# Changelog We are following [semantic versioning](https://semver.org/) with strict backward-compatibility policy. You can find out backwards-compatibility policy [here](https://github.com/bentoml/openllm/blob/main/.github/SECURITY.md). Changes for the upcoming release can be found in the ['changelog.d' directory](https://github.com/bentoml/openllm/tree/main/changelog.d) in our repository. ## [0.4.40](https://github.com/bentoml/openllm/tree/v0.4.40) No significant changes. ## [0.4.39](https://github.com/bentoml/openllm/tree/v0.4.39) ### Bug fix - Fixes logprobs branch with PyTorch backend. [#779](https://github.com/bentoml/openllm/issues/779) ## [0.4.38](https://github.com/bentoml/openllm/tree/v0.4.38) ### Changes - Update correct arguments for both `openllm import` and `openllm build` to be synonymous with `openllm start` [#775](https://github.com/bentoml/openllm/issues/775) ### Features - Mixtral is now fully supported on BentoCloud. ```bash openllm start mistralai/Mixtral-8x7B-Instruct-v0.1 ``` [#774](https://github.com/bentoml/openllm/issues/774) ## [0.4.37](https://github.com/bentoml/openllm/tree/v0.4.37) No significant changes. ## [0.4.36](https://github.com/bentoml/openllm/tree/v0.4.36) No significant changes. ## [0.4.35](https://github.com/bentoml/openllm/tree/v0.4.35) No significant changes. ## [0.4.34](https://github.com/bentoml/openllm/tree/v0.4.34) No significant changes. ## [0.4.33](https://github.com/bentoml/openllm/tree/v0.4.33) No significant changes. ## [0.4.32](https://github.com/bentoml/openllm/tree/v0.4.32) No significant changes. ## [0.4.31](https://github.com/bentoml/openllm/tree/v0.4.31) No significant changes. ## [0.4.30](https://github.com/bentoml/openllm/tree/v0.4.30) No significant changes. ## [0.4.29](https://github.com/bentoml/openllm/tree/v0.4.29) No significant changes. ## [0.4.28](https://github.com/bentoml/openllm/tree/v0.4.28) ### Changes - Only baichuan2 and baichuan3 are supported. We dropped baichuan 1 support [#728](https://github.com/bentoml/openllm/issues/728) ## [0.4.27](https://github.com/bentoml/openllm/tree/v0.4.27) ### Changes - We will deprecate support for PyTorch backend and will enforce all built Bento to use vLLM backend going forward. This means that `openllm build` with `--backend pt` will now be deprecated and move to `--backend vllm`. We will focus more on contributing upstream to vLLM and will ensure that the core value of OpenLLM is to provide a flexible and as streamlined experience to bring these models to production with ease. PyTorch backend will be removed from 0.5.0 releases onwards. The docker images will now only be available on GHCR and not on ECR anymore as a measure to reduce cost and maintenance one our side [#730](https://github.com/bentoml/openllm/issues/730) ## [0.4.26](https://github.com/bentoml/openllm/tree/v0.4.26) ### Features - `/v1/chat/completions` now accepts two additional parameters - `chat_templates`: this is a string of [Jinja templates](https://huggingface.co/docs/transformers/main/chat_templating#templates-for-chat-models) to use with this models. By default, it will just use the default models provided chat templates based on config.json. - `add_generation_prompt`: See [here](https://huggingface.co/docs/transformers/main/chat_templating#how-do-i-use-chat-templates) [#725](https://github.com/bentoml/openllm/issues/725) ## [0.4.25](https://github.com/bentoml/openllm/tree/v0.4.25) No significant changes. ## [0.4.24](https://github.com/bentoml/openllm/tree/v0.4.24) No significant changes. ## [0.4.23](https://github.com/bentoml/openllm/tree/v0.4.23) No significant changes. ## [0.4.22](https://github.com/bentoml/openllm/tree/v0.4.22) No significant changes. ## [0.4.21](https://github.com/bentoml/openllm/tree/v0.4.21) No significant changes. ## [0.4.20](https://github.com/bentoml/openllm/tree/v0.4.20) No significant changes. ## [0.4.19](https://github.com/bentoml/openllm/tree/v0.4.19) No significant changes. ## [0.4.18](https://github.com/bentoml/openllm/tree/v0.4.18) No significant changes. ## [0.4.17](https://github.com/bentoml/openllm/tree/v0.4.17) No significant changes. ## [0.4.16](https://github.com/bentoml/openllm/tree/v0.4.16) ### Changes - Update vLLM to 0.2.2, bringing supports and a lot of improvement upstream [#695](https://github.com/bentoml/openllm/issues/695) ### Features - Added experimental CTranslate backend to run on CPU, that yields higher TPS comparing to PyTorch counterpart. This has been tested on c5.4xlarge instances [#698](https://github.com/bentoml/openllm/issues/698) ## [0.4.15](https://github.com/bentoml/openllm/tree/v0.4.15) ### Features - PyTorch runners now supports logprobs calculation for the `logits` output. Update logits calculation to support encoder-decoder models (which fix T5 