from __future__ import annotations import contextlib, os, sys, typing as t, attr, pytest, transformers, openllm from unittest import mock from openllm_core._configuration import GenerationConfig, ModelSettings, field_env_key from hypothesis import assume, given, strategies as st from ._strategies._configuration import make_llm_config, model_settings # XXX: @aarnphm fixes TypedDict behaviour in 3.11 @pytest.mark.skipif(sys.version_info[:2] == (3, 11), reason="TypedDict in 3.11 behaves differently, so we need to fix this") def test_missing_default(): with pytest.raises(ValueError, match="Missing required fields *"): make_llm_config("MissingDefaultId", {"name_type": "lowercase", "requirements": ["bentoml"]}) with pytest.raises(ValueError, match="Missing required fields *"): make_llm_config("MissingModelId", {"default_id": "huggingface/t5-tiny-testing", "requirements": ["bentoml"]}) with pytest.raises(ValueError, match="Missing required fields *"): make_llm_config("MissingArchitecture", {"default_id": "huggingface/t5-tiny-testing", "model_ids": ["huggingface/t5-tiny-testing"], "requirements": ["bentoml"],},) def test_forbidden_access(): cl_ = make_llm_config( "ForbiddenAccess", { "default_id": "huggingface/t5-tiny-testing", "model_ids": ["huggingface/t5-tiny-testing", "bentoml/t5-tiny-testing"], "architecture": "PreTrainedModel", "requirements": ["bentoml"], }, ) assert pytest.raises(openllm.exceptions.ForbiddenAttributeError, cl_.__getattribute__, cl_(), "__config__",) assert pytest.raises(openllm.exceptions.ForbiddenAttributeError, cl_.__getattribute__, cl_(), "GenerationConfig",) assert pytest.raises(openllm.exceptions.ForbiddenAttributeError, cl_.__getattribute__, cl_(), "SamplingParams",) assert openllm.utils.lenient_issubclass(cl_.__openllm_generation_class__, GenerationConfig) @given(model_settings()) def test_class_normal_gen(gen_settings: ModelSettings): assume(gen_settings["default_id"] and all(i for i in gen_settings["model_ids"])) cl_: type[openllm.LLMConfig] = make_llm_config("NotFullLLM", gen_settings) assert issubclass(cl_, openllm.LLMConfig) for key in gen_settings: assert object.__getattribute__(cl_, f"__openllm_{key}__") == gen_settings.__getitem__(key) @given(model_settings(), st.integers()) def test_simple_struct_dump(gen_settings: ModelSettings, field1: int): cl_ = make_llm_config("IdempotentLLM", gen_settings, fields=(("field1", "float", field1),)) assert cl_().model_dump()["field1"] == field1 @given(model_settings(), st.integers()) def test_config_derivation(gen_settings: ModelSettings, field1: int): cl_ = make_llm_config("IdempotentLLM", gen_settings, fields=(("field1", "float", field1),)) new_cls = cl_.model_derivate("DerivedLLM", default_id="asdfasdf") assert new_cls.__openllm_default_id__ == "asdfasdf" @given(model_settings()) def test_config_derived_follow_attrs_protocol(gen_settings: ModelSettings): cl_ = make_llm_config("AttrsProtocolLLM", gen_settings) assert attr.has(cl_) @given(model_settings(), st.integers(max_value=283473), st.floats(min_value=0.0, max_value=1.0), st.integers(max_value=283473), st.floats(min_value=0.0, max_value=1.0),) def test_complex_struct_dump(gen_settings: ModelSettings, field1: int, temperature: float, input_field1: int, input_temperature: float): cl_ = make_llm_config("ComplexLLM", gen_settings, fields=(("field1", "float", field1),), generation_fields=(("temperature", temperature),),) sent = cl_() assert sent.model_dump()["field1"] == field1 assert sent.model_dump()["generation_config"]["temperature"] == temperature assert sent.model_dump(flatten=True)["field1"] == field1 