![Banner for OpenLLM](/.github/assets/main-banner.png)

🦾 OpenLLM: Self-Hosting LLMs Made Easy

pypi_status test_pypi_status ci pre-commit.ci status
Twitter Discord
## 📖 Introduction OpenLLM helps developers **run any open-source LLMs**, such as Llama 2 and Mistral, as **OpenAI-compatible API endpoints**, locally and in the cloud, optimized for serving throughput and production deployment. - 🚂 Support a wide range of open-source LLMs including LLMs fine-tuned with your own data - ⛓️ OpenAI compatible API endpoints for seamless transition from your LLM app to open-source LLMs - 🔥 State-of-the-art serving and inference performance - 🎯 Simplified cloud deployment via [BentoML](https://www.bentoml.com) ![Gif showing OpenLLM Intro](/.github/assets/output.gif)
## 💾 TL/DR For starter, we provide two ways to quickly try out OpenLLM: ### Jupyter Notebooks Try this [OpenLLM tutorial in Google Colab: Serving Phi 3 with OpenLLM](https://colab.research.google.com/github/bentoml/OpenLLM/blob/main/examples/llama2.ipynb). ## 🏃 Get started The following provides instructions for how to get started with OpenLLM locally. ### Prerequisites You have installed Python 3.9 (or later) and `pip`. We highly recommend using a [Virtual Environment](https://docs.python.org/3/library/venv.html) to prevent package conflicts. ### Install OpenLLM Install OpenLLM by using `pip` as follows: ```bash pip install openllm ``` To verify the installation, run: ```bash $ openllm -h ``` ### Start a LLM server OpenLLM allows you to quickly spin up an LLM server using `openllm start`. For example, to start a [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) server, run the following: ```bash openllm start microsoft/Phi-3-mini-4k-instruct --trust-remote-code ``` To interact with the server, you can visit the web UI at [http://0.0.0.0:3000/](http://0.0.0.0:3000/) or send a request using `curl`. You can also use OpenLLM’s built-in Python client to interact with the server: ```python import openllm client = openllm.HTTPClient('http://localhost:3000') client.generate('Explain to me the difference between "further" and "farther"') ``` OpenLLM seamlessly supports many models and their variants. You can specify different variants of the model to be served. For example: ```bash openllm start -- ``` ## 🧩 Supported models OpenLLM currently supports the following models. By default, OpenLLM doesn't include dependencies to run all models. The extra model-specific dependencies can be installed with the instructions below.
Baichuan ### Quickstart Run the following command to quickly spin up a Baichuan server: ```bash openllm start baichuan-inc/baichuan-7b --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Baichuan variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=baichuan) to see more Baichuan-compatible models. ### Supported models You can specify any of the following Baichuan models via `openllm start`: - [baichuan-inc/baichuan2-7b-base](https://huggingface.co/baichuan-inc/baichuan2-7b-base) - [baichuan-inc/baichuan2-7b-chat](https://huggingface.co/baichuan-inc/baichuan2-7b-chat) - [baichuan-inc/baichuan2-13b-base](https://huggingface.co/baichuan-inc/baichuan2-13b-base) - [baichuan-inc/baichuan2-13b-chat](https://huggingface.co/baichuan-inc/baichuan2-13b-chat)
ChatGLM ### Quickstart Run the following command to quickly spin up a ChatGLM server: ```bash openllm start thudm/chatglm-6b --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any ChatGLM variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=chatglm) to see more ChatGLM-compatible models. ### Supported models You can specify any of the following ChatGLM models via `openllm start`: - [thudm/chatglm-6b](https://huggingface.co/thudm/chatglm-6b) - [thudm/chatglm-6b-int8](https://huggingface.co/thudm/chatglm-6b-int8) - [thudm/chatglm-6b-int4](https://huggingface.co/thudm/chatglm-6b-int4) - [thudm/chatglm2-6b](https://huggingface.co/thudm/chatglm2-6b) - [thudm/chatglm2-6b-int4](https://huggingface.co/thudm/chatglm2-6b-int4) - [thudm/chatglm3-6b](https://huggingface.co/thudm/chatglm3-6b)
Cohere ### Quickstart Run the following command to quickly spin up a Cohere server: ```bash openllm start CohereForAI/c4ai-command-r-plus --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Cohere variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=commandr) to see more Cohere-compatible models. ### Supported models You can specify any of the following Cohere models via `openllm start`: - [CohereForAI/c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus) - [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
Dbrx ### Quickstart Run the following command to quickly spin up a Dbrx server: ```bash openllm start databricks/dbrx-instruct --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Dbrx variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=dbrx) to see more Dbrx-compatible models. ### Supported models You can specify any of the following Dbrx models via `openllm start`: - [databricks/dbrx-instruct](https://huggingface.co/databricks/dbrx-instruct) - [databricks/dbrx-base](https://huggingface.co/databricks/dbrx-base)
