from __future__ import annotations import contextlib import os import sys import typing as t from unittest import mock import attr import pytest import transformers from hypothesis import assume from hypothesis import given from hypothesis import strategies as st import openllm from openllm_core._configuration import GenerationConfig from openllm_core._configuration import ModelSettings from openllm_core._configuration import field_env_key from ._strategies._configuration import make_llm_config from ._strategies._configuration import model_settings # XXX: @aarnphm fixes TypedDict behaviour in 3.11 @pytest.mark.skipif( sys.version_info[:2] == (3, 11), reason='TypedDict in 3.11 behaves differently, so we need to fix this' ) def test_missing_default(): with pytest.raises(ValueError, match='Missing required fields *'): make_llm_config('MissingDefaultId', {'name_type': 'lowercase', 'requirements': ['bentoml']}) with pytest.raises(ValueError, match='Missing required fields *'): make_llm_config('MissingModelId', {'default_id': 'huggingface/t5-tiny-testing', 'requirements': ['bentoml']}) with pytest.raises(ValueError, match='Missing required fields *'): make_llm_config( 'MissingArchitecture', { 'default_id': 'huggingface/t5-tiny-testing', 'model_ids': ['huggingface/t5-tiny-testing'], 'requirements': ['bentoml'], }, ) def test_forbidden_access(): cl_ = make_llm_config( 'ForbiddenAccess', { 'default_id': 'huggingface/t5-tiny-testing', 'model_ids': ['huggingface/t5-tiny-testing', 'bentoml/t5-tiny-testing'], 'architecture': 'PreTrainedModel', 'requirements': ['bentoml'], }, ) assert pytest.raises(openllm.exceptions.ForbiddenAttributeError, cl_.__getattribute__, cl_(), '__config__') assert pytest.raises(openllm.exceptions.ForbiddenAttributeError, cl_.__getattribute__, cl_(), 'GenerationConfig') assert pytest.raises(openllm.exceptions.ForbiddenAttributeError, cl_.__getattribute__, cl_(), 'SamplingParams') assert openllm.utils.lenient_issubclass(cl_.__openllm_generation_class__, GenerationConfig) @given(model_settings()) def test_class_normal_gen(gen_settings: ModelSettings): assume(gen_settings['default_id'] and all(i for i in gen_settings['model_ids'])) cl_: type[openllm.LLMConfig] = make_llm_config('NotFullLLM', gen_settings) assert issubclass(cl_, openllm.LLMConfig) for key in gen_settings: assert object.__getattribute__(cl_, f'__openllm_{key}__') == gen_settings.__getitem__(key) @given(model_settings(), st.integers()) def test_simple_struct_dump(gen_settings: ModelSettings, field1: int): cl_ = make_llm_config('IdempotentLLM', gen_settings, fields=(('field1', 'float', field1),)) assert cl_().model_dump()['field1'] == field1 @given(model_settings(), st.integers()) def test_config_derivation(gen_settings: ModelSettings, field1: int): cl_ = make_llm_config('IdempotentLLM', gen_settings, fields=(('field1', 'float', field1),)) new_cls = cl_.model_derivate('DerivedLLM', default_id='asdfasdf') assert new_cls.__openllm_default_id__ == 'asdfasdf' @given(model_settings()) def test_config_derived_follow_attrs_protocol(gen_settings: ModelSettings): cl_ = make_llm_config('AttrsProtocolLLM', gen_settings) assert attr.has(cl_) @given( model_settings(), st.integers(max_value=283473), st.floats(min_value=0.0, max_value=1.0), st.integers(max_value=283473), st.floats(min_value=0.0, max_value=1.0), ) def test_complex_struct_dump( gen_settings: ModelSettings, field1: int, temperature: float, input_field1: int, input_temperature: float ): cl_ = make_llm_config( 'ComplexLLM', gen_settings, fields=(('field1', 'float', field1),), generation_fields=(('temperature', temperature),), ) sent = cl_() assert