chore(style): reduce line length and truncate compression

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>
This commit is contained in:
aarnphm-ec2-dev
2023-08-22 17:02:00 +00:00
parent bc851b1d13
commit eddbc06374
67 changed files with 1661 additions and 301 deletions

View File

@@ -47,9 +47,11 @@ def load_tokenizer(llm: openllm.LLM[t.Any, T], **tokenizer_attrs: t.Any) -> T:
try:
tokenizer = cloudpickle.load(t.cast("t.IO[bytes]", cofile))["tokenizer"]
except KeyError:
raise openllm.exceptions.OpenLLMException("Bento model does not have tokenizer. Make sure to save"
" the tokenizer within the model via 'custom_objects'."
" For example: \"bentoml.transformers.save_model(..., custom_objects={'tokenizer': tokenizer})\"") from None
raise openllm.exceptions.OpenLLMException(
"Bento model does not have tokenizer. Make sure to save"
" the tokenizer within the model via 'custom_objects'."
" For example: \"bentoml.transformers.save_model(..., custom_objects={'tokenizer': tokenizer})\""
) from None
else:
tokenizer = infer_tokenizers_from_llm(llm).from_pretrained(bentomodel_fs.getsyspath("/"), trust_remote_code=llm.__llm_trust_remote_code__, **tokenizer_attrs)

View File

@@ -1,3 +1,8 @@
from __future__ import annotations
FRAMEWORK_TO_AUTOCLASS_MAPPING = {"pt": ("AutoModelForCausalLM", "AutoModelForSeq2SeqLM"), "tf": ("TFAutoModelForCausalLM", "TFAutoModelForSeq2SeqLM"), "flax": ("FlaxAutoModelForCausalLM", "FlaxAutoModelForSeq2SeqLM"), "vllm": ("AutoModelForCausalLM", "AutoModelForSeq2SeqLM")}
FRAMEWORK_TO_AUTOCLASS_MAPPING = {
"pt": ("AutoModelForCausalLM", "AutoModelForSeq2SeqLM"),
"tf": ("TFAutoModelForCausalLM", "TFAutoModelForSeq2SeqLM"),
"flax": ("FlaxAutoModelForCausalLM", "FlaxAutoModelForSeq2SeqLM"),
"vllm": ("AutoModelForCausalLM", "AutoModelForSeq2SeqLM")
}
HUB_ATTRS = ["cache_dir", "code_revision", "force_download", "local_files_only", "proxies", "resume_download", "revision", "subfolder", "use_auth_token"]