inference) [#692](https://github.com/bentoml/openllm/issues/692) ## [0.4.14](https://github.com/bentoml/openllm/tree/v0.4.14) No significant changes. ## [0.4.13](https://github.com/bentoml/openllm/tree/v0.4.13) No significant changes. ## [0.4.12](https://github.com/bentoml/openllm/tree/v0.4.12) No significant changes. ## [0.4.11](https://github.com/bentoml/openllm/tree/v0.4.11) ### Bug fix - Fixes a environment generation bug that caused CONFIG envvar to be invalid JSON [#680](https://github.com/bentoml/openllm/issues/680) ## [0.4.10](https://github.com/bentoml/openllm/tree/v0.4.10) ### Changes - `openllm build` from 0.4.10 will start locking packages for hemerticity We also remove some of the packages that is not required, since it should already be in the base image. Improve general codegen for service_vars to static save all variables in `_service_vars.py` to save two access call in envvar. The envvar for all variables are still there in the container for backwards compatibility. [#669](https://github.com/bentoml/openllm/issues/669) ### Features - Type hints for all exposed API are now provided through stubs. This means REPL and static analysis tools like mypy can infer types from library instantly without having to infer types from runtime function signatures. [#663](https://github.com/bentoml/openllm/issues/663) - OpenLLM image sizes now has been compressed and reduced to around 6.75 GB uncompressed. [#675](https://github.com/bentoml/openllm/issues/675) ## [0.4.9](https://github.com/bentoml/openllm/tree/v0.4.9) No significant changes. ## [0.4.8](https://github.com/bentoml/openllm/tree/v0.4.8) No significant changes. ## [0.4.7](https://github.com/bentoml/openllm/tree/v0.4.7) No significant changes. ## [0.4.6](https://github.com/bentoml/openllm/tree/v0.4.6) No significant changes. ## [0.4.5](https://github.com/bentoml/openllm/tree/v0.4.5) No significant changes. ## [0.4.4](https://github.com/bentoml/openllm/tree/v0.4.4) ### Features - Certain warnings can now be disabled with `OPENLLM_DISABLE_WARNINGS=True` in the environment. `openllm.LLM` now also brings `embedded` mode. By default this is True. if `embedded=True`, then the model will be loaded eagerly. This should only be used during developmen ```python import openllm llm = openllm.LLM('HuggingFaceH4/zephyr-7b-beta', backend='vllm', embedded=True) ``` The default behaviour of loading the model first time when `llm.generate` or `llm.generate_iterator` is unchanged. `embedded` option is mainly for backward compatibility and more explicit definition. [#618](https://github.com/bentoml/openllm/issues/618) ## [0.4.3](https://github.com/bentoml/openllm/tree/v0.4.3) ### Features - OpenLLM server now provides a helpers endpoint to help easily create new prompt and other utilities in the future `/v1/helpers/messages` will format a list of messages into the correct chat messages given the chat model [#613](https://github.com/bentoml/openllm/issues/613) - client now have an additional helpers attribute class to work with helpers endpoint ```python client = openllm.HTTPClient() prompt = client.helpers.messages( add_generation_prompt=False, messages=[ {'role': 'system', 'content': 'You are acting as Ernest Hemmingway.'}, {'role': 'user', 'content': 'Hi there!'}, {'role': 'assistant', 'content': 'Yes?'}, ], ) ``` Async variant ```python client = openllm.AsyncHTTPClient() prompt = await client.helpers.messages( add_generation_prompt=False, messages=[ {'role': 'system', 'content': 'You are acting as Ernest Hemmingway.'}, {'role': 'user', 'content': 'Hi there!'}, {'role': 'assistant', 'content': 'Yes?'}, ], ) ``` [#615](https://github.com/bentoml/openllm/issues/615) ## [0.4.2](https://github.com/bentoml/openllm/tree/v0.4.2) ### Changes - Update client implementation and support Authentication through `OPENLLM_AUTH_TOKEN` [#605](https://github.com/bentoml/openllm/issues/605) ### Refactor - ## Auto backend detection By default, OpenLLM will use vLLM (if available) to run the server. We recommend users to always explicitly set backend to `--backend vllm` for the best performance. if vLLM is not available, OpenLLM will fall back to PyTorch backend. Note that the PyTorch backend won't be as performant ## Revamped CLI interface This is a part of the recent restructure of `openllm.LLM` For all CLI, there is no need to pass in the architecture anymore. One can directly pass in the model and save a few characters Start: ```bash openllm start meta-llama/Llama-2-13b-chat-hf --device 0 ``` Build: ```bash openllm build meta-llama/Llama-2-13b-chat-hf --serialisation safetensors ``` Import: ```bash openllm build mistralai/Mistral-7B-v0.1 --serialisation legacy ``` All CLI outputs will now dump JSON objects to stdout. This will ensure easier programmatic access to the CLI. This means `--output/-o` is