaviour is similar to ``safe_serialization=False``.
|
||||
additional_args: Additional arguments to pass to ``openllm import``.
|
||||
|
||||
Returns:
|
||||
``bentoml.Model``:BentoModel of the given LLM. This can be used to serve the LLM or can be pushed to BentoCloud.
|
||||
"""
|
||||
from .entrypoint import import_command
|
||||
|
||||
args = [model_id, '--quiet']
|
||||
if backend is not None:
|
||||
args.extend(['--backend', backend])
|
||||
if model_version is not None:
|
||||
args.extend(['--model-version', str(model_version)])
|
||||
if quantize is not None:
|
||||
args.extend(['--quantize', quantize])
|
||||
if serialisation is not None:
|
||||
args.extend(['--serialisation', serialisation])
|
||||
if additional_args is not None:
|
||||
args.extend(additional_args)
|
||||
return import_command.main(args=args, standalone_mode=False)
|
||||
|
||||
|
||||
def _list_models() -> dict[str, t.Any]:
|
||||
"""List all available models within the local store."""
|
||||
from .entrypoint import models_command
|
||||
|
||||
return models_command.main(args=['--show-available', '--quiet'], standalone_mode=False)
|
||||
|
||||
|
||||
start, start_grpc = codegen.gen_sdk(_start, _serve_grpc=False), codegen.gen_sdk(_start, _serve_grpc=True)
|
||||
build, import_model, list_models = (
|
||||
codegen.gen_sdk(_build),
|
||||
codegen.gen_sdk(_import_model),
|
||||
codegen.gen_sdk(_list_models),
|
||||
)
|
||||
__all__ = ['start', 'start_grpc', 'build', 'import_model', 'list_models']
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,16 +0,0 @@
|
||||
"""OpenLLM CLI Extension.
|
||||
|
||||
The following directory contains all possible extensions for OpenLLM CLI
|
||||
For adding new extension, just simply name that ext to `<name_ext>.py` and define
|
||||
a ``click.command()`` with the following format:
|
||||
|
||||
```python
|
||||
import click
|
||||
|
||||
@click.command(<name_ext>)
|
||||
...
|
||||
def cli(...): # <- this is important here, it should always name CLI in order for the extension resolver to know how to import this extensions.
|
||||
```
|
||||
|
||||
NOTE: Make sure to keep this file blank such that it won't mess with the import order.
|
||||
"""
|
||||
@@ -1,52 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import typing as t
|
||||
|
||||
import click
|
||||
import orjson
|
||||
|
||||
import openllm
|
||||
|
||||
from openllm.cli import termui
|
||||
from openllm.cli._factory import container_registry_option
|
||||
from openllm.cli._factory import machine_option
|
||||
|
||||
|
||||
if t.TYPE_CHECKING:
|
||||
from openllm_core._typing_compat import LiteralContainerRegistry
|
||||
from openllm_core._typing_compat import LiteralContainerVersionStrategy
|
||||
|
||||
|
||||
@click.command(
|
||||
'build_base_container',
|
||||
context_settings=termui.CONTEXT_SETTINGS,
|
||||
help="""Base image builder for BentoLLM.
|
||||
|
||||
By default, the base image will include custom kernels (PagedAttention via vllm, FlashAttention-v2, etc.) built with CUDA 11.8, Python 3.9 on Ubuntu22.04.
|
||||
Optionally, this can also be pushed directly to remote registry. Currently support ``docker.io``, ``ghcr.io`` and ``quay.io``.
|
||||
|
||||
\b
|
||||
If '--machine' is passed, then it will run the process quietly, and output a JSON to the current running terminal.
|
||||
This command is only useful for debugging and for building custom base image for extending BentoML with custom base images and custom kernels.
|
||||
|
||||
Note that we already release images on our CI to ECR and GHCR, so you don't need to build it yourself.