View File

@@ -55,7 +55,8 @@ def import_model(llm: openllm.LLM[M, T], *decls: t.Any, trust_remote_code: bool,
signatures: DictStrAny = {}
if quantize_method == "gptq":
if not openllm.utils.is_autogptq_available(): raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if not openllm.utils.is_autogptq_available():
raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if llm.config["model_type"] != "causal_lm": raise openllm.exceptions.OpenLLMException(f"GPTQ only support Causal LM (got {llm.__class__} of {llm.config['model_type']})")
signatures["generate"] = {"batchable": False}
else:
@@ -70,16 +71,33 @@ def import_model(llm: openllm.LLM[M, T], *decls: t.Any, trust_remote_code: bool,
external_modules: list[types.ModuleType] = [importlib.import_module(tokenizer.__module__)]
imported_modules: list[types.ModuleType] = []
bentomodel = bentoml.Model.create(llm.tag, module="openllm.serialisation.transformers", api_version="v1", options=ModelOptions(), context=openllm.utils.generate_context(framework_name="openllm"), labels=openllm.utils.generate_labels(llm), signatures=signatures if signatures else make_model_signatures(llm))
bentomodel = bentoml.Model.create(
llm.tag,
module="openllm.serialisation.transformers",
api_version="v1",
options=ModelOptions(),
context=openllm.utils.generate_context(framework_name="openllm"),
labels=openllm.utils.generate_labels(llm),
signatures=signatures if signatures else make_model_signatures(llm)
)
with openllm.utils.analytics.set_bentoml_tracking():
try:
bentomodel.enter_cloudpickle_context(external_modules, imported_modules)
tokenizer.save_pretrained(bentomodel.path)
if quantize_method == "gptq":
if not openllm.utils.is_autogptq_available(): raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if not openllm.utils.is_autogptq_available():
raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if llm.config["model_type"] != "causal_lm": raise openllm.exceptions.OpenLLMException(f"GPTQ only support Causal LM (got {llm.__class__} of {llm.config['model_type']})")
logger.debug("Saving model with GPTQ quantisation will require loading model into memory.")
model = autogptq.AutoGPTQForCausalLM.from_quantized(llm.model_id, *decls, quantize_config=t.cast("autogptq.BaseQuantizeConfig", llm.quantization_config), trust_remote_code=trust_remote_code, use_safetensors=safe_serialisation, **hub_attrs, **attrs,)
model = autogptq.AutoGPTQForCausalLM.from_quantized(
llm.model_id,
*decls,
quantize_config=t.cast("autogptq.BaseQuantizeConfig", llm.quantization_config),
trust_remote_code=trust_remote_code,
use_safetensors=safe_serialisation,
**hub_attrs,
**attrs,
)
update_model(bentomodel, metadata={"_pretrained_class": model.__class__.__name__, "_framework": model.model.framework})
model.save_quantized(bentomodel.path, use_safetensors=safe_serialisation)
else:
@@ -120,8 +138,10 @@ def get(llm: openllm.LLM[M, T], auto_import: bool = False) -> bentoml.Model:
"""
try:
model = bentoml.models.get(llm.tag)
if model.info.module not in ("openllm.serialisation.transformers"
"bentoml.transformers", "bentoml._internal.frameworks.transformers", __name__): # NOTE: backward compatible with previous version of OpenLLM.
if model.info.module not in (
"openllm.serialisation.transformers"
"bentoml.transformers", "bentoml._internal.frameworks.transformers", __name__
): # NOTE: backward compatible with previous version of OpenLLM.
raise bentoml.exceptions.NotFound(f"Model {model.tag} was saved with module {model.info.module}, not loading with 'openllm.serialisation.transformers'.")
if "runtime" in model.info.labels and model.info.labels["runtime"] != llm.runtime:
raise openllm.exceptions.OpenLLMException(f"Model {model.tag} was saved with runtime {model.info.labels['runtime']}, not loading with {llm.runtime}.")
@@ -136,26 +156,51 @@ def load_model(llm: openllm.LLM[M, T], *decls: t.Any, **attrs: t.Any) -> M:
If model is not found, it will raises a ``bentoml.exceptions.NotFound``.
"""
config, hub_attrs, attrs = process_config(llm.model_id, llm.__llm_trust_remote_code__, **attrs)
safe_serialization = openllm.utils.first_not_none(t.cast(t.Optional[bool], llm._bentomodel.info.metadata.get("safe_serialisation", None)), attrs.pop("safe_serialization", None), default=llm._serialisation_format == "safetensors")
safe_serialization = openllm.utils.first_not_none(
t.cast(t.Optional[bool], llm._bentomodel.info.metadata.get("safe_serialisation", None)), attrs.pop("safe_serialization", None), default=llm._serialisation_format == "safetensors"
)
if "_quantize" in llm._bentomodel.info.metadata and llm._bentomodel.info.metadata["_quantize"] == "gptq":
if not openllm.utils.is_autogptq_available(): raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if not openllm.utils.is_autogptq_available():
raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if llm.config["model_type"] != "causal_lm": raise openllm.exceptions.OpenLLMException(f"GPTQ only support Causal LM (got {llm.__class__} of {llm.config['model_type']})")