removed from all CLI commands, as all of them will output JSON. Passing in `model_name` will now be deprecated and will be removed from the future. If you try `openllm start opt`, you will see the following ```bash $ openllm start opt Passing 'openllm start opt' is deprecated and will be remove in a future version. Use 'openllm start facebook/opt-1.3b' instead. ``` Example outputs of `openllm models`: ```bash $ openllm models { "chatglm": { "architecture": "ChatGLMModel", "example_id": "thudm/chatglm2-6b", "supported_backends": [ "pt" ], "installation": "pip install \"openllm[chatglm]\"", "items": [] }, "dolly_v2": { "architecture": "GPTNeoXForCausalLM", "example_id": "databricks/dolly-v2-3b", "supported_backends": [ "pt", "vllm" ], "installation": "pip install openllm", "items": [] }, "falcon": { "architecture": "FalconForCausalLM", "example_id": "tiiuae/falcon-40b-instruct", "supported_backends": [ "pt", "vllm" ], "installation": "pip install \"openllm[falcon]\"", "items": [] }, "flan_t5": { "architecture": "T5ForConditionalGeneration", "example_id": "google/flan-t5-small", "supported_backends": [ "pt" ], "installation": "pip install openllm", "items": [] }, "gpt_neox": { "architecture": "GPTNeoXForCausalLM", "example_id": "eleutherai/gpt-neox-20b", "supported_backends": [ "pt", "vllm" ], "installation": "pip install openllm", "items": [] }, "llama": { "architecture": "LlamaForCausalLM", "example_id": "NousResearch/llama-2-70b-hf", "supported_backends": [ "pt", "vllm" ], "installation": "pip install \"openllm[llama]\"", "items": [] }, "mpt": { "architecture": "MPTForCausalLM", "example_id": "mosaicml/mpt-7b-chat", "supported_backends": [ "pt", "vllm" ], "installation": "pip install \"openllm[mpt]\"", "items": [] }, "opt": { "architecture": "OPTForCausalLM", "example_id": "facebook/opt-2.7b", "supported_backends": [ "pt", "vllm" ], "installation": "pip install \"openllm[opt]\"", "items": [] }, "stablelm": { "architecture": "GPTNeoXForCausalLM", "example_id": "stabilityai/stablelm-base-alpha-3b", "supported_backends": [ "pt", "vllm" ], "installation": "pip install openllm", "items": [] }, "starcoder": { "architecture": "GPTBigCodeForCausalLM", "example_id": "bigcode/starcoder", "supported_backends": [ "pt", "vllm" ], "installation": "pip install \"openllm[starcoder]\"", "items": [] }, "mistral": { "architecture": "MistralForCausalLM", "example_id": "amazon/MistralLite", "supported_backends": [ "pt", "vllm" ], "installation": "pip install openllm", "items": [] }, "baichuan": { "architecture": "BaiChuanForCausalLM", "example_id": "fireballoon/baichuan-vicuna-chinese-7b", "supported_backends": [ "pt", "vllm" ], "installation": "pip install \"openllm[baichuan]\"", "items": [] } } ``` [#592](https://github.com/bentoml/openllm/issues/592) ## [0.4.1](https://github.com/bentoml/openllm/tree/v0.4.1) No significant changes. ## [0.4.0](https://github.com/bentoml/openllm/tree/v0.4.0) No significant changes. ## [0.3.14](https://github.com/bentoml/openllm/tree/v0.3.14) No significant changes. ## [0.3.13](https://github.com/bentoml/openllm/tree/v0.3.13) No significant changes. ## [0.3.12](https://github.com/bentoml/openllm/tree/v0.3.12) No significant changes. ## [0.3.10](https://github.com/bentoml/openllm/tree/v0.3.10) No significant changes. ## [0.3.9](https://github.com/bentoml/openllm/tree/v0.3.9) No significant changes. ## [0.3.8](https://github.com/bentoml/openllm/tree/v0.3.8) ### Backwards-incompatible Changes - Remove embeddings endpoints from the provided API, as I think it is probably not a good fit to have them here, yet. This means that `openllm embed` will also be removed. Client implementation is also updated to fix 0.3.7 breaking changes with models other than Llama [#500](https://github.com/bentoml/openllm/issues/500) ### Features - Add `/v1/models` endpoint for OpenAI compatible API [#499](https://github.com/bentoml/openllm/issues/499) ## [0.3.7](https://github.com/bentoml/openllm/tree/v0.3.7) No significant changes. ## [0.3.6](https://github.com/bentoml/openllm/tree/v0.3.6) ### Features - Added support for continuous batching on `/v1/generate` [#375](https://github.com/bentoml/openllm/issues/375) ## [0.3.5](https://github.com/bentoml/openllm/tree/v0.3.5) ### Features - Added support for continuous batching via vLLM Currently benchmark shows that 100 concurrent requests shows around 1218 TPS on 1 A100 running meta-llama/Llama-2-13b-chat-hf [#349](https://github.com/bentoml/openllm/issues/349) ### Bug fix - Set a default serialisation for all models. Currently, only Llama 2 will use safetensors as default format. For all other models, if they have safetensors format, then it will can be opt-int via `--serialisation safetensors` [#355](https://github.com/bentoml/openllm/issues/355) ## [0.3.4](https://github.com/bentoml/openllm/tree/v0.3.4) ### Bug