assert sent.model_dump(flatten=True)["temperature"] == temperature passed = cl_(field1=input_field1, temperature=input_temperature) assert passed.model_dump()["field1"] == input_field1 assert passed.model_dump()["generation_config"]["temperature"] == input_temperature assert passed.model_dump(flatten=True)["field1"] == input_field1 assert passed.model_dump(flatten=True)["temperature"] == input_temperature pas_nested = cl_(generation_config={"temperature": input_temperature}, field1=input_field1) assert pas_nested.model_dump()["field1"] == input_field1 assert pas_nested.model_dump()["generation_config"]["temperature"] == input_temperature @contextlib.contextmanager def patch_env(**attrs: t.Any): with mock.patch.dict(os.environ, attrs, clear=True): yield def test_struct_envvar(): with patch_env(**{field_env_key("env_llm", "field1"): "4", field_env_key("env_llm", "temperature", suffix="generation"): "0.2",}): class EnvLLM(openllm.LLMConfig): __config__ = {"default_id": "asdfasdf", "model_ids": ["asdf", "asdfasdfads"], "architecture": "PreTrainedModel",} field1: int = 2 class GenerationConfig: temperature: float = 0.8 sent = EnvLLM.model_construct_env() assert sent.field1 == 4 assert sent["temperature"] == 0.2 overwrite_default = EnvLLM() assert overwrite_default.field1 == 4 assert overwrite_default["temperature"] == 0.2 def test_struct_provided_fields(): class EnvLLM(openllm.LLMConfig): __config__ = {"default_id": "asdfasdf", "model_ids": ["asdf", "asdfasdfads"], "architecture": "PreTrainedModel",} field1: int = 2 class GenerationConfig: temperature: float = 0.8 sent = EnvLLM.model_construct_env(field1=20, temperature=0.4) assert sent.field1 == 20 assert sent.generation_config.temperature == 0.4 def test_struct_envvar_with_overwrite_provided_env(monkeypatch: pytest.MonkeyPatch): with monkeypatch.context() as mk: mk.setenv(field_env_key("overwrite_with_env_available", "field1"), str(4.0)) mk.setenv(field_env_key("overwrite_with_env_available", "temperature", suffix="generation"), str(0.2)) sent = make_llm_config( "OverwriteWithEnvAvailable", { "default_id": "asdfasdf", "model_ids": ["asdf", "asdfasdfads"], "architecture": "PreTrainedModel" }, fields=(("field1", "float", 3.0),), ).model_construct_env(field1=20.0, temperature=0.4) assert sent.generation_config.temperature == 0.4 assert sent.field1 == 20.0 @given(model_settings()) @pytest.mark.parametrize(("return_dict", "typ"), [(True, dict), (False, transformers.GenerationConfig)]) def test_conversion_to_transformers(return_dict: bool, typ: type[t.Any], gen_settings: ModelSettings): cl_ = make_llm_config("ConversionLLM", gen_settings) assert isinstance(cl_().to_generation_config(return_as_dict=return_dict), typ) @given(model_settings()) def test_click_conversion(gen_settings: ModelSettings): # currently our conversion omit Union type. def cli_mock(**attrs: t.Any): return attrs cl_ = make_llm_config("ClickConversionLLM", gen_settings) wrapped = cl_.to_click_options(cli_mock) filtered = {k for k, v in cl_.__openllm_hints__.items() if t.get_origin(v) is not t.Union} click_options_filtered = [i for i in wrapped.__click_params__ if i.name and not i.name.startswith("fake_")] assert len(filtered) == len(click_options_filtered) @pytest.mark.parametrize("model_name", openllm.CONFIG_MAPPING.keys()) def test_configuration_dict_protocol(model_name: str): config = openllm.AutoConfig.for_model(model_name) assert isinstance(config.items(), list) assert isinstance(config.keys(), list) assert isinstance(config.values(), list) assert isinstance(dict(config), dict)