Files
OpenLLM/openllm-python/src/openllm/serialisation/__init__.py
Aaron Pham 956b3a53bc fix(gptq): use upstream integration (#297)
* wip

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>

* feat: GPTQ transformers integration

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>

* fix: only load if variable is available and add changelog

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>

* chore: remove boilerplate check

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>

---------

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>
2023-09-04 14:05:50 -04:00

101 lines
3.8 KiB
Python

'''Serialisation utilities for OpenLLM.
Currently supports transformers for PyTorch, Tensorflow and Flax.
Currently, GGML format is working in progress.
'''
from __future__ import annotations
import importlib
import typing as t
import cloudpickle
import fs
import openllm
from bentoml._internal.models.model import CUSTOM_OBJECTS_FILENAME
from openllm_core._typing_compat import M
from openllm_core._typing_compat import ParamSpec
from openllm_core._typing_compat import T
if t.TYPE_CHECKING:
import bentoml
from . import constants as constants
from . import ggml as ggml
from . import transformers as transformers
P = ParamSpec('P')
def load_tokenizer(llm: openllm.LLM[t.Any, T], **tokenizer_attrs: t.Any) -> T:
'''Load the tokenizer from BentoML store.
By default, it will try to find the bentomodel whether it is in store..
If model is not found, it will raises a ``bentoml.exceptions.NotFound``.
'''
from .transformers._helpers import infer_tokenizers_from_llm
from .transformers._helpers import process_config
config, *_ = process_config(llm._bentomodel.path, llm.trust_remote_code)
bentomodel_fs = fs.open_fs(llm._bentomodel.path)
if bentomodel_fs.isfile(CUSTOM_OBJECTS_FILENAME):
with bentomodel_fs.open(CUSTOM_OBJECTS_FILENAME, 'rb') as cofile:
try:
tokenizer = cloudpickle.load(t.cast('t.IO[bytes]', cofile))['tokenizer']
except KeyError:
raise openllm.exceptions.OpenLLMException("Bento model does not have tokenizer. Make sure to save the tokenizer within the model via 'custom_objects'. "
"For example: \"bentoml.transformers.save_model(..., custom_objects={'tokenizer': tokenizer})\"") from None
else:
tokenizer = infer_tokenizers_from_llm(llm).from_pretrained(bentomodel_fs.getsyspath('/'), trust_remote_code=llm.trust_remote_code, **tokenizer_attrs)
if tokenizer.pad_token_id is None:
if config.pad_token_id is not None: tokenizer.pad_token_id = config.pad_token_id
elif config.eos_token_id is not None: tokenizer.pad_token_id = config.eos_token_id
elif tokenizer.eos_token_id is not None: tokenizer.pad_token_id = tokenizer.eos_token_id
else: tokenizer.add_special_tokens({'pad_token': '[PAD]'})
return tokenizer
class _Caller(t.Protocol[P]):
def __call__(self, llm: openllm.LLM[M, T], *args: P.args, **kwargs: P.kwargs) -> t.Any:
...
_extras = ['get', 'import_model', 'load_model']
def _make_dispatch_function(fn: str) -> _Caller[P]:
def caller(llm: openllm.LLM[M, T], *args: P.args, **kwargs: P.kwargs) -> t.Any:
"""Generic function dispatch to correct serialisation submodules based on LLM runtime.
> [!NOTE] See 'openllm.serialisation.transformers' if 'llm.__llm_backend__ in ("pt", "tf", "flax", "vllm")'
> [!NOTE] See 'openllm.serialisation.ggml' if 'llm.__llm_backend__="ggml"'
"""
serde = 'transformers'
if llm.__llm_backend__ == 'ggml': serde = 'ggml'
return getattr(importlib.import_module(f'.{serde}', __name__), fn)(llm, *args, **kwargs)
return caller
if t.TYPE_CHECKING:
def get(llm: openllm.LLM[M, T], *args: t.Any, **kwargs: t.Any) -> bentoml.Model:
...
def import_model(llm: openllm.LLM[M, T], *args: t.Any, **kwargs: t.Any) -> bentoml.Model:
...
def load_model(llm: openllm.LLM[M, T], *args: t.Any, **kwargs: t.Any) -> M:
...
_import_structure: dict[str, list[str]] = {'ggml': [], 'transformers': [], 'constants': []}
__all__ = ['ggml', 'transformers', 'constants', 'load_tokenizer', *_extras]
def __dir__() -> list[str]:
return sorted(__all__)
def __getattr__(name: str) -> t.Any:
if name == 'load_tokenizer': return load_tokenizer
elif name in _import_structure: return importlib.import_module(f'.{name}', __name__)
elif name in _extras: return _make_dispatch_function(name)
else: raise AttributeError(f'{__name__} has no attribute {name}')