fix - vLLM now should support safetensors loading format, so `--serlisation` should be agnostic of backend now Removed some legacy check and default behaviour [#324](https://github.com/bentoml/openllm/issues/324) ## [0.3.3](https://github.com/bentoml/openllm/tree/v0.3.3) No significant changes. ## [0.3.2](https://github.com/bentoml/openllm/tree/v0.3.2) No significant changes. ## [0.3.1](https://github.com/bentoml/openllm/tree/v0.3.1) ### Changes - revert back to only release pure wheels disable compiling wheels for now once we move to different implementation [#304](https://github.com/bentoml/openllm/issues/304) ## [0.3.0](https://github.com/bentoml/openllm/tree/v0.3.0) ### Backwards-incompatible Changes - All environment variable now will be more simplified, without the need for the specific model prefix For example: OPENLLM_LLAMA_GENERATION_MAX_NEW_TOKENS now becomes OPENLLM_GENERATION_MAX_NEW_TOKENS Unify some misc environment variable. To switch different backend, one can use `--backend` for both `start` and `build` ```bash openllm start llama --backend vllm ``` or the environment variable `OPENLLM_BACKEND` ```bash OPENLLM_BACKEND=vllm openllm start llama ``` `openllm.Runner` now will default to try download the model the first time if the model is not available, and get the cached in model store consequently Model serialisation now updated to a new API version with more clear name change, kindly ask users to do `openllm prune -y --include-bentos` and update to this current version of openllm [#283](https://github.com/bentoml/openllm/issues/283) ### Refactor - Refactor GPTQ to use official implementation from transformers>=4.32 [#297](https://github.com/bentoml/openllm/issues/297) ### Features - Added support for vLLM streaming This can now be accessed via `/v1/generate_stream` [#260](https://github.com/bentoml/openllm/issues/260) ## [0.2.27](https://github.com/bentoml/openllm/tree/v0.2.27) ### Changes - Define specific style guideline for the project. See [STYLE.md](https://github.com/bentoml/OpenLLM/blob/main/STYLE.md) for more information. [#168](https://github.com/bentoml/openllm/issues/168) ### Refactor - Expose all extension via `openllm extension` Added a separate section for all extension with the CLI. `openllm playground` is now considered as an extension introduce compiled wheels gradually added a easy `cz.py` for code golf and LOC [#191](https://github.com/bentoml/openllm/issues/191) - Refactor openllm_js to openllm-node for initial node library development [#199](https://github.com/bentoml/openllm/issues/199) - OpenLLM now comprise of three packages: - `openllm-core`: main building blocks of OpenLLM, that doesn't depend on transformers and heavy DL libraries - `openllm-client`: The implementation of `openllm.client` - `openllm`: = `openllm-core` + `openllm-client` + DL features (under `openllm-python`) OpenLLM now will provide `start-grpc` as opt-in. If you wan to use `openllm start-grpc`, make sure to install with `pip install "openllm[grpc]"` [#249](https://github.com/bentoml/openllm/issues/249) ### Features - OpenLLM now provides SSE support > [!NOTE] > For this to work, you must install BentoML>=1.1.2: > `pip install -U bentoml>=1.1.2` The endpoint can be accessed via `/v1/generate_stream` > [!NOTE] > Curl does in fact does support SSE by passing in `-N` [#240](https://github.com/bentoml/openllm/issues/240) ## [0.2.26](https://github.com/bentoml/openllm/tree/v0.2.26) ### Features - Added a generic embedding implementation largely based on https://github.com/bentoml/sentence-embedding-bento For all unsupported models. [#227](https://github.com/bentoml/openllm/issues/227) ### Bug fix - Fixes correct directory for building standalone installer [#228](https://github.com/bentoml/openllm/issues/228) ## [0.2.25](https://github.com/bentoml/openllm/tree/v0.2.25) ### Features - OpenLLM now include a community-maintained ClojureScript UI, Thanks @GutZuFusss See [this README.md](/external/clojure/README.md) for more information OpenLLM will also include a `--cors` to enable start with cors enabled. [#89](https://github.com/bentoml/openllm/issues/89) - Nightly wheels now can be installed via `test.pypi.org`: ```bash pip install -i https://test.pypi.org/simple/ openllm ``` [#215](https://github.com/bentoml/openllm/issues/215) - Running vLLM with Falcon is now supported [#223](https://github.com/bentoml/openllm/issues/223) ## [0.2.24](https://github.com/bentoml/openllm/tree/v0.2.24) No significant changes. ## [0.2.23](https://github.com/bentoml/openllm/tree/v0.2.23) ### Features - Added all compiled wheels for all supported Python version for Linux and MacOS [#201](https://github.com/bentoml/openllm/issues/201) ## [0.2.22](https://github.com/bentoml/openllm/tree/v0.2.22) No