|
||||
""",
|
||||
)
|
||||
@container_registry_option
|
||||
@click.option(
|
||||
'--version-strategy',
|
||||
type=click.Choice(['release', 'latest', 'nightly']),
|
||||
default='nightly',
|
||||
help='Version strategy to use for tagging the image.',
|
||||
)
|
||||
@click.option('--push/--no-push', help='Whether to push to remote repository', is_flag=True, default=False)
|
||||
@machine_option
|
||||
def cli(
|
||||
container_registry: tuple[LiteralContainerRegistry, ...] | None,
|
||||
version_strategy: LiteralContainerVersionStrategy,
|
||||
push: bool,
|
||||
machine: bool,
|
||||
) -> dict[str, str]:
|
||||
mapping = openllm.bundle.build_container(container_registry, version_strategy, push, machine)
|
||||
if machine:
|
||||
termui.echo(orjson.dumps(mapping, option=orjson.OPT_INDENT_2).decode(), fg='white')
|
||||
return mapping
|
||||
@@ -1,48 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import shutil
|
||||
import subprocess
|
||||
import typing as t
|
||||
|
||||
import click
|
||||
import psutil
|
||||
|
||||
from simple_di import Provide
|
||||
from simple_di import inject
|
||||
|
||||
import bentoml
|
||||
|
||||
from bentoml._internal.configuration.containers import BentoMLContainer
|
||||
from openllm.cli import termui
|
||||
from openllm.cli._factory import bento_complete_envvar
|
||||
from openllm.cli._factory import machine_option
|
||||
|
||||
|
||||
if t.TYPE_CHECKING:
|
||||
from bentoml._internal.bento import BentoStore
|
||||
|
||||
|
||||
@click.command('dive_bentos', context_settings=termui.CONTEXT_SETTINGS)
|
||||
@click.argument('bento', type=str, shell_complete=bento_complete_envvar)
|
||||
@machine_option
|
||||
@click.pass_context
|
||||
@inject
|
||||
def cli(
|
||||
ctx: click.Context, bento: str, machine: bool, _bento_store: BentoStore = Provide[BentoMLContainer.bento_store]
|
||||
) -> str | None:
|
||||
"""Dive into a BentoLLM. This is synonymous to cd $(b get <bento>:<tag> -o path)."""
|
||||
try:
|
||||
bentomodel = _bento_store.get(bento)
|
||||
except bentoml.exceptions.NotFound:
|
||||
ctx.fail(f'Bento {bento} not found. Make sure to call `openllm build` first.')
|
||||
if 'bundler' not in bentomodel.info.labels or bentomodel.info.labels['bundler'] != 'openllm.bundle':
|
||||
ctx.fail(
|
||||
f"Bento is either too old or not built with OpenLLM. Make sure to use ``openllm build {bentomodel.info.labels['start_name']}`` for correctness."
|
||||
)
|
||||
if machine:
|
||||
return bentomodel.path
|
||||
# copy and paste this into a new shell
|
||||
if psutil.WINDOWS:
|
||||
subprocess.check_call([shutil.which('dir') or 'dir'], cwd=bentomodel.path)
|
||||
else:
|
||||
subprocess.check_call([shutil.which('ls') or 'ls', '-Rrthla'], cwd=bentomodel.path)
|
||||
ctx.exit(0)
|
||||
@@ -1,57 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import typing as t
|
||||
|
||||
import click
|
||||
|
||||
from simple_di import Provide
|
||||
from simple_di import inject
|
||||
|
||||
import bentoml
|
||||
|
||||
from bentoml._internal.bento.bento import BentoInfo
|
||||
from bentoml._internal.bento.build_config import DockerOptions
|
||||
from bentoml._internal.configuration.containers import BentoMLContainer
|
||||
from bentoml._internal.container.generate import generate_containerfile
|
||||
from openllm.cli import termui
|
||||
from openllm.cli._factory import bento_complete_envvar
|
||||
from openllm_core.utils import converter
|
||||
|
||||
|
||||
if t.TYPE_CHECKING:
|
||||
from bentoml._internal.bento import BentoStore
|
||||
|
||||
|
||||
@click.command(
|
||||
'get_containerfile', context_settings=termui.CONTEXT_SETTINGS, help='Return Containerfile of any given Bento.'
|
||||
)
|
||||
@click.argument('bento', type=str, shell_complete=bento_complete_envvar)
|
||||
@click.pass_context
|
||||
@inject
|
||||
def cli(ctx: click.Context, bento: str, _bento_store: BentoStore = Provide[BentoMLContainer.bento_store]) -> str:
|
||||
try:
|
||||
bentomodel = _bento_store.get(bento)
|
||||
except bentoml.exceptions.NotFound:
|
||||
ctx.fail(f'Bento {bento} not found. Make sure to call `openllm build` first.')
