![Banner for OpenLLM](/.github/assets/main-banner.png)

🦾 OpenLLM

pypi_status Twitter Discord ci pre-commit.ci status
python_version Hatch code style Ruff types - mypy types - pyright

An open platform for operating large language models (LLMs) in production.
Fine-tune, serve, deploy, and monitor any LLMs with ease.

## πŸ“– Introduction With OpenLLM, you can run inference with any open-source large-language models, deploy to the cloud or on-premises, and build powerful AI apps. πŸš‚ **State-of-the-art LLMs**: built-in supports a wide range of open-source LLMs and model runtime, including Llama 2,StableLM, Falcon, Dolly, Flan-T5, ChatGLM, StarCoder and more. πŸ”₯ **Flexible APIs**: serve LLMs over RESTful API or gRPC with one command, query via WebUI, CLI, our Python/Javascript client, or any HTTP client. ⛓️ **Freedom To Build**: First-class support for LangChain, BentoML and Hugging Face that allows you to easily create your own AI apps by composing LLMs with other models and services. 🎯 **Streamline Deployment**: Automatically generate your LLM server Docker Images or deploy as serverless endpoint via [☁️ BentoCloud](https://l.bentoml.com/bento-cloud). πŸ€–οΈ **Bring your own LLM**: Fine-tune any LLM to suit your needs with `LLM.tuning()`. (Coming soon) ![Gif showing OpenLLM Intro](/.github/assets/output.gif)
## πŸƒ Getting Started To use OpenLLM, you need to have Python 3.8 (or newer) and `pip` installed on your system. We highly recommend using a Virtual Environment to prevent package conflicts. You can install OpenLLM using pip as follows: ```bash pip install openllm ``` To verify if it's installed correctly, run: ``` $ openllm -h Usage: openllm [OPTIONS] COMMAND [ARGS]... β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•—β–ˆβ–ˆβ•— β–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•”β•β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•”β–ˆβ–ˆβ•— β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•”β–ˆβ–ˆβ–ˆβ–ˆβ•”β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β•β• β–ˆβ–ˆβ•”β•β•β• β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•‘ β•šβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β•šβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β•šβ•β• β–ˆβ–ˆβ•‘ β•šβ•β•β•β•β•β• β•šβ•β• β•šβ•β•β•β•β•β•β•β•šβ•β• β•šβ•β•β•β•β•šβ•β•β•β•β•β•β•β•šβ•β•β•β•β•β•β•β•šβ•β• β•šβ•β• An open platform for operating large language models in production. Fine-tune, serve, deploy, and monitor any LLMs with ease. ``` ### Starting an LLM Server To start an LLM server, use `openllm start`. For example, to start a [`OPT`](https://huggingface.co/docs/transformers/model_doc/opt) server, do the following: ```bash openllm start opt ``` Following this, a Web UI will be accessible at http://localhost:3000 where you can experiment with the endpoints and sample input prompts. OpenLLM provides a built-in Python client, allowing you to interact with the model. In a different terminal window or a Jupyter Notebook, create a client to start interacting with the model: ```python import openllm client = openllm.client.HTTPClient('http://localhost:3000') client.query('Explain to me the difference between "further" and "farther"') ``` You can also use the `openllm query` command to query the model from the terminal: ```bash export OPENLLM_ENDPOINT=http://localhost:3000 openllm query 'Explain to me the difference between "further" and "farther"' ``` Visit `http://localhost:3000/docs.json` for OpenLLM's API specification. OpenLLM seamlessly supports many models and their variants. Users can also specify different variants of the model to be served, by providing the `--model-id` argument, e.g.: ```bash openllm start flan-t5 --model-id google/flan-t5-large ``` > [!NOTE] > `openllm` also supports all variants of fine-tuning weights, custom > model path as well as quantized weights for any of the supported models as > long as it can be loaded with the model architecture. Refer to > [supported models](https://github.com/bentoml/OpenLLM/tree/main#-supported-models) > section for models' architecture. Use the `openllm models` command to see the list of models and their variants supported in OpenLLM. ## 🧩 Supported Models The following models are currently supported in OpenLLM. By default, OpenLLM doesn't include dependencies to run all models. The extra model-specific dependencies can be installed with the instructions below:
Model Architecture Model Ids Installation