significant changes. ## [0.2.21](https://github.com/bentoml/openllm/tree/v0.2.21) ### Changes - Added lazy eval for compiled modules, which should speed up overall import time [#200](https://github.com/bentoml/openllm/issues/200) ### Bug fix - Fixes compiled wheels ignoring client libraries [#197](https://github.com/bentoml/openllm/issues/197) ## [0.2.20](https://github.com/bentoml/openllm/tree/v0.2.20) No significant changes. ## [0.2.19](https://github.com/bentoml/openllm/tree/v0.2.19) No significant changes. ## [0.2.18](https://github.com/bentoml/openllm/tree/v0.2.18) ### Changes - Runners server now will always spawn one instance regardless of the configuration of workers-per-resource i.e: If CUDA_VISIBLE_DEVICES=0,1,2 and `--workers-per-resource=0.5`, then runners will only use `0,1` index [#189](https://github.com/bentoml/openllm/issues/189) ### Features - OpenLLM now can also be installed via brew tap: ```bash brew tap bentoml/openllm https://github.com/bentoml/openllm brew install openllm ``` [#190](https://github.com/bentoml/openllm/issues/190) ## [0.2.17](https://github.com/bentoml/openllm/tree/v0.2.17) ### Changes - Updated loading logics for PyTorch and vLLM where it will check for initialized parameters after placing to correct devices Added xformers to base container for requirements on vLLM-based container [#185](https://github.com/bentoml/openllm/issues/185) ### Features - Importing models now won't load into memory if it is a remote ID. Note that for GPTQ and local model the behaviour is unchanged. Fixes that when there is one GPU, we ensure to call `to('cuda')` to place the model onto the memory. Note that the GPU must have enough VRAM to offload this model onto the GPU. [#183](https://github.com/bentoml/openllm/issues/183) ## [0.2.16](https://github.com/bentoml/openllm/tree/v0.2.16) No significant changes. ## [0.2.15](https://github.com/bentoml/openllm/tree/v0.2.15) No significant changes. ## [0.2.14](https://github.com/bentoml/openllm/tree/v0.2.14) ### Bug fix - Fixes a bug with `EnvVarMixin` where it didn't respect environment variable for specific fields This inherently provide a confusing behaviour with `--model-id`. This is now has been addressed with main The base docker will now also include a installation of xformers from source, locked at a given hash, since the latest release of xformers are too old and would fail with vLLM when running within the k8s [#181](https://github.com/bentoml/openllm/issues/181) ## [0.2.13](https://github.com/bentoml/openllm/tree/v0.2.13) No significant changes. ## [0.2.12](https://github.com/bentoml/openllm/tree/v0.2.12) ### Features - Added support for base container with OpenLLM. The base container will contains all necessary requirements to run OpenLLM. Currently it does included compiled version of FlashAttention v2, vLLM, AutoGPTQ and triton. This will now be the base image for all future BentoLLM. The image will also be published to public GHCR. To extend and use this image into your bento, simply specify ``base_image`` under ``bentofile.yaml``: ```yaml docker: base_image: ghcr.io/bentoml/openllm: ``` The release strategy would include: - versioning of ``ghcr.io/bentoml/openllm:sha-`` for every commit to main, ``ghcr.io/bentoml/openllm:0.2.11`` for specific release version - alias ``latest`` will be managed with docker/build-push-action (discouraged) Note that all these images include compiled kernels that has been tested on Ampere GPUs with CUDA 11.8. To quickly run the image, do the following: ```bash docker run --rm --gpus all -it -v /home/ubuntu/.local/share/bentoml:/tmp/bentoml -e BENTOML_HOME=/tmp/bentoml \ -e OPENLLM_USE_LOCAL_LATEST=True -e OPENLLM_BACKEND=vllm ghcr.io/bentoml/openllm:2b5e96f90ad314f54e07b5b31e386e7d688d9bb2 start llama --model-id meta-llama/Llama-2-7b-chat-hf --workers-per-resource conserved --debug` ``` In conjunction with this, OpenLLM now also have a set of small CLI utilities via ``openllm ext`` for ease-of-use General fixes around codebase bytecode optimization Fixes logs output to filter correct level based on ``--debug`` and ``--quiet`` ``openllm build`` now will default run model check locally. To skip it pass in ``--fast`` (before this is the default behaviour, but ``--no-fast`` as default makes more sense here as ``openllm build`` should also be able to run standalone) All ``LlaMA`` namespace has been renamed to ``Llama`` (internal change and shouldn't affect end users) ``openllm.AutoModel.for_model`` now will always return the instance. Runner kwargs will be handled via create_runner [#142](https://github.com/bentoml/openllm/issues/142) - All OpenLLM base container now are scanned for security vulnerabilities using trivy (both SBOM mode and