DollyV2 ### Quickstart Run the following command to quickly spin up a DollyV2 server: ```bash openllm start databricks/dolly-v2-3b --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any DollyV2 variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=dolly_v2) to see more DollyV2-compatible models. ### Supported models You can specify any of the following DollyV2 models via `openllm start`: - [databricks/dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b) - [databricks/dolly-v2-7b](https://huggingface.co/databricks/dolly-v2-7b) - [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
Falcon ### Quickstart Run the following command to quickly spin up a Falcon server: ```bash openllm start tiiuae/falcon-7b --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Falcon variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=falcon) to see more Falcon-compatible models. ### Supported models You can specify any of the following Falcon models via `openllm start`: - [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) - [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b) - [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) - [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct)
Gemma ### Quickstart Run the following command to quickly spin up a Gemma server: ```bash openllm start google/gemma-7b --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Gemma variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=gemma) to see more Gemma-compatible models. ### Supported models You can specify any of the following Gemma models via `openllm start`: - [google/gemma-7b](https://huggingface.co/google/gemma-7b) - [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) - [google/gemma-2b](https://huggingface.co/google/gemma-2b) - [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
GPTNeoX ### Quickstart Run the following command to quickly spin up a GPTNeoX server: ```bash openllm start eleutherai/gpt-neox-20b --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any GPTNeoX variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=gpt_neox) to see more GPTNeoX-compatible models. ### Supported models You can specify any of the following GPTNeoX models via `openllm start`: - [eleutherai/gpt-neox-20b](https://huggingface.co/eleutherai/gpt-neox-20b)
Llama ### Quickstart Run the following command to quickly spin up a Llama server: ```bash openllm start NousResearch/llama-2-7b-hf --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Llama variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=llama) to see more Llama-compatible models. ### Supported models You can specify any of the following Llama models via `openllm start`: - [meta-llama/Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) - [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) - [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) - [meta-llama/Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) - [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) - [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) - [NousResearch/llama-2-70b-chat-hf](https://huggingface.co/NousResearch/llama-2-70b-chat-hf) - [NousResearch/llama-2-13b-chat-hf](https://huggingface.co/NousResearch/llama-2-13b-chat-hf) - [NousResearch/llama-2-7b-chat-hf](https://huggingface.co/NousResearch/llama-2-7b-chat-hf) - [NousResearch/llama-2-70b-hf](https://huggingface.co/NousResearch/llama-2-70b-hf) - [NousResearch/llama-2-13b-hf](https://huggingface.co/NousResearch/llama-2-13b-hf) - [NousResearch/llama-2-7b-hf](https://huggingface.co/NousResearch/llama-2-7b-hf)
Mistral ### Quickstart Run the following command to quickly spin up a Mistral server: ```bash openllm start mistralai/Mistral-7B-Instruct-v0.1 --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Mistral variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=mistral) to see more Mistral-compatible models. ### Supported models You can specify any of the following Mistral models via `openllm start`: - [HuggingFaceH4/zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha) - [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) - [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) - [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) - [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
Mixtral ### Quickstart Run the following command to quickly spin up a Mixtral server: ```bash openllm start mistralai/Mixtral-8x7B-Instruct-v0.1 --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Mixtral variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=mixtral) to see more Mixtral-compatible models. ### Supported models You can specify any of the following Mixtral models via `openllm start`: - [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) - [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
MPT ### Quickstart Run the following command to quickly spin up a MPT server: ```bash openllm start mosaicml/mpt-7b-instruct --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any MPT variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=mpt) to see more MPT-compatible models. ### Supported models You can specify any of the following MPT models via `openllm start`: - [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) - [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct) - [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat) - [mosaicml/mpt-7b-storywriter](https://huggingface.co/mosaicml/mpt-7b-storywriter) - [mosaicml/mpt-30b](https://huggingface.co/mosaicml/mpt-30b) - [mosaicml/mpt-30b-instruct](https://huggingface.co/mosaicml/mpt-30b-instruct) - [mosaicml/mpt-30b-chat](https://huggingface.co/mosaicml/mpt-30b-chat)
