#!/usr/bin/env python3 # Copyright 2023 BentoML Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import dataclasses import os import typing as t import inflection import tomlkit import openllm if t.TYPE_CHECKING: from tomlkit.items import Array from tomlkit.items import Table ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @dataclasses.dataclass(frozen=True) class Classifier: identifier: t.Dict[str, str] = dataclasses.field(default_factory=lambda: {"status": "Development Status", "environment": "Environment", "license": "License", "topic": "Topic", "os": "Operating System", "audience": "Intended Audience", "typing": "Typing", "language": "Programming Language",}) joiner: str = " :: " @staticmethod def status() -> dict[int, str]: return {v: status for v, status in zip(range(1, 8), ["1 - Planning", "2 - Pre-Alpha", "3 - Alpha", "4 - Beta", "5 - Production/Stable", "6 - Mature", "7 - Inactive",],)} @staticmethod def apache() -> str: return Classifier.create_classifier("license", "OSI Approved", "Apache Software License") @staticmethod def create_classifier(identifier: str, *decls: t.Any) -> str: cls_ = Classifier() if identifier not in cls_.identifier: raise ValueError(f"{identifier} is not yet supported (supported alias: {Classifier.identifier})") return cls_.joiner.join([cls_.identifier[identifier], *decls]) @staticmethod def create_python_classifier(implementation: list[str] | None = None, supported_version: list[str] | None = None) -> list[str]: if supported_version is None: supported_version = ["3.8", "3.9", "3.10", "3.11", "3.12"] if implementation is None: implementation = ["CPython", "PyPy"] base = [Classifier.create_classifier("language", "Python"), Classifier.create_classifier("language", "Python", "3"),] base.append(Classifier.create_classifier("language", "Python", "3", "Only")) base.extend([Classifier.create_classifier("language", "Python", version) for version in supported_version]) base.extend([Classifier.create_classifier("language", "Python", "Implementation", impl) for impl in implementation]) return base @staticmethod def create_status_classifier(level: int) -> str: return Classifier.create_classifier("status", Classifier.status()[level]) @dataclasses.dataclass(frozen=True) class Dependencies: name: str git_repo_url: t.Optional[str] = None branch: t.Optional[str] = None extensions: t.Optional[t.List[str]] = None subdirectory: t.Optional[str] = None requires_gpu: bool = False lower_constraint: t.Optional[str] = None upper_constraint: t.Optional[str] = None platform: t.Optional[t.Tuple[t.Literal["Linux", "Windows", "Darwin"], t.Literal["eq", "ne"]]] = None def with_options(self, **kwargs: t.Any) -> Dependencies: return dataclasses.replace(self, **kwargs) @property def has_constraint(self) -> bool: return self.lower_constraint is not None or self.upper_constraint is not None @property def pypi_extensions(self) -> str: return "" if self.extensions is None else f"[{','.join(self.extensions)}]" @staticmethod def platform_restriction(platform: t.LiteralString, op: t.Literal["eq", "ne"] = "eq") -> str: return f'platform_system{"==" if op == "eq" else "!