mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-01-31 19:02:10 -05:00
chore(style): reduce line length and truncate compression
Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>
This commit is contained in:
@@ -225,7 +225,9 @@ class OpenLLMCommandGroup(BentoMLCommandGroup):
|
||||
with formatter.section(_("Extensions")):
|
||||
formatter.write_dl(rows)
|
||||
@click.group(cls=OpenLLMCommandGroup, context_settings=termui.CONTEXT_SETTINGS, name="openllm")
|
||||
@click.version_option(None, "--version", "-v", message=f"%(prog)s, %(version)s (compiled: {'yes' if openllm.COMPILED else 'no'})\nPython ({platform.python_implementation()}) {platform.python_version()}")
|
||||
@click.version_option(
|
||||
None, "--version", "-v", message=f"%(prog)s, %(version)s (compiled: {'yes' if openllm.COMPILED else 'no'})\nPython ({platform.python_implementation()}) {platform.python_version()}"
|
||||
)
|
||||
def cli() -> None:
|
||||
"""\b
|
||||
██████╗ ██████╗ ███████╗███╗ ██╗██╗ ██╗ ███╗ ███╗
|
||||
@@ -257,7 +259,14 @@ def start_grpc_command() -> None:
|
||||
$ openllm start-grpc <model_name> --<options> ...
|
||||
```
|
||||
"""
|
||||
_start_mapping = {"start": {key: start_command_factory(start_command, key, _context_settings=termui.CONTEXT_SETTINGS) for key in CONFIG_MAPPING}, "start-grpc": {key: start_command_factory(start_grpc_command, key, _context_settings=termui.CONTEXT_SETTINGS, _serve_grpc=True) for key in CONFIG_MAPPING}}
|
||||
_start_mapping = {
|
||||
"start": {
|
||||
key: start_command_factory(start_command, key, _context_settings=termui.CONTEXT_SETTINGS) for key in CONFIG_MAPPING
|
||||
},
|
||||
"start-grpc": {
|
||||
key: start_command_factory(start_grpc_command, key, _context_settings=termui.CONTEXT_SETTINGS, _serve_grpc=True) for key in CONFIG_MAPPING
|
||||
}
|
||||
}
|
||||
@cli.command(name="import", aliases=["download"])
|
||||
@model_name_argument
|
||||
@click.argument("model_id", type=click.STRING, default=None, metavar="Optional[REMOTE_REPO/MODEL_ID | /path/to/local/model]", required=False)
|
||||
@@ -269,7 +278,18 @@ _start_mapping = {"start": {key: start_command_factory(start_command, key, _cont
|
||||
@machine_option
|
||||
@click.option("--implementation", type=click.Choice(["pt", "tf", "flax", "vllm"]), default=None, help="The implementation for saving this LLM.")
|
||||
@serialisation_option
|
||||
def import_command(model_name: str, model_id: str | None, converter: str | None, model_version: str | None, output: LiteralOutput, runtime: t.Literal["ggml", "transformers"], machine: bool, implementation: LiteralRuntime | None, quantize: t.Literal["int8", "int4", "gptq"] | None, serialisation_format: t.Literal["safetensors", "legacy"],) -> bentoml.Model:
|
||||
def import_command(
|
||||
model_name: str,
|
||||
model_id: str | None,
|
||||
converter: str | None,
|
||||
model_version: str | None,
|
||||
output: LiteralOutput,
|
||||
runtime: t.Literal["ggml", "transformers"],
|
||||
machine: bool,
|
||||
implementation: LiteralRuntime | None,
|
||||
quantize: t.Literal["int8", "int4", "gptq"] | None,
|
||||
serialisation_format: t.Literal["safetensors", "legacy"],
|
||||
) -> bentoml.Model:
|
||||
"""Setup LLM interactively.