return autogptq.AutoGPTQForCausalLM.from_quantized(llm._bentomodel.path, *decls, quantize_config=t.cast("autogptq.BaseQuantizeConfig", llm.quantization_config), trust_remote_code=llm.__llm_trust_remote_code__, use_safetensors=safe_serialization, **hub_attrs, **attrs)
return autogptq.AutoGPTQForCausalLM.from_quantized(
llm._bentomodel.path,
*decls,
quantize_config=t.cast("autogptq.BaseQuantizeConfig", llm.quantization_config),
trust_remote_code=llm.__llm_trust_remote_code__,
use_safetensors=safe_serialization,
**hub_attrs,
**attrs
)
device_map = attrs.pop("device_map", "auto" if torch.cuda.is_available() and torch.cuda.device_count() > 1 else None)
model = infer_autoclass_from_llm(llm, config).from_pretrained(llm._bentomodel.path, *decls, config=config, trust_remote_code=llm.__llm_trust_remote_code__, device_map=device_map, **hub_attrs, **attrs).eval()
model = infer_autoclass_from_llm(llm, config).from_pretrained(
llm._bentomodel.path, *decls, config=config, trust_remote_code=llm.__llm_trust_remote_code__, device_map=device_map, **hub_attrs, **attrs
).eval()
# BetterTransformer is currently only supported on PyTorch.
if llm.bettertransformer and isinstance(model, transformers.PreTrainedModel): model = model.to_bettertransformer()
if llm.__llm_implementation__ in {"pt", "vllm"}: check_unintialised_params(model)
return t.cast("M", model)
def save_pretrained(llm: openllm.LLM[M, T], save_directory: str, is_main_process: bool = True, state_dict: DictStrAny | None = None, save_function: t.Any | None = None, push_to_hub: bool = False, max_shard_size: int | str = "10GB", safe_serialization: bool = False, variant: str | None = None, **attrs: t.Any) -> None:
def save_pretrained(
llm: openllm.LLM[M, T],
save_directory: str,
is_main_process: bool = True,
state_dict: DictStrAny | None = None,
save_function: t.Any | None = None,
push_to_hub: bool = False,
max_shard_size: int | str = "10GB",
safe_serialization: bool = False,
variant: str | None = None,
**attrs: t.Any
) -> None:
save_function = t.cast(t.Callable[..., None], openllm.utils.first_not_none(save_function, default=torch.save))
model_save_attrs, tokenizer_save_attrs = openllm.utils.normalize_attrs_to_model_tokenizer_pair(**attrs)
safe_serialization = safe_serialization or llm._serialisation_format == "safetensors"
# NOTE: disable safetensors for vllm
if llm.__llm_implementation__ == "vllm": safe_serialization = False
if llm._quantize_method == "gptq":
if not openllm.utils.is_autogptq_available(): raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if not openllm.utils.is_autogptq_available():
raise openllm.exceptions.OpenLLMException("GPTQ quantisation requires 'auto-gptq' (Not found in local environment). Install it with 'pip install \"openllm[gptq]\"'")
if llm.config["model_type"] != "causal_lm": raise openllm.exceptions.OpenLLMException(f"GPTQ only support Causal LM (got {llm.__class__} of {llm.config['model_type']})")
if not openllm.utils.lenient_issubclass(llm.model, autogptq.modeling.BaseGPTQForCausalLM): raise ValueError(f"Model is not a BaseGPTQForCausalLM (type: {type(llm.model)})")
t.cast("autogptq.modeling.BaseGPTQForCausalLM", llm.model).save_quantized(save_directory, use_safetensors=safe_serialization)
@@ -165,5 +210,15 @@ def save_pretrained(llm: openllm.LLM[M, T], save_directory: str, is_main_process
llm.model.save_pretrained(save_directory, safe_serialization=safe_serialization)
else:
# We can safely cast here since it will be the PreTrainedModel protocol.
t.cast("transformers.PreTrainedModel", llm.model).save_pretrained(save_directory, is_main_process=is_main_process, state_dict=state_dict, save_function=save_function, push_to_hub=push_to_hub, max_shard_size=max_shard_size, safe_serialization=safe_serialization, variant=variant, **model_save_attrs)
t.cast("transformers.PreTrainedModel", llm.model).save_pretrained(
save_directory,
is_main_process=is_main_process,
state_dict=state_dict,
save_function=save_function,
push_to_hub=push_to_hub,
max_shard_size=max_shard_size,
safe_serialization=safe_serialization,
variant=variant,
**model_save_attrs
)
llm.tokenizer.save_pretrained(save_directory, push_to_hub=push_to_hub, **tokenizer_save_attrs)

View File

@@ -38,7 +38,8 @@ def infer_tokenizers_from_llm(__llm: openllm.LLM[t.Any, T], /) -> T:
def infer_autoclass_from_llm(llm: openllm.LLM[M, T], config: transformers.PretrainedConfig, /) -> _BaseAutoModelClass:
if llm.config["trust_remote_code"]:
autoclass = "AutoModelForSeq2SeqLM" if llm.config["model_type"] == "seq2seq_lm" else "AutoModelForCausalLM"
if not hasattr(config, "auto_map"): raise ValueError(f"Invalid configuraiton for {llm.model_id}. ``trust_remote_code=True`` requires `transformers.PretrainedConfig` to contain a `auto_map` mapping")
if not hasattr(config, "auto_map"):
raise ValueError(f"Invalid configuraiton for {llm.model_id}. ``trust_remote_code=True`` requires `transformers.PretrainedConfig` to contain a `auto_map` mapping")
# in case this model doesn't use the correct auto class for model type, for example like chatglm
# where it uses AutoModel instead of AutoModelForCausalLM. Then we fallback to AutoModel
if autoclass not in config.auto_map: autoclass = "AutoModel"