chatglm ChatGLMForConditionalGeneration ```bash pip install "openllm[chatglm]" ```
dolly-v2 GPTNeoXForCausalLM ```bash pip install openllm ```
falcon FalconForCausalLM ```bash pip install "openllm[falcon]" ```
flan-t5 T5ForConditionalGeneration ```bash pip install "openllm[flan-t5]" ```
gpt-neox GPTNeoXForCausalLM ```bash pip install openllm ```
llama LlamaForCausalLM ```bash pip install "openllm[llama]" ```
mpt MPTForCausalLM ```bash pip install "openllm[mpt]" ```
opt OPTForCausalLM ```bash pip install "openllm[opt]" ```
stablelm GPTNeoXForCausalLM ```bash pip install openllm ```
starcoder GPTBigCodeForCausalLM ```bash pip install "openllm[starcoder]" ```
baichuan BaiChuanForCausalLM ```bash pip install "openllm[baichuan]" ```
### Runtime Implementations (Experimental) Different LLMs may have multiple runtime implementations. For instance, they might use Pytorch (`pt`), Tensorflow (`tf`), or Flax (`flax`). If you wish to specify a particular runtime for a model, you can do so by setting the `OPENLLM_{MODEL_NAME}_FRAMEWORK={runtime}` environment variable before running `openllm start`. For example, if you want to use the Tensorflow (`tf`) implementation for the `flan-t5` model, you can use the following command: ```bash OPENLLM_FLAN_T5_FRAMEWORK=tf openllm start flan-t5 ``` > [!NOTE] > For GPU support on Flax, refers to > [Jax's installation](https://github.com/google/jax#pip-installation-gpu-cuda-installed-via-pip-easier) > to make sure that you have Jax support for the corresponding CUDA version. ### Quantisation OpenLLM supports quantisation with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPTQ](https://arxiv.org/abs/2210.17323) ```bash openllm start mpt --quantize int8 ``` To run inference with `gptq`, simply pass `--quantize gptq`: ```bash openllm start falcon --model-id TheBloke/falcon-40b-instruct-GPTQ --quantize gptq --device 0 ``` > [!NOTE] > In order to run GPTQ, make sure to install with > `pip install "openllm[gptq]"`. The weights of all supported models should be > quantized before serving. See > [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa) for more > information on GPTQ quantisation. ### Fine-tuning support (Experimental) One can serve OpenLLM models with any PEFT-compatible layers with `--adapter-id`: ```bash openllm start opt --model-id facebook/opt-6.7b --adapter-id aarnphm/opt-6-7b-quotes ``` It also supports adapters from custom paths: ```bash openllm start opt --model-id facebook/opt-6.7b --adapter-id /path/to/adapters ``` To use multiple adapters, use the following format: ```bash openllm start opt --model-id facebook/opt-6.7b --adapter-id aarnphm/opt-6.7b-lora --adapter-id aarnphm/opt-6.7b-lora:french_lora ``` By default, the first adapter-id will be the default Lora layer, but optionally users can change what Lora layer to use for inference via `/v1/adapters`: ```bash curl -X POST http://localhost:3000/v1/adapters --json '{"adapter_name": "vn_lora"}' ``` Note that for multiple adapter-name and adapter-id, it is recommended to update to use the default adapter before sending the inference, to avoid any performance degradation To include this into the Bento, one can also provide a `--adapter-id` into `openllm build`: ```bash openllm build opt --model-id facebook/opt-6.7b --adapter-id ... ``` > [!NOTE] > We will gradually roll out support for fine-tuning all models. The > following models contain fine-tuning support: OPT, Falcon, LlaMA. ### Integrating a New Model OpenLLM encourages contributions by welcoming users to incorporate their custom LLMs into the ecosystem. Check out [Adding a New Model Guide](https://github.com/bentoml/OpenLLM/blob/main/ADDING_NEW_MODEL.md) to