CVE) [#169](https://github.com/bentoml/openllm/issues/169) ## [0.2.11](https://github.com/bentoml/openllm/tree/v0.2.11) ### Features - Added embeddings support for T5 and ChatGLM [#153](https://github.com/bentoml/openllm/issues/153) ## [0.2.10](https://github.com/bentoml/openllm/tree/v0.2.10) ### Features - Added installing with git-archival support ```bash pip install "https://github.com/bentoml/openllm/archive/main.tar.gz" ``` [#143](https://github.com/bentoml/openllm/issues/143) - Users now can call ``client.embed`` to get the embeddings from the running LLMServer ```python client = openllm.client.HTTPClient("http://localhost:3000") client.embed("Hello World") client.embed(["Hello", "World"]) ``` > **Note:** The ``client.embed`` is currently only implemnted for ``openllm.client.HTTPClient`` and ``openllm.client.AsyncHTTPClient`` Users can also query embeddings directly from the CLI, via ``openllm embed``: ```bash $ openllm embed --endpoint localhost:3000 "Hello World" "My name is Susan" [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]] ``` [#146](https://github.com/bentoml/openllm/issues/146) ### Bug fix - Fixes model location while running within BentoContainer correctly This makes sure that the tags and model path are inferred correctly, based on BENTO_PATH and /.dockerenv [#141](https://github.com/bentoml/openllm/issues/141) ## [0.2.9](https://github.com/bentoml/openllm/tree/v0.2.9) No significant changes. ## [0.2.8](https://github.com/bentoml/openllm/tree/v0.2.8) ### Features - APIs for LLMService are now provisional based on the capabilities of the LLM. The following APIs are considered provisional: - `/v1/embeddings`: This will be available if the LLM supports embeddings (i.e: ``LLM.embeddings`` is implemented. Example model are ``llama``) - `/hf/agent`: This will be available if LLM supports running HF agents (i.e: ``LLM.generate_one`` is implemented. Example model are ``starcoder``, ``falcon``.) - `POST /v1/adapters` and `GET /v1/adapters`: This will be available if the server is running with LoRA weights ``openllm.LLMRunner`` now include three additional boolean: - `runner.supports_embeddings`: Whether this runner supports embeddings - `runner.supports_hf_agent`: Whether this runner support HF agents - `runner.has_adapters`: Whether this runner is loaded with LoRA adapters. Optimized ``openllm.models``'s bytecode performance [#133](https://github.com/bentoml/openllm/issues/133) ## [0.2.7](https://github.com/bentoml/openllm/tree/v0.2.7) No significant changes. ## [0.2.6](https://github.com/bentoml/openllm/tree/v0.2.6) ### Backwards-incompatible Changes - Updated signature for `load_model` and `load_tokenizer` not to allow tag. Tag can be accessed via `llm.tag`, or if using `openllm.serialisation` or `bentoml.transformers` then you can use `self._bentomodel` Updated serialisation shared logics to reduce callstack for saving three calltrace. [#132](https://github.com/bentoml/openllm/issues/132) ## [0.2.5](https://github.com/bentoml/openllm/tree/v0.2.5) ### Features - Added support for sending arguments via CLI. ```python openllm query --endpoint localhost:3000 "What is the difference between noun and pronoun?" --sampling-params temperature 0.84 ``` Fixed llama2 qlora training script to save unquantized weights [#130](https://github.com/bentoml/openllm/issues/130) ## [0.2.4](https://github.com/bentoml/openllm/tree/v0.2.4) No significant changes. ## [0.2.3](https://github.com/bentoml/openllm/tree/v0.2.3) No significant changes. ## [0.2.2](https://github.com/bentoml/openllm/tree/v0.2.2) No significant changes. ## [0.2.1](https://github.com/bentoml/openllm/tree/v0.2.1) No significant changes. ## [0.2.0](https://github.com/bentoml/openllm/tree/v0.2.0) ### Features - Added support for GPTNeoX models. All variants of GPTNeoX, including Dolly-V2 and StableLM can now also use `openllm start gpt-neox` `openllm models -o json` nows return CPU and GPU field. `openllm models` now show table that mimics the one from README.md Added scripts to automatically add models import to `__init__.py` `--workers-per-resource` now accepts the following strategies: - `round_robin`: Similar behaviour when setting `--workers-per-resource 1`. This is useful for smaller models. - `conserved`: This will determine the number of available GPU resources, and only assign one worker for the LLMRunner with all available GPU resources. For example, if ther are 4 GPUs available, then `conserved` is equivalent to `--workers-per-resource 0.25`. [#106](https://github.com/bentoml/openllm/issues/106) - Added support for [Baichuan](https://github.com/baichuan-inc/Baichuan-7B) model generation, contributed by @hetaoBackend Fixes how we handle model loader auto class for trust_remote_code in transformers [#115](https://github.com/bentoml/openllm/issues/115) ### Bug fix - Fixes relative model_id