|
||||
# The logic below are similar to bentoml._internal.container.construct_containerfile
|
||||
with open(bentomodel.path_of('bento.yaml'), 'r') as f:
|
||||
options = BentoInfo.from_yaml_file(f)
|
||||
# NOTE: dockerfile_template is already included in the
|
||||
# Dockerfile inside bento, and it is not relevant to
|
||||
# construct_containerfile. Hence it is safe to set it to None here.
|
||||
# See https://github.com/bentoml/BentoML/issues/3399.
|
||||
docker_attrs = converter.unstructure(options.docker)
|
||||
# NOTE: if users specify a dockerfile_template, we will
|
||||
# save it to /env/docker/Dockerfile.template. This is necessary
|
||||
# for the reconstruction of the Dockerfile.
|
||||
if 'dockerfile_template' in docker_attrs and docker_attrs['dockerfile_template'] is not None:
|
||||
docker_attrs['dockerfile_template'] = 'env/docker/Dockerfile.template'
|
||||
doc = generate_containerfile(
|
||||
docker=DockerOptions(**docker_attrs),
|
||||
build_ctx=bentomodel.path,
|
||||
conda=options.conda,
|
||||
bento_fs=bentomodel._fs,
|
||||
enable_buildkit=True,
|
||||
add_header=True,
|
||||
)
|
||||
termui.echo(doc, fg='white')
|
||||
return bentomodel.path
|
||||
@@ -1,82 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import logging
|
||||
import traceback
|
||||
import typing as t
|
||||
|
||||
import click
|
||||
import inflection
|
||||
import orjson
|
||||
|
||||
from bentoml_cli.utils import opt_callback
|
||||
|
||||
import openllm
|
||||
import openllm_core
|
||||
|
||||
from openllm.cli import termui
|
||||
from openllm.cli._factory import model_complete_envvar
|
||||
from openllm_core.prompts import process_prompt
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@click.command('get_prompt', context_settings=termui.CONTEXT_SETTINGS)
|
||||
@click.argument(
|
||||
'model_name',
|
||||
type=click.Choice([inflection.dasherize(name) for name in openllm.CONFIG_MAPPING.keys()]),
|
||||
shell_complete=model_complete_envvar,
|
||||
)
|
||||
@click.argument('prompt', type=click.STRING)
|
||||
@click.option('--format', type=click.STRING, default=None)
|
||||
@click.option(
|
||||
'--opt',
|
||||
help="Define additional prompt variables. (format: ``--opt system_prompt='You are a useful assistant'``)",
|
||||
required=False,
|
||||
multiple=True,
|
||||
callback=opt_callback,
|
||||
metavar='ARG=VALUE[,ARG=VALUE]',
|
||||
)
|
||||
@click.pass_context
|
||||
def cli(
|
||||
ctx: click.Context, /, model_name: str, prompt: str, format: str | None, _memoized: dict[str, t.Any], **_: t.Any
|
||||
) -> str | None:
|
||||
"""Get the default prompt used by OpenLLM."""
|
||||
module = getattr(openllm_core.config, f'configuration_{model_name}')
|
||||
_memoized = {k: v[0] for k, v in _memoized.items() if v}
|
||||
try:
|
||||
template = getattr(module, 'DEFAULT_PROMPT_TEMPLATE', None)
|
||||
prompt_mapping = getattr(module, 'PROMPT_MAPPING', None)
|
||||
if template is None:
|
||||
raise click.BadArgumentUsage(f'model {model_name} does not have a default prompt template') from None
|
||||
if callable(template):
|
||||
if format is None:
|
||||
if not hasattr(module, 'PROMPT_MAPPING') or module.PROMPT_MAPPING is None:
|
||||
raise RuntimeError('Failed to find prompt mapping while DEFAULT_PROMPT_TEMPLATE is a function.')
|
||||
raise click.BadOptionUsage(
|
||||
'format',
|
||||
f"{model_name} prompt requires passing '--format' (available format: {list(module.PROMPT_MAPPING)})",
|
||||
)
|
||||
if prompt_mapping is None:
|
||||
raise click.BadArgumentUsage(
|
||||
f'Failed to fine prompt mapping while the default prompt for {model_name} is a callable.'