sent.model_dump()['field1'] == field1 assert sent.model_dump()['generation_config']['temperature'] == temperature assert sent.model_dump(flatten=True)['field1'] == field1 assert sent.model_dump(flatten=True)['temperature'] == temperature passed = cl_(field1=input_field1, temperature=input_temperature) assert passed.model_dump()['field1'] == input_field1 assert passed.model_dump()['generation_config']['temperature'] == input_temperature assert passed.model_dump(flatten=True)['field1'] == input_field1 assert passed.model_dump(flatten=True)['temperature'] == input_temperature pas_nested = cl_(generation_config={'temperature': input_temperature}, field1=input_field1) assert pas_nested.model_dump()['field1'] == input_field1 assert pas_nested.model_dump()['generation_config']['temperature'] == input_temperature @contextlib.contextmanager def patch_env(**attrs: t.Any): with mock.patch.dict(os.environ, attrs, clear=True): yield def test_struct_envvar(): with patch_env(**{field_env_key('field1'): '4', field_env_key('temperature', suffix='generation'): '0.2'}): class EnvLLM(openllm.LLMConfig): __config__ = {'default_id': 'asdfasdf', 'model_ids': ['asdf', 'asdfasdfads'], 'architecture': 'PreTrainedModel'} field1: int = 2 class GenerationConfig: temperature: float = 0.8 sent = EnvLLM.model_construct_env() assert sent.field1 == 4 assert sent['temperature'] == 0.2 overwrite_default = EnvLLM() assert overwrite_default.field1 == 4 assert overwrite_default['temperature'] == 0.2 def test_struct_provided_fields(): class EnvLLM(openllm.LLMConfig): __config__ = {'default_id': 'asdfasdf', 'model_ids': ['asdf', 'asdfasdfads'], 'architecture': 'PreTrainedModel'} field1: int = 2 class GenerationConfig: temperature: float = 0.8 sent = EnvLLM.model_construct_env(field1=20, temperature=0.4) assert sent.field1 == 20 assert sent.generation_config.temperature == 0.4 def test_struct_envvar_with_overwrite_provided_env(monkeypatch: pytest.MonkeyPatch): with monkeypatch.context() as mk: mk.setenv(field_env_key('field1'), str(4.0)) mk.setenv(field_env_key('temperature', suffix='generation'), str(0.2)) sent = make_llm_config( 'OverwriteWithEnvAvailable', {'default_id': 'asdfasdf', 'model_ids': ['asdf', 'asdfasdfads'], 'architecture': 'PreTrainedModel'}, fields=(('field1', 'float', 3.0),), ).model_construct_env(field1=20.0, temperature=0.4) assert sent.generation_config.temperature == 0.4 assert sent.field1 == 20.0 @given(model_settings()) @pytest.mark.parametrize(('return_dict', 'typ'), [(True, dict), (False, transformers.GenerationConfig)]) def test_conversion_to_transformers(return_dict: bool, typ: type[t.Any], gen_settings: ModelSettings): cl_ = make_llm_config('ConversionLLM', gen_settings) assert isinstance(cl_().to_generation_config(return_as_dict=return_dict), typ) @given(model_settings()) def test_click_conversion(gen_settings: ModelSettings): # currently our conversion omit Union type. def cli_mock(**attrs: t.Any): return attrs cl_ = make_llm_config('ClickConversionLLM', gen_settings) wrapped = cl_.to_click_options(cli_mock) filtered = {k for k, v in cl_.__openllm_hints__.items() if t.get_origin(v) is not t.Union} click_options_filtered = [i for i in wrapped.__click_params__ if i.name and not i.name.startswith('fake_')] assert len(filtered) == len(click_options_filtered) @pytest.mark.parametrize('model_name', openllm.CONFIG_MAPPING.keys()) def test_configuration_dict_protocol(model_name: str): config = openllm.AutoConfig.for_model(model_name) assert isinstance(config.items(), list) assert isinstance(config.keys(), list) assert isinstance(config.values(), list) assert isinstance(dict(config), dict)