|
||||
|
||||
It accepts two positional arguments: `model_name` and `model_id`. The first name determine
|
||||
@@ -325,7 +345,9 @@ def import_command(model_name: str, model_id: str | None, converter: str | None,
|
||||
llm_config = AutoConfig.for_model(model_name)
|
||||
env = EnvVarMixin(model_name, llm_config.default_implementation(), model_id=model_id, runtime=runtime, quantize=quantize)
|
||||
impl: LiteralRuntime = first_not_none(implementation, default=env["framework_value"])
|
||||
llm = infer_auto_class(impl).for_model(model_name, model_id=env["model_id_value"], llm_config=llm_config, model_version=model_version, ensure_available=False, serialisation=serialisation_format)
|
||||
llm = infer_auto_class(impl).for_model(
|
||||
model_name, model_id=env["model_id_value"], llm_config=llm_config, model_version=model_version, ensure_available=False, serialisation=serialisation_format
|
||||
)
|
||||
_previously_saved = False
|
||||
try:
|
||||
_ref = serialisation.get(llm)
|
||||
@@ -356,17 +378,37 @@ def import_command(model_name: str, model_id: str | None, converter: str | None,
|
||||
@quantize_option(factory=cog.optgroup, build=True)
|
||||
@bettertransformer_option(factory=cog.optgroup)
|
||||
@click.option("--runtime", type=click.Choice(["ggml", "transformers"]), default="transformers", help="The runtime to use for the given model. Default is transformers.")
|
||||
@click.option("--enable-features", multiple=True, nargs=1, metavar="FEATURE[,FEATURE]", help="Enable additional features for building this LLM Bento. Available: {}".format(", ".join(OPTIONAL_DEPENDENCIES)))
|
||||
@click.option("--adapter-id", default=None, multiple=True, metavar="[PATH | [remote/][adapter_name:]adapter_id][, ...]", help="Optional adapters id to be included within the Bento. Note that if you are using relative path, '--build-ctx' must be passed.")
|
||||
@click.option(
|
||||
"--enable-features",
|
||||
multiple=True,
|
||||
nargs=1,
|
||||
metavar="FEATURE[,FEATURE]",
|
||||
help="Enable additional features for building this LLM Bento. Available: {}".format(", ".join(OPTIONAL_DEPENDENCIES))
|
||||
)
|
||||
@click.option(
|
||||
"--adapter-id",
|
||||
default=None,
|
||||
multiple=True,
|
||||
metavar="[PATH | [remote/][adapter_name:]adapter_id][, ...]",
|
||||
help="Optional adapters id to be included within the Bento. Note that if you are using relative path, '--build-ctx' must be passed."
|
||||
)
|
||||
@click.option("--build-ctx", help="Build context. This is required if --adapter-id uses relative path", default=None)
|
||||
@model_version_option
|
||||
@click.option("--dockerfile-template", default=None, type=click.File(), help="Optional custom dockerfile template to be used with this BentoLLM.")
|
||||
@serialisation_option
|
||||
@container_registry_option
|
||||
@click.option("--container-version-strategy", type=click.Choice(["release", "latest", "nightly"]), default="release", help="Default container version strategy for the image from '--container-registry'")
|
||||
@click.option(
|
||||
"--container-version-strategy", type=click.Choice(["release", "latest", "nightly"]), default="release", help="Default container version strategy for the image from '--container-registry'"
|
||||
)
|
||||
@fast_option
|
||||
@cog.optgroup.group(cls=cog.MutuallyExclusiveOptionGroup, name="Utilities options")
|
||||
@cog.optgroup.option("--containerize", default=False, is_flag=True, type=click.BOOL, help="Whether to containerize the Bento after building. '--containerize' is the shortcut of 'openllm build && bentoml containerize'.")
|
||||
@cog.optgroup.option(
|
||||
"--containerize",
|
||||
default=False,
|
||||
is_flag=True,
|
||||
type=click.BOOL,
|
||||
help="Whether to containerize the Bento after building. '--containerize' is the shortcut of 'openllm build && bentoml containerize'."
