Files
OpenLLM/openllm-python/src/openllm/_quantisation.py
2023-08-22 14:03:06 +00:00

60 lines
4.4 KiB
Python

# mypy: disable-error-code="name-defined,no-redef"
from __future__ import annotations
import logging, typing as t
from openllm_core.utils import LazyLoader, is_autogptq_available, is_bitsandbytes_available, is_transformers_supports_kbit, pkg
from openllm_core._typing_compat import overload
if t.TYPE_CHECKING:
from ._llm import LLM
from openllm_core._typing_compat import DictStrAny
autogptq, torch, transformers = LazyLoader("autogptq", globals(), "auto_gptq"), LazyLoader("torch", globals(), "torch"), LazyLoader("transformers", globals(), "transformers")
logger = logging.getLogger(__name__)
QuantiseMode = t.Literal["int8", "int4", "gptq"]
@overload
def infer_quantisation_config(cls: type[LLM[t.Any, t.Any]], quantise: t.Literal["int8", "int4"], **attrs: t.Any) -> tuple[transformers.BitsAndBytesConfig, DictStrAny]:
...
@overload
def infer_quantisation_config(cls: type[LLM[t.Any, t.Any]], quantise: t.Literal["gptq"], **attrs: t.Any) -> tuple[autogptq.BaseQuantizeConfig, DictStrAny]:
...
def infer_quantisation_config(cls: type[LLM[t.Any, t.Any]], quantise: QuantiseMode, **attrs: t.Any) -> tuple[transformers.BitsAndBytesConfig | autogptq.BaseQuantizeConfig, DictStrAny]:
# 8 bit configuration
int8_threshold = attrs.pop("llm_int8_threshhold", 6.0)
int8_enable_fp32_cpu_offload = attrs.pop("llm_int8_enable_fp32_cpu_offload", False)
int8_skip_modules: list[str] | None = attrs.pop("llm_int8_skip_modules", None)
int8_has_fp16_weight = attrs.pop("llm_int8_has_fp16_weight", False)
autogptq_attrs: DictStrAny = {"bits": attrs.pop("gptq_bits", 4), "group_size": attrs.pop("gptq_group_size", -1), "damp_percent": attrs.pop("gptq_damp_percent", 0.01), "desc_act": attrs.pop("gptq_desc_act", True), "sym": attrs.pop("gptq_sym", True), "true_sequential": attrs.pop("gptq_true_sequential", True),}
def create_int8_config(int8_skip_modules: list[str] | None) -> transformers.BitsAndBytesConfig:
if int8_skip_modules is None: int8_skip_modules = []
if "lm_head" not in int8_skip_modules and cls.config_class.__openllm_model_type__ == "causal_lm":
logger.debug("Skipping 'lm_head' for quantization for %s", cls.__name__)
int8_skip_modules.append("lm_head")
return transformers.BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=int8_enable_fp32_cpu_offload, llm_int8_threshhold=int8_threshold, llm_int8_skip_modules=int8_skip_modules, llm_int8_has_fp16_weight=int8_has_fp16_weight,)
# 4 bit configuration
int4_compute_dtype = attrs.pop("bnb_4bit_compute_dtype", torch.bfloat16)
int4_quant_type = attrs.pop("bnb_4bit_quant_type", "nf4")
int4_use_double_quant = attrs.pop("bnb_4bit_use_double_quant", True)
# NOTE: Quantization setup
# quantize is a openllm.LLM feature, where we can quantize the model
# with bitsandbytes or quantization aware training.
if not is_bitsandbytes_available(): raise RuntimeError("Quantization requires bitsandbytes to be installed. Make sure to install OpenLLM with 'pip install \"openllm[fine-tune]\"'")
if quantise == "int8": quantisation_config = create_int8_config(int8_skip_modules)
elif quantise == "int4":
if is_transformers_supports_kbit(): quantisation_config = transformers.BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=int4_compute_dtype, bnb_4bit_quant_type=int4_quant_type, bnb_4bit_use_double_quant=int4_use_double_quant)
else:
logger.warning("'quantize' is set to int4, while the current transformers version %s does not support k-bit quantization. k-bit quantization is supported since transformers 4.30, therefore make sure to install the latest version of transformers either via PyPI or from git source: 'pip install git+https://github.com/huggingface/transformers'. Fallback to int8 quantisation.", pkg.pkg_version_info("transformers"))
quantisation_config = create_int8_config(int8_skip_modules)
elif quantise == "gptq":
if not is_autogptq_available():
logger.warning("'quantize=\"gptq\"' requires 'auto-gptq' to be installed (not available with local environment). Make sure to have 'auto-gptq' available locally: 'pip install \"openllm[gptq]\"'. OpenLLM will fallback to int8 with bitsandbytes.")
quantisation_config = create_int8_config(int8_skip_modules)
else:
quantisation_config = autogptq.BaseQuantizeConfig(**autogptq_attrs)
else:
raise ValueError(f"'quantize' must be one of ['int8', 'int4', 'gptq'], got {quantise} instead.")
return quantisation_config, attrs