see how you can do it yourself. ### Embeddings OpenLLM tentatively provides embeddings endpoint for supported models. This can be accessed via `/v1/embeddings`. To use via CLI, simply call `openllm embed`: ```bash openllm embed --endpoint http://localhost:3000 "I like to eat apples" -o json { "embeddings": [ 0.006569798570126295, -0.031249752268195152, -0.008072729222476482, 0.00847396720200777, -0.005293501541018486, ...... -0.002078012563288212, -0.00676426338031888, -0.002022686880081892 ], "num_tokens": 9 } ``` To invoke this endpoint, use `client.embed` from the Python SDK: ```python import openllm client = openllm.client.HTTPClient("http://localhost:3000") client.embed("I like to eat apples") ``` > [!NOTE] > Currently, the following model family supports embeddings: Llama, T5 > (Flan-T5, FastChat, etc.), ChatGLM ## βš™οΈ Integrations OpenLLM is not just a standalone product; it's a building block designed to integrate with other powerful tools easily. We currently offer integration with [BentoML](https://github.com/bentoml/BentoML), [LangChain](https://github.com/hwchase17/langchain), and [Transformers Agents](https://huggingface.co/docs/transformers/transformers_agents). ### BentoML OpenLLM models can be integrated as a [Runner](https://docs.bentoml.com/en/latest/concepts/runner.html) in your BentoML service. These runners have a `generate` method that takes a string as a prompt and returns a corresponding output string. This will allow you to plug and play any OpenLLM models with your existing ML workflow. ```python import bentoml import openllm model = "opt" llm_config = openllm.AutoConfig.for_model(model) llm_runner = openllm.Runner(model, llm_config=llm_config) svc = bentoml.Service( name=f"llm-opt-service", runners=[llm_runner] ) @svc.api(input=Text(), output=Text()) async def prompt(input_text: str) -> str: answer = await llm_runner.generate(input_text) return answer ``` ### [LangChain](https://python.langchain.com/docs/ecosystem/integrations/openllm) To quickly start a local LLM with `langchain`, simply do the following: ```python from langchain.llms import OpenLLM llm = OpenLLM(model_name="llama", model_id='meta-llama/Llama-2-7b-hf') llm("What is the difference between a duck and a goose? And why there are so many Goose in Canada?") ``` > [!IMPORTANT] > By default, OpenLLM use `safetensors` format for saving models. > If the model doesn't support safetensors, make sure to pass > `serialisation="legacy"` to use the legacy PyTorch bin format. `langchain.llms.OpenLLM` has the capability to interact with remote OpenLLM Server. Given there is an OpenLLM server deployed elsewhere, you can connect to it by specifying its URL: ```python from langchain.llms import OpenLLM llm = OpenLLM(server_url='http://44.23.123.1:3000', server_type='grpc') llm("What is the difference between a duck and a goose? And why there are so many Goose in Canada?") ``` To integrate a LangChain agent with BentoML, you can do the following: ```python llm = OpenLLM( model_name='flan-t5', model_id='google/flan-t5-large', embedded=False, serialisation="legacy" ) tools = load_tools(["serpapi", "llm-math"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION ) svc = bentoml.Service("langchain-openllm", runners=[llm.runner]) @svc.api(input=Text(), output=Text()) def chat(input_text: str): return agent.run(input_text) ``` > [!NOTE] > You can find out more examples under the > [examples](https://github.com/bentoml/OpenLLM/tree/main/examples) folder. ### Transformers Agents OpenLLM seamlessly integrates with [Transformers Agents](https://huggingface.co/docs/transformers/transformers_agents). > [!WARNING] > The Transformers Agent is still at an experimental stage. It is > recommended to install OpenLLM with `pip install -r nightly-requirements.txt` > to get the latest API update for HuggingFace agent. ```python import transformers agent = transformers.HfAgent("http://localhost:3000/hf/agent") # URL that runs the OpenLLM server agent.run("Is the following `text` positive or negative?", text="I don't like