|
||||
)
|
||||
@cog.optgroup.option("--push", default=False, is_flag=True, type=click.BOOL, help="Whether to push the result bento to BentoCloud. Make sure to login with 'bentoml cloud login' first.")
|
||||
@click.option("--force-push", default=False, is_flag=True, type=click.BOOL, help="Whether to force push.")
|
||||
@click.pass_context
|
||||
@@ -431,7 +473,9 @@ def build_command(
|
||||
if env["quantize_value"]: os.environ[env.quantize] = str(env["quantize_value"])
|
||||
os.environ[env.bettertransformer] = str(env["bettertransformer_value"])
|
||||
|
||||
llm = infer_auto_class(env["framework_value"]).for_model(model_name, model_id=env["model_id_value"], llm_config=llm_config, ensure_available=not fast, model_version=model_version, serialisation=serialisation_format, **attrs)
|
||||
llm = infer_auto_class(env["framework_value"]).for_model(
|
||||
model_name, model_id=env["model_id_value"], llm_config=llm_config, ensure_available=not fast, model_version=model_version, serialisation=serialisation_format, **attrs
|
||||
)
|
||||
|
||||
labels = dict(llm.identifying_params)
|
||||
labels.update({"_type": llm.llm_type, "_framework": env["framework_value"]})
|
||||
@@ -476,7 +520,20 @@ def build_command(
|
||||
raise bentoml.exceptions.NotFound(f"Rebuilding existing Bento {bento_tag}") from None
|
||||
_previously_built = True
|
||||
except bentoml.exceptions.NotFound:
|
||||
bento = bundle.create_bento(bento_tag, llm_fs, llm, workers_per_resource=workers_per_resource, adapter_map=adapter_map, quantize=quantize, bettertransformer=bettertransformer, extra_dependencies=enable_features, dockerfile_template=dockerfile_template_path, runtime=runtime, container_registry=container_registry, container_version_strategy=container_version_strategy)
|
||||
bento = bundle.create_bento(
|
||||
bento_tag,
|
||||
llm_fs,
|
||||
llm,
|
||||
workers_per_resource=workers_per_resource,
|
||||
adapter_map=adapter_map,
|
||||
quantize=quantize,
|
||||
bettertransformer=bettertransformer,
|
||||
extra_dependencies=enable_features,
|
||||
dockerfile_template=dockerfile_template_path,
|
||||
runtime=runtime,
|
||||
container_registry=container_registry,
|
||||
container_version_strategy=container_version_strategy
|
||||
)
|
||||
except Exception as err:
|
||||
raise err from None
|
||||
|
||||
@@ -486,7 +543,12 @@ def build_command(
|
||||
termui.echo("\n" + OPENLLM_FIGLET, fg="white")
|
||||
if not _previously_built: termui.echo(f"Successfully built {bento}.", fg="green")
|
||||
elif not overwrite: termui.echo(f"'{model_name}' already has a Bento built [{bento}]. To overwrite it pass '--overwrite'.", fg="yellow")
|
||||
termui.echo("📖 Next steps:\n\n" + f"* Push to BentoCloud with 'bentoml push':\n\t$ bentoml push {bento.tag}\n\n" + f"* Containerize your Bento with 'bentoml containerize':\n\t$ bentoml containerize {bento.tag} --opt progress=plain\n\n" + "\tTip: To enable additional BentoML features for 'containerize', use '--enable-features=FEATURE[,FEATURE]' [see 'bentoml containerize -h' for more advanced usage]\n", fg="blue",)
|
||||
termui.echo(
|
||||
"📖 Next steps:\n\n" + f"* Push to BentoCloud with 'bentoml push':\n\t$ bentoml push {bento.tag}\n\n" +
|
||||
f"* Containerize your Bento with 'bentoml containerize':\n\t$ bentoml containerize {bento.tag} --opt progress=plain\n\n" +
|
||||
"\tTip: To enable additional BentoML features for 'containerize', use '--enable-features=FEATURE[,FEATURE]' [see 'bentoml containerize -h' for more advanced usage]\n",