|
||||
) from None
|
||||
if format not in prompt_mapping:
|
||||
raise click.BadOptionUsage(
|
||||
'format', f'Given format {format} is not valid for {model_name} (available format: {list(prompt_mapping)})'
|
||||
)
|
||||
_prompt_template = template(format)
|
||||
else:
|
||||
_prompt_template = template
|
||||
try:
|
||||
# backward-compatible. TO BE REMOVED once every model has default system message and prompt template.
|
||||
fully_formatted = process_prompt(prompt, _prompt_template, True, **_memoized)
|
||||
except RuntimeError as err:
|
||||
logger.debug('Exception caught while formatting prompt: %s', err)
|
||||
fully_formatted = openllm.AutoConfig.for_model(model_name).sanitize_parameters(
|
||||
prompt, prompt_template=_prompt_template
|
||||
)[0]
|
||||
termui.echo(orjson.dumps({'prompt': fully_formatted}, option=orjson.OPT_INDENT_2).decode(), fg='white')
|
||||
except Exception as err:
|
||||
traceback.print_exc()
|
||||
raise click.ClickException(f'Failed to determine a default prompt template for {model_name}.') from err
|
||||
ctx.exit(0)
|
||||
@@ -1,35 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import click
|
||||
import inflection
|
||||
import orjson
|
||||
|
||||
import bentoml
|
||||
import openllm
|
||||
|
||||
from bentoml._internal.utils import human_readable_size
|
||||
from openllm.cli import termui
|
||||
|
||||
|
||||
@click.command('list_bentos', context_settings=termui.CONTEXT_SETTINGS)
|
||||
@click.pass_context
|
||||
def cli(ctx: click.Context) -> None:
|
||||
"""List available bentos built by OpenLLM."""
|
||||
mapping = {
|
||||
k: [
|
||||
{
|
||||
'tag': str(b.tag),
|
||||
'size': human_readable_size(openllm.utils.calc_dir_size(b.path)),
|
||||
'models': [
|
||||
{'tag': str(m.tag), 'size': human_readable_size(openllm.utils.calc_dir_size(m.path))}
|
||||
for m in (bentoml.models.get(_.tag) for _ in b.info.models)
|
||||
],
|
||||
}
|
||||
for b in tuple(i for i in bentoml.list() if all(k in i.info.labels for k in {'start_name', 'bundler'}))
|
||||
if b.info.labels['start_name'] == k
|
||||
]
|
||||
for k in tuple(inflection.dasherize(key) for key in openllm.CONFIG_MAPPING.keys())
|
||||
}
|
||||
mapping = {k: v for k, v in mapping.items() if v}
|
||||
termui.echo(orjson.dumps(mapping, option=orjson.OPT_INDENT_2).decode(), fg='white')
|
||||
ctx.exit(0)
|
||||
@@ -1,52 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import typing as t
|
||||
|
||||
import click
|
||||
import inflection
|
||||
import orjson
|
||||
|
||||
import bentoml
|
||||
import openllm
|
||||
|
||||
from bentoml._internal.utils import human_readable_size
|
||||
from openllm.cli import termui
|
||||
from openllm.cli._factory import model_complete_envvar
|
||||
from openllm.cli._factory import model_name_argument
|
||||
|
||||
|
||||
if t.TYPE_CHECKING:
|
||||
from openllm_core._typing_compat import DictStrAny
|
||||
|
||||
|
||||
@click.command('list_models', context_settings=termui.CONTEXT_SETTINGS)
|
||||
@model_name_argument(required=False, shell_complete=model_complete_envvar)
|
||||
def cli(model_name: str | None) -> DictStrAny:
|
||||
"""This is equivalent to openllm models --show-available less the nice table."""
|
||||
models = tuple(inflection.dasherize(key) for key in openllm.CONFIG_MAPPING.keys())
|
||||
ids_in_local_store = {
|
||||
k: [
|
||||
i
|
||||
for i in bentoml.models.list()
|
||||
if 'framework' in i.info.labels
|
||||
and i.info.labels['framework'] == 'openllm'
|
||||
and 'model_name' in i.info.labels
|
||||
and i.info.labels['model_name'] == k
|
||||
]
|
||||
for k in models
|
||||
}
|
||||
if model_name is not None:
|
||||
ids_in_local_store = {
|
||||
k: [
|
||||
i
|
||||
for i in v
|
||||
if 'model_name' in i.info.labels and i.info.labels['model_name'] == inflection.dasherize(model_name)
|
||||
]
|
||||
for k, v in ids_in_local_store.items()
|
||||
}
|
||||
ids_in_local_store = {k: v for k, v in ids_in_local_store.items() if v}
|
||||
local_models = {
|
||||
k: [{'tag': str(i.tag), 'size': human_readable_size(openllm.utils.calc_dir_size(i.path))} for i in val]
|
||||
for k, val in ids_in_local_store.items()
|
||||
}
|
||||
termui.echo(orjson.dumps(local_models, option=orjson.OPT_INDENT_2).decode(), fg='white')
|
||||
return local_models
|
||||
@@ -1,114 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import importlib.machinery
|
||||
import logging
|
||||
import os
|
||||
import pkgutil
|
||||
import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
import typing as t
|
||||
|
||||
import click
|
||||
import jupytext
|
||||
import nbformat
|
||||
import yaml
|
||||
|
||||
from openllm import playground
|
||||
from openllm.cli import termui
|
||||
from openllm_core.utils import is_jupyter_available
|
||||
from openllm_core.utils import is_jupytext_available
|
||||
from openllm_core.utils import is_notebook_available
|
||||
|
||||
|
||||
if t.TYPE_CHECKING:
|
||||
from openllm_core._typing_compat import DictStrAny
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def load_notebook_metadata() -> DictStrAny:
|
||||
with open(os.path.join(os.path.dirname(playground.__file__), '_meta.yml'), 'r') as f:
|
||||
content = yaml.safe_load(f)
|
||||
if not all('description' in k for k in content.values()):
|
||||
raise ValueError("Invalid metadata file. All entries must have a 'description' key.")