handling for running LLM within the container. Added support for building container directly with `openllm build`. Users now can do `openllm build --format=container`: ```bash openllm build flan-t5 --format=container ``` This is equivalent to: ```bash openllm build flan-t5 && bentoml containerize google-flan-t5-large-service ``` Added Snapshot testing and more robust edge cases for model testing General improvement in `openllm.LLM.import_model` where it will parse santised parameters automatically. Fixes `openllm start ` to use correct `model_id`, ignoring `--model-id` (The correct behaviour) Fixes `--workers-per-resource conserved` to respect `--device` Added initial interface for `LLM.embeddings` [#107](https://github.com/bentoml/openllm/issues/107) - Fixes resources to correctly follows CUDA_VISIBLE_DEVICES spec OpenLLM now contains a standalone parser that mimic `torch.cuda` parser for set GPU devices. This parser will be used to parse both AMD and NVIDIA GPUs. `openllm` should now be able to parse `GPU-` and `MIG-` UUID from both configuration or spec. [#114](https://github.com/bentoml/openllm/issues/114) ## [0.1.20](https://github.com/bentoml/openllm/tree/v0.1.20) ### Features - ### Fine-tuning support for Falcon Added support for fine-tuning Falcon models with QLoRa OpenLLM now brings a `openllm playground`, which create a jupyter notebook for easy fine-tuning script Currently, it supports fine-tuning OPT and Falcon, more to come. `openllm.LLM` now provides a `prepare_for_training` helpers to easily setup LoRA and related configuration for fine-tuning [#98](https://github.com/bentoml/openllm/issues/98) ### Bug fix - Fixes loading MPT config on CPU Fixes runner StopIteration on GET for Starlette App [#92](https://github.com/bentoml/openllm/issues/92) - `openllm.LLM` now generates tags based on given `model_id` and optional `model_version`. If given `model_id` is a custom path, the name would be the basename of the directory, and version would be the hash of the last modified time. `openllm start` now provides a `--runtime`, allowing setup different runtime. Currently it refactors to `transformers`. GGML is working in progress. Fixes miscellaneous items when saving models with quantized weights. [#102](https://github.com/bentoml/openllm/issues/102) ## [0.1.19](https://github.com/bentoml/openllm/tree/v0.1.19) No significant changes. ## [0.1.18](https://github.com/bentoml/openllm/tree/v0.1.18) ### Features - `openllm.LLMConfig` now supports `dict()` protocol ```bash config = openllm.LLMConfig.for_model("opt") print(config.items()) print(config.values()) print(config.keys()) print(dict(config)) ``` [#85](https://github.com/bentoml/openllm/issues/85) - Added supports for MPT to OpenLLM Fixes a LLMConfig to only parse environment when it is available [#91](https://github.com/bentoml/openllm/issues/91) ## [0.1.17](https://github.com/bentoml/openllm/tree/v0.1.17) ### Bug fix - Fixes loading logics from custom path. If given model path are given, OpenLLM won't try to import it to the local store. OpenLLM now only imports and fixes the models to loaded correctly within the bento, see the generated service for more information. Fixes service not ready when serving within a container or on BentoCloud. This has to do with how we load the model before in the bento. Falcon loading logics has been reimplemented to fix this major bug. Make sure to delete all previous save weight for falcon with `openllm prune` `openllm start` now supports bento ```bash openllm start llm-bento --help ``` [#80](https://github.com/bentoml/openllm/issues/80) ## [0.1.16](https://github.com/bentoml/openllm/tree/v0.1.16) No significant changes. ## [0.1.15](https://github.com/bentoml/openllm/tree/v0.1.15) ### Features - `openllm.Runner` now supports AMD GPU, addresses #65. It also respect CUDA_VISIBLE_DEVICES set correctly, allowing disabling GPU and run on CPU only. [#72](https://github.com/bentoml/openllm/issues/72) ## [0.1.14](https://github.com/bentoml/openllm/tree/v0.1.14) ### Features - Added support for standalone binary distribution. Currently works on Linux and Windows: The following are supported: - aarch64-unknown-linux-gnu - x86_64-unknown-linux-gnu - x86_64-unknown-linux-musl - i686-unknown-linux-gnu - powerpc64le-unknown-linux-gnu - x86_64-pc-windows-msvc - i686-pc-windows-msvc Reverted matrices expansion for CI to all Python version. Now leveraging Hatch env matrices [#66](https://github.com/bentoml/openllm/issues/66) ### Bug fix - Moved implementation of dolly-v2 and falcon serialization to save PreTrainedModel instead of pipeline. Save dolly-v2 now save the actual model instead of the pipeline abstraction. If you have a Dolly-V2 model available locally, kindly ask you to do `openllm prune` to have the new implementation