|
||||
fg="blue",
|
||||
)
|
||||
elif output == "json":
|
||||
termui.echo(orjson.dumps(bento.info.to_dict(), option=orjson.OPT_INDENT_2).decode())
|
||||
else:
|
||||
@@ -538,7 +600,14 @@ def models_command(ctx: click.Context, output: LiteralOutput, show_available: bo
|
||||
if config["model_name"] in MODEL_FLAX_MAPPING_NAMES: runtime_impl += ("flax",)
|
||||
if config["model_name"] in MODEL_TF_MAPPING_NAMES: runtime_impl += ("tf",)
|
||||
if config["model_name"] in MODEL_VLLM_MAPPING_NAMES: runtime_impl += ("vllm",)
|
||||
json_data[m] = {"architecture": config["architecture"], "model_id": config["model_ids"], "cpu": not config["requires_gpu"], "gpu": True, "runtime_impl": runtime_impl, "installation": f'"openllm[{m}]"' if m in OPTIONAL_DEPENDENCIES or config["requirements"] else "openllm",}
|
||||
json_data[m] = {
|
||||
"architecture": config["architecture"],
|
||||
"model_id": config["model_ids"],
|
||||
"cpu": not config["requires_gpu"],
|
||||
"gpu": True,
|
||||
"runtime_impl": runtime_impl,
|
||||
"installation": f'"openllm[{m}]"' if m in OPTIONAL_DEPENDENCIES or config["requirements"] else "openllm",
|
||||
}
|
||||
converted.extend([normalise_model_name(i) for i in config["model_ids"]])
|
||||
if DEBUG:
|
||||
try:
|
||||
@@ -546,7 +615,11 @@ def models_command(ctx: click.Context, output: LiteralOutput, show_available: bo
|
||||
except Exception as e:
|
||||
failed_initialized.append((m, e))
|
||||
|
||||
ids_in_local_store = {k: [i for i in bentoml.models.list() if "framework" in i.info.labels and i.info.labels["framework"] == "openllm" and "model_name" in i.info.labels and i.info.labels["model_name"] == k] for k in json_data.keys()}
|
||||
ids_in_local_store = {
|
||||
k: [
|
||||
i for i in bentoml.models.list() if "framework" in i.info.labels and i.info.labels["framework"] == "openllm" and "model_name" in i.info.labels and i.info.labels["model_name"] == k
|
||||
] for k in json_data.keys()
|
||||
}
|
||||
ids_in_local_store = {k: v for k, v in ids_in_local_store.items() if v}
|
||||
local_models: DictStrAny | None = None
|
||||
if show_available:
|
||||
@@ -563,7 +636,9 @@ def models_command(ctx: click.Context, output: LiteralOutput, show_available: bo
|
||||
data: list[str | tuple[str, str, list[str], str, LiteralString, LiteralString, tuple[LiteralRuntime, ...]]] = []
|
||||
for m, v in json_data.items():
|
||||
data.extend([(m, v["architecture"], v["model_id"], v["installation"], "❌" if not v["cpu"] else "✅", "✅", v["runtime_impl"],)])
|
||||
column_widths = [int(termui.COLUMNS / 12), int(termui.COLUMNS / 6), int(termui.COLUMNS / 4), int(termui.COLUMNS / 12), int(termui.COLUMNS / 12), int(termui.COLUMNS / 12), int(termui.COLUMNS / 4),]
|
||||
column_widths = [
|
||||
int(termui.COLUMNS / 12), int(termui.COLUMNS / 6), int(termui.COLUMNS / 4), int(termui.COLUMNS / 12), int(termui.COLUMNS / 12), int(termui.COLUMNS / 12), int(termui.COLUMNS / 4),
|
||||
]
|
||||
|
||||
if len(data) == 0 and len(failed_initialized) > 0:
|
||||
termui.echo("Exception found while parsing models:\n", fg="yellow")
|
||||
@@ -596,17 +671,22 @@ def models_command(ctx: click.Context, output: LiteralOutput, show_available: bo
|
||||
@click.option("-y", "--yes", "--assume-yes", is_flag=True, help="Skip confirmation when deleting a specific model")
|
||||
@click.option("--include-bentos/--no-include-bentos", is_flag=True, default=False, help="Whether to also include pruning bentos.")