|
||||
return content
|
||||
|
||||
|
||||
@click.command('playground', context_settings=termui.CONTEXT_SETTINGS)
|
||||
@click.argument('output-dir', default=None, required=False)
|
||||
@click.option(
|
||||
'--port',
|
||||
envvar='JUPYTER_PORT',
|
||||
show_envvar=True,
|
||||
show_default=True,
|
||||
default=8888,
|
||||
help='Default port for Jupyter server',
|
||||
)
|
||||
@click.pass_context
|
||||
def cli(ctx: click.Context, output_dir: str | None, port: int) -> None:
|
||||
"""OpenLLM Playground.
|
||||
|
||||
A collections of notebooks to explore the capabilities of OpenLLM.
|
||||
This includes notebooks for fine-tuning, inference, and more.
|
||||
|
||||
All of the script available in the playground can also be run directly as a Python script:
|
||||
For example:
|
||||
|
||||
\b
|
||||
```bash
|
||||
python -m openllm.playground.falcon_tuned --help
|
||||
```
|
||||
|
||||
\b
|
||||
> [!NOTE]
|
||||
> This command requires Jupyter to be installed. Install it with 'pip install "openllm[playground]"'
|
||||
"""
|
||||
if not is_jupyter_available() or not is_jupytext_available() or not is_notebook_available():
|
||||
raise RuntimeError(
|
||||
"Playground requires 'jupyter', 'jupytext', and 'notebook'. Install it with 'pip install \"openllm[playground]\"'"
|
||||
)
|
||||
metadata = load_notebook_metadata()
|
||||
_temp_dir = False
|
||||
if output_dir is None:
|
||||
_temp_dir = True
|
||||
output_dir = tempfile.mkdtemp(prefix='openllm-playground-')
|
||||
else:
|
||||
os.makedirs(os.path.abspath(os.path.expandvars(os.path.expanduser(output_dir))), exist_ok=True)
|
||||
|
||||
termui.echo('The playground notebooks will be saved to: ' + os.path.abspath(output_dir), fg='blue')
|
||||
for module in pkgutil.iter_modules(playground.__path__):
|
||||
if module.ispkg or os.path.exists(os.path.join(output_dir, module.name + '.ipynb')):
|
||||
logger.debug(
|
||||
'Skipping: %s (%s)', module.name, 'File already exists' if not module.ispkg else f'{module.name} is a module'
|
||||
)
|
||||
continue
|
||||
if not isinstance(module.module_finder, importlib.machinery.FileFinder):
|
||||
continue
|
||||
termui.echo('Generating notebook for: ' + module.name, fg='magenta')
|
||||
markdown_cell = nbformat.v4.new_markdown_cell(metadata[module.name]['description'])
|
||||
f = jupytext.read(os.path.join(module.module_finder.path, module.name + '.py'))
|
||||
f.cells.insert(0, markdown_cell)
|
||||
jupytext.write(f, os.path.join(output_dir, module.name + '.ipynb'), fmt='notebook')
|
||||
try:
|
||||
subprocess.check_output(
|
||||
[
|
||||
sys.executable,
|
||||
'-m',
|
||||
'jupyter',
|
||||
'notebook',
|
||||
'--notebook-dir',
|
||||
output_dir,
|
||||
'--port',
|
||||
str(port),
|
||||
'--no-browser',
|
||||
'--debug',
|
||||
]
|
||||
)
|
||||
except subprocess.CalledProcessError as e:
|
||||
termui.echo(e.output, fg='red')
|
||||
raise click.ClickException(f'Failed to start a jupyter server:\n{e}') from None
|
||||
except KeyboardInterrupt:
|
||||
termui.echo('\nShutting down Jupyter server...', fg='yellow')
|
||||
if _temp_dir:
|
||||