how this models is generate inputs") ``` > [!IMPORTANT] > Only `starcoder` is currently supported with Agent integration. > The example above was also run with four T4s on EC2 `g4dn.12xlarge` If you want to use OpenLLM client to ask questions to the running agent, you can also do so: ```python import openllm client = openllm.client.HTTPClient("http://localhost:3000") client.ask_agent( task="Is the following `text` positive or negative?", text="What are you thinking about?", ) ``` ![Gif showing Agent integration](/.github/assets/agent.gif)
## πŸš€ Deploying to Production There are several ways to deploy your LLMs: ### 🐳 Docker container 1. **Building a Bento**: With OpenLLM, you can easily build a Bento for a specific model, like `dolly-v2`, using the `build` command.: ```bash openllm build dolly-v2 ``` A [Bento](https://docs.bentoml.com/en/latest/concepts/bento.html#what-is-a-bento), in BentoML, is the unit of distribution. It packages your program's source code, models, files, artefacts, and dependencies. 2. **Containerize your Bento** ```bash bentoml containerize ``` This generates a OCI-compatible docker image that can be deployed anywhere docker runs. For best scalability and reliability of your LLM service in production, we recommend deploy with BentoCloud。 ### ☁️ BentoCloud Deploy OpenLLM with [BentoCloud](https://www.bentoml.com/bento-cloud/), the serverless cloud for shipping and scaling AI applications. 1. **Create a BentoCloud account:** [sign up here](https://bentoml.com/cloud) for early access 2. **Log into your BentoCloud account:** ```bash bentoml cloud login --api-token --endpoint ``` > [!NOTE] > Replace `` and `` with your > specific API token and the BentoCloud endpoint respectively. 3. **Bulding a Bento**: With OpenLLM, you can easily build a Bento for a specific model, such as `dolly-v2`: ```bash openllm build dolly-v2 ``` 4. **Pushing a Bento**: Push your freshly-built Bento service to BentoCloud via the `push` command: ```bash bentoml push ``` 5. **Deploying a Bento**: Deploy your LLMs to BentoCloud with a single `bentoml deployment create` command following the [deployment instructions](https://docs.bentoml.com/en/latest/reference/cli.html#bentoml-deployment-create). ## πŸ‘₯ Community Engage with like-minded individuals passionate about LLMs, AI, and more on our [Discord](https://l.bentoml.com/join-openllm-discord)! OpenLLM is actively maintained by the BentoML team. Feel free to reach out and join us in our pursuit to make LLMs more accessible and easy to use πŸ‘‰ [Join our Slack community!](https://l.bentoml.com/join-slack) ## 🎁 Contributing We welcome contributions! If you're interested in enhancing OpenLLM's capabilities or have any questions, don't hesitate to reach out in our [discord channel](https://l.bentoml.com/join-openllm-discord). Checkout our [Developer Guide](https://github.com/bentoml/OpenLLM/blob/main/DEVELOPMENT.md) if you wish to contribute to OpenLLM's codebase. ## πŸ‡ Telemetry OpenLLM collects usage data to enhance user experience and improve the product. We only report OpenLLM's internal API calls and ensure maximum privacy by excluding sensitive information. We will never collect user code, model data, or stack traces. For usage tracking, check out the [code](https://github.com/bentoml/OpenLLM/blob/main/openllm-python/src/openllm/utils/analytics.py). You can opt out of usage tracking by using the `--do-not-track` CLI option: ```bash openllm [command] --do-not-track ``` Or by setting the environment variable `OPENLLM_DO_NOT_TRACK=True`: ```bash export OPENLLM_DO_NOT_TRACK=True ``` ## πŸ“” Citation If you use OpenLLM in your research, we provide a [citation](./CITATION.cff) to use: ```bibtex @software{Pham_OpenLLM_Operating_LLMs_2023, author = {Pham, Aaron and Yang, Chaoyu and Sheng, Sean and Zhao, Shenyang and Lee, Sauyon and Jiang, Bo and Dong, Fog and Guan, Xipeng and Ming, Frost}, license = {Apache-2.0}, month = jun, title = {{OpenLLM: Operating LLMs in production}}, url = {https://github.com/bentoml/OpenLLM}, year = {2023} } ```