|
||||
@inject
|
||||
def prune_command(model_name: str | None, yes: bool, include_bentos: bool, model_store: ModelStore = Provide[BentoMLContainer.model_store], bento_store: BentoStore = Provide[BentoMLContainer.bento_store]) -> None:
|
||||
def prune_command(
|
||||
model_name: str | None, yes: bool, include_bentos: bool, model_store: ModelStore = Provide[BentoMLContainer.model_store], bento_store: BentoStore = Provide[BentoMLContainer.bento_store]
|
||||
) -> None:
|
||||
"""Remove all saved models, (and optionally bentos) built with OpenLLM locally.
|
||||
|
||||
\b
|
||||
If a model type is passed, then only prune models for that given model type.
|
||||
"""
|
||||
available: list[tuple[bentoml.Model | bentoml.Bento, ModelStore | BentoStore]] = [(m, model_store) for m in bentoml.models.list() if "framework" in m.info.labels and m.info.labels["framework"] == "openllm"]
|
||||
available: list[tuple[bentoml.Model | bentoml.Bento,
|
||||
ModelStore | BentoStore]] = [(m, model_store) for m in bentoml.models.list() if "framework" in m.info.labels and m.info.labels["framework"] == "openllm"]
|
||||
if model_name is not None: available = [(m, store) for m, store in available if "model_name" in m.info.labels and m.info.labels["model_name"] == inflection.underscore(model_name)]
|
||||
if include_bentos:
|
||||
if model_name is not None: available += [(b, bento_store) for b in bentoml.bentos.list() if "start_name" in b.info.labels and b.info.labels["start_name"] == inflection.underscore(model_name)]
|
||||
else: available += [(b, bento_store) for b in bentoml.bentos.list() if "_type" in b.info.labels and "_framework" in b.info.labels]
|
||||
if model_name is not None:
|
||||
available += [(b, bento_store) for b in bentoml.bentos.list() if "start_name" in b.info.labels and b.info.labels["start_name"] == inflection.underscore(model_name)]
|
||||
else:
|
||||
available += [(b, bento_store) for b in bentoml.bentos.list() if "_type" in b.info.labels and "_framework" in b.info.labels]
|
||||
|
||||
for store_item, store in available:
|
||||
if yes: delete_confirmed = True
|
||||
@@ -633,15 +713,27 @@ def parsing_instruction_callback(ctx: click.Context, param: click.Parameter, val
|
||||
else:
|
||||
raise click.BadParameter(f"Invalid option format: {value}")
|
||||
def shared_client_options(f: _AnyCallable | None = None, output_value: t.Literal["json", "porcelain", "pretty"] = "pretty") -> t.Callable[[FC], FC]:
|
||||
options = [click.option("--endpoint", type=click.STRING, help="OpenLLM Server endpoint, i.e: http://localhost:3000", envvar="OPENLLM_ENDPOINT", default="http://localhost:3000",), click.option("--timeout", type=click.INT, default=30, help="Default server timeout", show_default=True), output_option(default_value=output_value),]
|
||||
options = [
|
||||
click.option("--endpoint", type=click.STRING, help="OpenLLM Server endpoint, i.e: http://localhost:3000", envvar="OPENLLM_ENDPOINT", default="http://localhost:3000",
|
||||
),
|
||||
click.option("--timeout", type=click.INT, default=30, help="Default server timeout", show_default=True),
|
||||
output_option(default_value=output_value),
|
||||
]
|
||||
return compose(*options)(f) if f is not None else compose(*options)
|
||||
@cli.command()
|
||||