available. Dolly-v2 and falcon nows implements some memory optimization to help with loading with lower resources system Configuration removed field: 'use_pipeline' [#60](https://github.com/bentoml/openllm/issues/60) - Remove duplicated class instance of `generation_config` as it should be set via instance attributes. fixes tests flakiness and one broken cases for parsing env [#64](https://github.com/bentoml/openllm/issues/64) ## [0.1.13](https://github.com/bentoml/openllm/tree/v0.1.13) No significant changes. ## [0.1.12](https://github.com/bentoml/openllm/tree/v0.1.12) ### Features - Serving LLM with fine-tuned LoRA, QLoRA adapters layers Then the given fine tuning weights can be served with the model via `openllm start`: ```bash openllm start opt --model-id facebook/opt-6.7b --adapter-id /path/to/adapters ``` If you just wish to try some pretrained adapter checkpoint, you can use `--adapter-id`: ```bash openllm start opt --model-id facebook/opt-6.7b --adapter-id aarnphm/opt-6.7b-lora ``` To use multiple adapters, use the following format: ```bash openllm start opt --model-id facebook/opt-6.7b --adapter-id aarnphm/opt-6.7b-lora --adapter-id aarnphm/opt-6.7b-lora:french_lora ``` By default, the first `adapter-id` will be the default lora layer, but optionally users can change what lora layer to use for inference via `/v1/adapters`: ```bash curl -X POST http://localhost:3000/v1/adapters --json '{"adapter_name": "vn_lora"}' ``` > Note that for multiple `adapter-name` and `adapter-id`, it is recomended to > update to use the default adapter before sending the inference, to avoid any > performance degradation To include this into the Bento, one can also provide a `--adapter-id` into `openllm build`: ```bash openllm build opt --model-id facebook/opt-6.7b --adapter-id ... ``` Separate out configuration builder, to make it more flexible for future configuration generation. [#52](https://github.com/bentoml/openllm/issues/52) ### Bug fix - Fixes how `llm.ensure_model_id_exists` parse `openllm download` correctly Renamed `openllm.utils.ModelEnv` to `openllm.utils.EnvVarMixin` [#58](https://github.com/bentoml/openllm/issues/58) ## [0.1.11](https://github.com/bentoml/openllm/tree/v0.1.11) No significant changes. ## [0.1.10](https://github.com/bentoml/openllm/tree/v0.1.10) No significant changes. ## [0.1.9](https://github.com/bentoml/openllm/tree/v0.1.9) ### Changes - Fixes setting logs for agents to info instead of logger object. [#37](https://github.com/bentoml/openllm/issues/37) ## [0.1.8](https://github.com/bentoml/openllm/tree/v0.1.8) No significant changes. ## [0.1.7](https://github.com/bentoml/openllm/tree/v0.1.7) ### Features - OpenLLM now seamlessly integrates with HuggingFace Agents. Replace the HfAgent endpoint with a running remote server. ```python import transformers agent = transformers.HfAgent("http://localhost:3000/hf/agent") # URL that runs the OpenLLM server agent.run("Is the following `text` positive or negative?", text="I don't like how this models is generate inputs") ``` Note that only `starcoder` is currently supported for agent feature. To use it from the `openllm.client`, do: ```python import openllm client = openllm.client.HTTPClient("http://123.23.21.1:3000") client.ask_agent( task="Is the following `text` positive or negative?", text="What are you thinking about?", agent_type="hf", ) ``` Fixes a Asyncio exception by increasing the timeout [#29](https://github.com/bentoml/openllm/issues/29) ## [0.1.6](https://github.com/bentoml/openllm/tree/v0.1.6) ### Changes - `--quantize` now takes `int8, int4` instead of `8bit, 4bit` to be consistent with bitsandbytes concept. `openllm CLI` now cached all available model command, allow faster startup time. Fixes `openllm start model-id --debug` to filtered out debug message log from `bentoml.Server`. `--model-id` from `openllm start` now support choice for easier selection. Updated `ModelConfig` implementation with **getitem** and auto generation value. Cleanup CLI and improve loading time, `openllm start` should be 'blazingly fast'. [#28](https://github.com/bentoml/openllm/issues/28) ### Features - Added support for quantization during serving time. `openllm start` now support `--quantize int8` and `--quantize int4` `GPTQ` quantization support is on the roadmap and currently being worked on. Refactored `openllm.LLMConfig` to be able to use with `__getitem__`: `openllm.DollyV2Config()['requirements']`. The access order being: `__openllm_*__ > self. > __openllm_generation_class__ > __openllm_extras__`. Added `towncrier` workflow to easily generate changelog entries `LLMConfig` now supported `__dataclass_transform__` protocol to help with type-checking `openllm download-models` now becomes `openllm download` [#27](https://github.com/bentoml/openllm/issues/27)