termui.echo('Note: You can access the generated notebooks in: ' + output_dir, fg='blue')
|
||||
ctx.exit(0)
|
||||
@@ -1,91 +0,0 @@
|
||||
from __future__ import annotations
|
||||
import enum
|
||||
import functools
|
||||
import logging
|
||||
import os
|
||||
import typing as t
|
||||
|
||||
import click
|
||||
import inflection
|
||||
import orjson
|
||||
|
||||
from openllm_core._typing_compat import DictStrAny
|
||||
from openllm_core.utils import get_debug_mode
|
||||
|
||||
|
||||
logger = logging.getLogger('openllm')
|
||||
|
||||
|
||||
class Level(enum.IntEnum):
|
||||
NOTSET = logging.DEBUG
|
||||
DEBUG = logging.DEBUG
|
||||
INFO = logging.INFO
|
||||
WARNING = logging.WARNING
|
||||
ERROR = logging.ERROR
|
||||
CRITICAL = logging.CRITICAL
|
||||
|
||||
@property
|
||||
def color(self) -> str | None:
|
||||
return {
|
||||
Level.NOTSET: None,
|
||||
Level.DEBUG: 'cyan',
|
||||
Level.INFO: 'green',
|
||||
Level.WARNING: 'yellow',
|
||||
Level.ERROR: 'red',
|
||||
Level.CRITICAL: 'red',
|
||||
}[self]
|
||||
|
||||
@classmethod
|
||||
def from_logging_level(cls, level: int) -> Level:
|
||||
return {
|
||||
logging.DEBUG: Level.DEBUG,
|
||||
logging.INFO: Level.INFO,
|
||||
logging.WARNING: Level.WARNING,
|
||||
logging.ERROR: Level.ERROR,
|
||||
logging.CRITICAL: Level.CRITICAL,
|
||||
}[level]
|
||||
|
||||
|
||||
class JsonLog(t.TypedDict):
|
||||
log_level: Level
|
||||
content: str
|
||||
|
||||
|
||||
def log(content: str, level: Level = Level.INFO, fg: str | None = None) -> None:
|
||||
if get_debug_mode():
|
||||
echo(content, fg=fg)
|
||||
else:
|
||||
echo(orjson.dumps(JsonLog(log_level=level, content=content)).decode(), fg=fg, json=True)
|
||||
|
||||
|
||||
warning = functools.partial(log, level=Level.WARNING)
|
||||
error = functools.partial(log, level=Level.ERROR)
|
||||
critical = functools.partial(log, level=Level.CRITICAL)
|
||||
debug = functools.partial(log, level=Level.DEBUG)
|
||||
info = functools.partial(log, level=Level.INFO)
|
||||
notset = functools.partial(log, level=Level.NOTSET)
|
||||
|
||||
|
||||
def echo(text: t.Any, fg: str | None = None, *, _with_style: bool = True, json: bool = False, **attrs: t.Any) -> None:
|
||||
if json:
|
||||
text = orjson.loads(text)
|
||||
if 'content' in text and 'log_level' in text:
|
||||
content = text['content']
|
||||
fg = Level.from_logging_level(text['log_level']).color
|
||||
else:
|
||||
content = orjson.dumps(text).decode()
|
||||
fg = Level.INFO.color if not get_debug_mode() else Level.DEBUG.color
|
||||
else:
|
||||
content = t.cast(str, text)
|
||||
attrs['fg'] = fg
|
||||
|
||||
(click.echo if not _with_style else click.secho)(content, **attrs)
|
||||
|
||||
|
||||
COLUMNS: int = int(os.environ.get('COLUMNS', str(120)))
|
||||
CONTEXT_SETTINGS: DictStrAny = {
|
||||
'help_option_names': ['-h', '--help'],
|
||||
'max_content_width': COLUMNS,
|
||||
'token_normalize_func': inflection.underscore,
|
||||
}
|
||||
__all__ = ['echo', 'COLUMNS', 'CONTEXT_SETTINGS', 'log', 'warning', 'error', 'critical', 'debug', 'info', 'Level']
|
||||
Reference in New Issue
Block a user