="}"{platform}"' def to_str(self) -> str: deps: list[str] = [] if self.lower_constraint is not None and self.upper_constraint is not None: dep = f"{self.name}{self.pypi_extensions}>={self.lower_constraint},<{self.upper_constraint}" elif self.lower_constraint is not None: dep = f"{self.name}{self.pypi_extensions}>={self.lower_constraint}" elif self.upper_constraint is not None: dep = f"{self.name}{self.pypi_extensions}<{self.upper_constraint}" elif self.subdirectory is not None: dep = f"{self.name}{self.pypi_extensions} @ git+https://github.com/{self.git_repo_url}.git#subdirectory={self.subdirectory}" elif self.branch is not None: dep = f"{self.name}{self.pypi_extensions} @ git+https://github.com/{self.git_repo_url}.git@{self.branch}" else: dep = f"{self.name}{self.pypi_extensions}" deps.append(dep) if self.platform: deps.append(self.platform_restriction(*self.platform)) return ";".join(deps) @classmethod def from_tuple(cls, *decls: t.Any) -> Dependencies: return cls(*decls) _BENTOML_EXT = ["grpc", "io"] _TRANSFORMERS_EXT = ["torch", "tokenizers", "accelerate"] _BASE_DEPENDENCIES = [ Dependencies(name="bentoml", extensions=_BENTOML_EXT, lower_constraint="1.0.25"), Dependencies(name="transformers", extensions=_TRANSFORMERS_EXT, lower_constraint="4.29.0"), Dependencies(name="safetensors"), Dependencies(name="optimum"), Dependencies(name="attrs", lower_constraint="23.1.0"), Dependencies(name="cattrs", lower_constraint="23.1.0"), Dependencies(name="orjson"), Dependencies(name="inflection"), Dependencies(name="tabulate", extensions=["widechars"], lower_constraint="0.9.0"), Dependencies(name="httpx"), Dependencies(name="click", lower_constraint="8.1.6"), Dependencies(name="typing_extensions"), Dependencies(name="GitPython"), Dependencies(name="cuda-python", platform=("Darwin", "ne")), Dependencies(name="bitsandbytes", upper_constraint="0.42"), # 0.41 works with CUDA 11.8 ] _NIGHTLY_MAPPING: dict[str, Dependencies] = { "bentoml": Dependencies.from_tuple("bentoml", "bentoml/bentoml", "main", _BENTOML_EXT), "peft": Dependencies.from_tuple("peft", "huggingface/peft", "main", None), "transformers": Dependencies.from_tuple("transformers", "huggingface/transformers", "main", _TRANSFORMERS_EXT), "optimum": Dependencies.from_tuple("optimum", "huggingface/optimum", "main", None), "accelerate": Dependencies.from_tuple("accelerate", "huggingface/accelerate", "main", None), "bitsandbytes": Dependencies.from_tuple("bitsandbytes", "TimDettmers/bitsandbytes", "main", None), "trl": Dependencies.from_tuple("trl", "lvwerra/trl", "main", None), "vllm": Dependencies.from_tuple("vllm", "vllm-project/vllm", "main", None, None, True, None), } _ALL_RUNTIME_DEPS = ["flax", "jax", "jaxlib", "tensorflow", "keras"] FINE_TUNE_DEPS = ["peft>=0.4.0", "bitsandbytes", "datasets", "accelerate", "trl"] FLAN_T5_DEPS = _ALL_RUNTIME_DEPS OPT_DEPS = _ALL_RUNTIME_DEPS OPENAI_DEPS = ["openai", "tiktoken"] AGENTS_DEPS = ["transformers[agents]>=4.30", "diffusers", "soundfile"] PLAYGROUND_DEPS = ["jupyter", "notebook", "ipython", "jupytext", "nbformat"] GGML_DEPS = ["ctransformers"] GPTQ_DEPS = ["auto-gptq[triton]"] VLLM_DEPS = ["vllm", "ray"] _base_requirements: dict[str, t.Any] = {inflection.dasherize(name): config_cls.__openllm_requirements__ for name, config_cls in openllm.CONFIG_MAPPING.items() if config_cls.__openllm_requirements__} # shallow copy from locals() _locals = locals().copy() # NOTE: update this table when adding new external dependencies # sync with openllm.utils.OPTIONAL_DEPENDENCIES _base_requirements.update({v: _locals.get(f"{inflection.underscore(v).upper()}_DEPS") for v in openllm.utils.OPTIONAL_DEPENDENCIES}) _base_requirements = {k: v for k, v in sorted(_base_requirements.items())} fname = f"{os.path.basename(os.path.dirname(__file__))}/{os.path.basename(__file__)}" def create_classifiers() -> Array: arr = tomlkit.array() arr.extend([ Classifier.create_status_classifier(5), Classifier.create_classifier("environment", "GPU", "NVIDIA CUDA"), Classifier.create_classifier("environment", "GPU", "NVIDIA CUDA", "12"), Classifier.create_classifier("environment", "GPU", "NVIDIA CUDA", "11.8"), Classifier.create_classifier("environment", "GPU", "NVIDIA CUDA", "11.7"), Classifier.apache(), Classifier.create_classifier("topic", "Scientific/Engineering", "Artificial Intelligence"), Classifier.create_classifier("topic", "Software Development", "Libraries"), Classifier.create_classifier("os", "OS Independent"), Classifier.create_classifier("audience", "Developers"), Classifier.create_classifier("audience", "Science/Research"), Classifier.create_classifier("audience", "System Administrators"), Classifier.create_classifier("typing", "Typed"), *Classifier.create_python_classifier(), ]) return arr.multiline(True) def create_optional_table() -> Table: all_array = tomlkit.array() all_array.extend([f"openllm[{k}]" for k in _base_requirements]) table = tomlkit.table(is_super_table=True) _base_requirements.update({"all": all_array.multiline(True)}) table.update({k: v for k, v in sorted(_base_requirements.items())}) table.add(tomlkit.nl()) return table def create_url_table() -> Table: table = tomlkit.table() _urls = { "Blog": "https://modelserving.com", "Chat": "https://discord.gg/openllm", "Documentation": "https://github.com/bentoml/openllm#readme", "GitHub": "https://github.com/bentoml/openllm", "History": "https://github.com/bentoml/openllm/blob/main/CHANGELOG.md", "Homepage": "https://bentoml.com", "Tracker": "https://github.com/bentoml/openllm/issues", "Twitter": "https://twitter.com/bentomlai", } table.update({k: v for k, v in sorted(_urls.items())}) return table def build_cli_extensions() -> Table: table = tomlkit.table() ext: dict[str, str] = {"openllm": "openllm.cli.entrypoint:cli"} ext.update({f"openllm-{inflection.dasherize(ke)}": f"openllm.cli.ext.{ke}:cli" for ke in sorted([fname[:-3] for fname in os.listdir(os.path.abspath(os.path.join(ROOT, "src", "openllm", "cli", "ext"))) if fname.endswith(".py") and not fname.startswith("__")])}) table.update(ext) return table def main() -> int: with open(os.path.join(ROOT, "pyproject.toml"), "r") as f: pyproject = tomlkit.parse(f.read()) dependencies_array = tomlkit.array() dependencies_array.extend([v.to_str() for v in _BASE_DEPENDENCIES]) pyproject["project"]["urls"] = create_url_table() pyproject["project"]["scripts"] = build_cli_extensions() pyproject["project"]["classifiers"] = create_classifiers() pyproject["project"]["optional-dependencies"] = create_optional_table() pyproject["project"]["dependencies"] = dependencies_array.multiline(True) with open(os.path.join(ROOT, "pyproject.toml"), "w") as f: f.write(tomlkit.dumps(pyproject)) with open(os.path.join(ROOT, "nightly-requirements.txt"), "w") as f: f.write(f"# This file is generated by `{fname}`. DO NOT EDIT\n-e .[playground,flan-t5]\n") f.writelines([f"{v.to_str()}\n" for v in _NIGHTLY_MAPPING.values() if not v.requires_gpu]) with open(os.path.join(ROOT, "nightly-requirements-gpu.txt"), "w") as f: f.write(f"# This file is generated by `{fname}`. # DO NOT EDIT\n") f.write("# For Jax, Flax, Tensorflow, PyTorch CUDA support, please refers to their official installation for your specific setup.\n") f.write("-r nightly-requirements.txt\n-e .[all]\n") f.writelines([f"{v.to_str()}\n" for v in _NIGHTLY_MAPPING.values() if v.requires_gpu]) return 0 if __name__ == "__main__": raise SystemExit(main())