# mypy: disable-error-code="name-defined,no-redef" from __future__ import annotations import logging import typing as t from openllm_core._typing_compat import overload from openllm_core.utils import LazyLoader from openllm_core.utils import is_autogptq_available from openllm_core.utils import is_bitsandbytes_available from openllm_core.utils import is_transformers_supports_kbit from openllm_core.utils import pkg if t.TYPE_CHECKING: from openllm_core._typing_compat import DictStrAny from ._llm import LLM autogptq, torch, transformers = LazyLoader('autogptq', globals(), 'auto_gptq'), LazyLoader('torch', globals(), 'torch'), LazyLoader('transformers', globals(), 'transformers') logger = logging.getLogger(__name__) QuantiseMode = t.Literal['int8', 'int4', 'gptq'] @overload def infer_quantisation_config(cls: type[LLM[t.Any, t.Any]], quantise: t.Literal['int8', 'int4'], **attrs: t.Any) -> tuple[transformers.BitsAndBytesConfig, DictStrAny]: ... @overload def infer_quantisation_config(cls: type[LLM[t.Any, t.Any]], quantise: t.Literal['gptq'], **attrs: t.Any) -> tuple[autogptq.BaseQuantizeConfig, DictStrAny]: ... def infer_quantisation_config(cls: type[LLM[t.Any, t.Any]], quantise: QuantiseMode, **attrs: t.Any) -> tuple[transformers.BitsAndBytesConfig | autogptq.BaseQuantizeConfig, DictStrAny]: # 8 bit configuration int8_threshold = attrs.pop('llm_int8_threshhold', 6.0) int8_enable_fp32_cpu_offload = attrs.pop('llm_int8_enable_fp32_cpu_offload', False) int8_skip_modules: list[str] | None = attrs.pop('llm_int8_skip_modules', None) int8_has_fp16_weight = attrs.pop('llm_int8_has_fp16_weight', False) autogptq_attrs: DictStrAny = { 'bits': attrs.pop('gptq_bits', 4), 'group_size': attrs.pop('gptq_group_size', -1), 'damp_percent': attrs.pop('gptq_damp_percent', 0.01), 'desc_act': attrs.pop('gptq_desc_act', True), 'sym': attrs.pop('gptq_sym', True), 'true_sequential': attrs.pop('gptq_true_sequential', True), } def create_int8_config(int8_skip_modules: list[str] | None) -> transformers.BitsAndBytesConfig: if int8_skip_modules is None: int8_skip_modules = [] if 'lm_head' not in int8_skip_modules and cls.config_class.__openllm_model_type__ == 'causal_lm': logger.debug("Skipping 'lm_head' for quantization for %s", cls.__name__) int8_skip_modules.append('lm_head') return transformers.BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=int8_enable_fp32_cpu_offload, llm_int8_threshhold=int8_threshold, llm_int8_skip_modules=int8_skip_modules, llm_int8_has_fp16_weight=int8_has_fp16_weight, ) # 4 bit configuration int4_compute_dtype = attrs.pop('bnb_4bit_compute_dtype', torch.bfloat16) int4_quant_type = attrs.pop('bnb_4bit_quant_type', 'nf4') int4_use_double_quant = attrs.pop('bnb_4bit_use_double_quant', True) # NOTE: Quantization setup # quantize is a openllm.LLM feature, where we can quantize the model # with bitsandbytes or quantization aware training. if not is_bitsandbytes_available(): raise RuntimeError("Quantization requires bitsandbytes to be installed. Make sure to install OpenLLM with 'pip install \"openllm[fine-tune]\"'") if quantise == 'int8': quantisation_config = create_int8_config(int8_skip_modules) elif quantise == 'int4': if is_transformers_supports_kbit(): quantisation_config = transformers.BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=int4_compute_dtype, bnb_4bit_quant_type=int4_quant_type, bnb_4bit_use_double_quant=int4_use_double_quant) else: logger.warning( "'quantize' is set to int4, while the current transformers version %s does not support k-bit quantization. k-bit quantization is supported since transformers 4.30, therefore make sure to install the latest version of transformers either via PyPI or from git source: 'pip install git+https://github.com/huggingface/transformers'. Fallback to int8 quantisation.", pkg.pkg_version_info('transformers')) quantisation_config = create_int8_config(int8_skip_modules) elif quantise == 'gptq': if not is_autogptq_available(): logger.warning( "'quantize=\"gptq\"' requires 'auto-gptq' to be installed (not available with local environment). Make sure to have 'auto-gptq' available locally: 'pip install \"openllm[gptq]\"'. OpenLLM will fallback to int8 with bitsandbytes." ) quantisation_config = create_int8_config(int8_skip_modules) else: quantisation_config = autogptq.BaseQuantizeConfig(**autogptq_attrs) else: raise ValueError(f"'quantize' must be one of ['int8', 'int4', 'gptq'], got {quantise} instead.") return quantisation_config, attrs