OPT ### Quickstart Run the following command to quickly spin up a OPT server: ```bash openllm start facebook/opt-1.3b ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any OPT variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=opt) to see more OPT-compatible models. ### Supported models You can specify any of the following OPT models via `openllm start`: - [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) - [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) - [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) - [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) - [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) - [facebook/opt-66b](https://huggingface.co/facebook/opt-66b)
Phi ### Quickstart Run the following command to quickly spin up a Phi server: ```bash openllm start microsoft/Phi-3-mini-4k-instruct --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Phi variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=phi) to see more Phi-compatible models. ### Supported models You can specify any of the following Phi models via `openllm start`: - [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) - [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) - [microsoft/Phi-3-small-8k-instruct](https://huggingface.co/microsoft/Phi-3-small-8k-instruct) - [microsoft/Phi-3-small-128k-instruct](https://huggingface.co/microsoft/Phi-3-small-128k-instruct) - [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) - [microsoft/Phi-3-medium-128k-instruct](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct)
Qwen ### Quickstart Run the following command to quickly spin up a Qwen server: ```bash openllm start qwen/Qwen-7B-Chat --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Qwen variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=qwen) to see more Qwen-compatible models. ### Supported models You can specify any of the following Qwen models via `openllm start`: - [qwen/Qwen-7B-Chat](https://huggingface.co/qwen/Qwen-7B-Chat) - [qwen/Qwen-7B-Chat-Int8](https://huggingface.co/qwen/Qwen-7B-Chat-Int8) - [qwen/Qwen-7B-Chat-Int4](https://huggingface.co/qwen/Qwen-7B-Chat-Int4) - [qwen/Qwen-14B-Chat](https://huggingface.co/qwen/Qwen-14B-Chat) - [qwen/Qwen-14B-Chat-Int8](https://huggingface.co/qwen/Qwen-14B-Chat-Int8) - [qwen/Qwen-14B-Chat-Int4](https://huggingface.co/qwen/Qwen-14B-Chat-Int4)
StableLM ### Quickstart Run the following command to quickly spin up a StableLM server: ```bash openllm start stabilityai/stablelm-tuned-alpha-3b --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any StableLM variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=stablelm) to see more StableLM-compatible models. ### Supported models You can specify any of the following StableLM models via `openllm start`: - [stabilityai/stablelm-tuned-alpha-3b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-3b) - [stabilityai/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b) - [stabilityai/stablelm-base-alpha-3b](https://huggingface.co/stabilityai/stablelm-base-alpha-3b) - [stabilityai/stablelm-base-alpha-7b](https://huggingface.co/stabilityai/stablelm-base-alpha-7b)
StarCoder ### Quickstart Run the following command to quickly spin up a StarCoder server: ```bash openllm start bigcode/starcoder --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any StarCoder variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=starcoder) to see more StarCoder-compatible models. ### Supported models You can specify any of the following StarCoder models via `openllm start`: - [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) - [bigcode/starcoderbase](https://huggingface.co/bigcode/starcoderbase)
Yi ### Quickstart Run the following command to quickly spin up a Yi server: ```bash openllm start 01-ai/Yi-6B --trust-remote-code ``` You can run the following code in a different terminal to interact with the server: ```python import openllm_client client = openllm_client.HTTPClient('http://localhost:3000') client.generate('What are large language models?') ``` > **Note:** Any Yi variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=yi) to see more Yi-compatible models. ### Supported models You can specify any of the following Yi models via `openllm start`: - [01-ai/Yi-6B](https://huggingface.co/01-ai/Yi-6B) - [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B) - [01-ai/Yi-6B-200K](https://huggingface.co/01-ai/Yi-6B-200K) - [01-ai/Yi-34B-200K](https://huggingface.co/01-ai/Yi-34B-200K)
More models will be integrated with OpenLLM and we welcome your contributions if you want to incorporate your custom LLMs into the ecosystem. Check out [Adding a New Model Guide](https://github.com/bentoml/OpenLLM/blob/main/ADDING_NEW_MODEL.md) to learn more. ## 📐 Quantization Quantization is a technique to reduce the storage and computation requirements for machine learning models, particularly during inference. By approximating floating-point numbers as integers (quantized values), quantization allows for faster computations, reduced memory footprint, and can make it feasible to deploy large models on resource-constrained devices. OpenLLM supports the following quantization techniques - [AWQ: Activation-aware Weight Quantization](https://arxiv.org/abs/2306.00978). - [GPTQ: Accurate Post-Training Quantization](https://arxiv.org/abs/2210.17323). - [SqueezeLLM: Dense-and-Sparse Quantization](https://arxiv.org/abs/2306.07629). > [!NOTE] > Make sure to use pre-quantized models weights when using with `openllm start`. ## ⚙️ Integrations OpenLLM is not just a standalone product; it's a building block designed to integrate with other powerful tools easily. We currently offer integration with [OpenAI's Compatible Endpoints](https://platform.openai.com/docs/api-reference/completions/object), [LlamaIndex](https://www.llamaindex.ai/), [LangChain](https://github.com/hwchase17/langchain), and [Transformers Agents](https://huggingface.co/docs/transformers/transformers_agents). ### OpenAI Compatible Endpoints OpenLLM Server can be used as a drop-in replacement for OpenAI's API. Simply specify the base_url to `llm-endpoint/v1` and you are good to go: ```python import openai client = openai.OpenAI(base_url='http://localhost:3000/v1', api_key='na') # Here the server is running on 0.0.0.0:3000 completions = client.chat.completions.create( prompt='Write me a tag line for an ice cream shop.', model=model, max_tokens=64, stream=stream ) ``` The compatible endpoints supports `/completions`, `/chat/completions`, and `/models` > [!NOTE] > You can find out OpenAI example clients under the > [examples](https://github.com/bentoml/OpenLLM/tree/main/examples) folder. ### [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/openllm/) You can use `llama_index.llms.openllm.OpenLLMAPI` to interact with a LLM running server: ```python from llama_index.llms.openllm import OpenLLMAPI ``` > [!NOTE] > All synchronous and asynchronous API from `llama_index.llms.LLM` are supported. ### [LangChain](https://python.langchain.com/docs/integrations/llms/openllm/) Spin up an OpenLLM server, and connect to it by specifying its URL: ```python from langchain.llms import OpenLLMAPI llm = OpenLLMAPI(server_url='http://44.23.123.1:3000') llm.invoke('What is the difference between a duck and a goose? And why there are so many Goose in Canada?') # streaming for it in llm.stream('What is the difference between a duck and a goose? And why there are so many Goose in Canada?'): print(it, flush=True, end='') # async context await llm.ainvoke('What is the difference between a duck and a goose? And why there are so many Goose in Canada?') # async streaming async for it in llm.astream('What is the difference between a duck and a goose? And why there are so many Goose in Canada?'): print(it, flush=True, end='') ``` ## 🚀 Deploying models to production There are several ways to deploy your LLMs: ### 🐳 Docker container 1. **Building a Bento**: With OpenLLM, you can easily build a Bento for a specific model, like `mistralai/Mistral-7B-Instruct-v0.1`, using the `build` command.: ```bash openllm build mistralai/Mistral-7B-Instruct-v0.1 ``` A [Bento](https://docs.bentoml.com/en/latest/concepts/bento.html#what-is-a-bento), in BentoML, is the unit of distribution. It packages your program's source code, models, files, artefacts, and dependencies. 2. **Containerize your Bento** ```bash bentoml containerize ``` This generates a OCI-compatible docker image that can be deployed anywhere docker runs. For best scalability and reliability of your LLM service in production, we recommend deploy with BentoCloud。 ### ☁️ BentoCloud Deploy OpenLLM with [BentoCloud](https://www.bentoml.com/), the inference platform for fast moving AI teams. 1. **Create a BentoCloud account:** [sign up here](https://bentoml.com/) 2. **Log into your BentoCloud account:** ```bash bentoml cloud login --api-token --endpoint ``` > [!NOTE] > Replace `` and `` with your > specific API token and the BentoCloud endpoint respectively. 3. **Bulding a Bento**: With OpenLLM, you can easily build a Bento for a specific model, such as `mistralai/Mistral-7B-Instruct-v0.1`: ```bash openllm build mistralai/Mistral-7B-Instruct-v0.1 ``` 4. **Pushing a Bento**: Push your freshly-built Bento service to BentoCloud via the `push` command: ```bash bentoml push ``` 5. **Deploying a Bento**: Deploy your LLMs to BentoCloud with a single `bentoml deployment create` command following the [deployment instructions](https://docs.bentoml.com/en/latest/reference/cli.html#bentoml-deployment-create). ## 👥 Community Engage with like-minded individuals passionate about LLMs, AI, and more on our [Discord](https://l.bentoml.com/join-openllm-discord)! OpenLLM is actively maintained by the BentoML team. Feel free to reach out and join us in our pursuit to make LLMs more accessible and easy to use 👉 [Join our Slack community!](https://l.bentoml.com/join-slack) ## 🎁 Contributing We welcome contributions! If you're interested in enhancing OpenLLM's capabilities or have any questions, don't hesitate to reach out in our [discord channel](https://l.bentoml.com/join-openllm-discord). Checkout our [Developer Guide](https://github.com/bentoml/OpenLLM/blob/main/DEVELOPMENT.md) if you wish to contribute to OpenLLM's codebase. ## 📔 Citation If you use OpenLLM in your research, we provide a [citation](./CITATION.cff) to use: ```bibtex @software{Pham_OpenLLM_Operating_LLMs_2023, author = {Pham, Aaron and Yang, Chaoyu and Sheng, Sean and Zhao, Shenyang and Lee, Sauyon and Jiang, Bo and Dong, Fog and Guan, Xipeng and Ming, Frost}, license = {Apache-2.0}, month = jun, title = {{OpenLLM: Operating LLMs in production}}, url = {https://github.com/bentoml/OpenLLM}, year = {2023} } ```