@click.argument("task", type=click.STRING, metavar="TASK")
|
||||
@shared_client_options
|
||||
@click.option("--agent", type=click.Choice(["hf"]), default="hf", help="Whether to interact with Agents from given Server endpoint.", show_default=True)
|
||||
@click.option("--remote", is_flag=True, default=False, help="Whether or not to use remote tools (inference endpoints) instead of local ones.", show_default=True)
|
||||
@click.option("--opt", help="Define prompt options. "
|
||||
"(format: ``--opt text='I love this' --opt audio:./path/to/audio --opt image:/path/to/file``)", required=False, multiple=True, callback=opt_callback, metavar="ARG=VALUE[,ARG=VALUE]")
|
||||
@click.option(
|
||||
"--opt",
|
||||
help="Define prompt options. "
|
||||
"(format: ``--opt text='I love this' --opt audio:./path/to/audio --opt image:/path/to/file``)",
|
||||
required=False,
|
||||
multiple=True,
|
||||
callback=opt_callback,
|
||||
metavar="ARG=VALUE[,ARG=VALUE]"
|
||||
)
|
||||
def instruct_command(endpoint: str, timeout: int, agent: LiteralString, output: LiteralOutput, remote: bool, task: str, _memoized: DictStrAny, **attrs: t.Any) -> str:
|
||||
"""Instruct agents interactively for given tasks, from a terminal.
|
||||
|
||||
@@ -675,7 +767,9 @@ def instruct_command(endpoint: str, timeout: int, agent: LiteralString, output:
|
||||
@click.argument("text", type=click.STRING, nargs=-1)
|
||||
@machine_option
|
||||
@click.pass_context
|
||||
def embed_command(ctx: click.Context, text: tuple[str, ...], endpoint: str, timeout: int, server_type: t.Literal["http", "grpc"], output: LiteralOutput, machine: bool) -> EmbeddingsOutput | None:
|
||||
def embed_command(
|
||||
ctx: click.Context, text: tuple[str, ...], endpoint: str, timeout: int, server_type: t.Literal["http", "grpc"], output: LiteralOutput, machine: bool
|
||||
) -> EmbeddingsOutput | None:
|
||||
"""Get embeddings interactively, from a terminal.
|
||||
|
||||
\b
|
||||
@@ -703,9 +797,13 @@ def embed_command(ctx: click.Context, text: tuple[str, ...], endpoint: str, time
|
||||
@shared_client_options
|
||||
@click.option("--server-type", type=click.Choice(["grpc", "http"]), help="Server type", default="http", show_default=True)
|
||||
@click.argument("prompt", type=click.STRING)
|
||||
@click.option("--sampling-params", help="Define query options. (format: ``--opt temperature=0.8 --opt=top_k:12)", required=False, multiple=True, callback=opt_callback, metavar="ARG=VALUE[,ARG=VALUE]")
|
||||
@click.option(
|
||||
"--sampling-params", help="Define query options. (format: ``--opt temperature=0.8 --opt=top_k:12)", required=False, multiple=True, callback=opt_callback, metavar="ARG=VALUE[,ARG=VALUE]"
|
||||
)
|
||||
@click.pass_context
|
||||
def query_command(ctx: click.Context, /, prompt: str, endpoint: str, timeout: int, server_type: t.Literal["http", "grpc"], output: LiteralOutput, _memoized: DictStrAny, **attrs: t.Any) -> None:
|
||||
def query_command(
|
||||
ctx: click.Context, /, prompt: str, endpoint: str, timeout: int, server_type: t.Literal["http", "grpc"], output: LiteralOutput, _memoized: DictStrAny, **attrs: t.Any
|
||||
) -> None:
|
||||
"""Ask a LLM interactively, from a terminal.
|
||||
|
||||
\b
|
||||
|
||||
Reference in New Issue
Block a user