Files
OpenLLM/openllm-python/src/openllm/protocol/openai.py
2023-10-30 14:28:42 -07:00

143 lines
5.0 KiB
Python

from __future__ import annotations
import time
import typing as t
import attr
import openllm_core
from openllm import _conversation
@attr.define
class CompletionRequest:
prompt: str
model: str = attr.field(default=None)
suffix: t.Optional[str] = attr.field(default=None)
max_tokens: t.Optional[int] = attr.field(default=16)
temperature: t.Optional[float] = attr.field(default=1.0)
top_p: t.Optional[float] = attr.field(default=1)
n: t.Optional[int] = attr.field(default=1)
stream: t.Optional[bool] = attr.field(default=False)
logprobs: t.Optional[int] = attr.field(default=None)
echo: t.Optional[bool] = attr.field(default=False)
stop: t.Optional[t.Union[str, t.List[str]]] = attr.field(default=None)
presence_penalty: t.Optional[float] = attr.field(default=0.0)
frequency_penalty: t.Optional[float] = attr.field(default=0.0)
best_of: t.Optional[int] = attr.field(default=1)
logit_bias: t.Optional[t.Dict[str, float]] = attr.field(default=None)
user: t.Optional[str] = attr.field(default=None)
@attr.define
class ChatCompletionRequest:
messages: t.List[t.Dict[str, str]]
model: str = attr.field(default=None)
functions: t.List[t.Dict[str, str]] = attr.field(default=attr.Factory(list))
function_calls: t.List[t.Dict[str, str]] = attr.field(default=attr.Factory(list))
temperature: t.Optional[float] = attr.field(default=1.0)
top_p: t.Optional[float] = attr.field(default=1)
n: t.Optional[int] = attr.field(default=1)
stream: t.Optional[bool] = attr.field(default=False)
stop: t.Optional[t.Union[str, t.List[str]]] = attr.field(default=None)
max_tokens: t.Optional[int] = attr.field(default=None)
presence_penalty: t.Optional[float] = attr.field(default=0.0)
frequency_penalty: t.Optional[float] = attr.field(default=0.0)
logit_bias: t.Optional[t.Dict[str, float]] = attr.field(default=None)
user: t.Optional[str] = attr.field(default=None)
@attr.define
class LogProbs:
text_offset: t.List[int] = attr.field(default=attr.Factory(list))
token_logprobs: t.List[float] = attr.field(default=attr.Factory(list))
tokens: t.List[str] = attr.field(default=attr.Factory(list))
top_logprobs: t.List[t.Dict[str, t.Any]] = attr.field(default=attr.Factory(list))
@attr.define
class CompletionTextChoice:
text: str
index: int
logprobs: LogProbs = attr.field(default=attr.Factory(lambda: LogProbs()))
finish_reason: str = attr.field(default=None)
@attr.define
class Usage:
prompt_tokens: int = attr.field(default=0)
completion_tokens: int = attr.field(default=0)
total_tokens: int = attr.field(default=0)
@attr.define
class CompletionResponse:
choices: t.List[CompletionTextChoice]
model: str
object: str = 'text_completion'
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('cmpl')))
created: int = attr.field(default=attr.Factory(lambda: int(time.monotonic())))
usage: Usage = attr.field(default=attr.Factory(lambda: Usage()))
@attr.define
class CompletionResponseStream:
choices: t.List[CompletionTextChoice]
model: str
object: str = 'text_completion'
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('cmpl')))
created: int = attr.field(default=attr.Factory(lambda: int(time.monotonic())))
LiteralRole = t.Literal['system', 'user', 'assistant']
class Message(t.TypedDict):
role: LiteralRole
content: str
@attr.define
class Delta:
role: LiteralRole
content: str
@attr.define
class ChatCompletionChoice:
index: int
message: Message
finish_reason: str = attr.field(default=None)
@attr.define
class ChatCompletionStreamChoice:
index: int
delta: Message
finish_reason: str = attr.field(default=None)
@attr.define
class ChatCompletionResponse:
choices: t.List[ChatCompletionChoice]
model: str
object: str = 'chat.completion'
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('chatcmpl')))
created: int = attr.field(default=attr.Factory(lambda: int(time.time())))
usage: Usage = attr.field(default=attr.Factory(lambda: Usage()))
@attr.define
class ChatCompletionResponseStream:
choices: t.List[ChatCompletionStreamChoice]
model: str
object: str = 'chat.completion.chunk'
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('chatcmpl')))
created: int = attr.field(default=attr.Factory(lambda: int(time.time())))
@attr.define
class ModelCard:
id: str
object: str = 'model'
created: int = attr.field(default=attr.Factory(lambda: int(time.time())))
owned_by: str = 'na'
@attr.define
class ModelList:
object: str = 'list'
data: t.List[ModelCard] = attr.field(factory=list)
def messages_to_prompt(messages: list[Message], model: str, llm_config: openllm_core.LLMConfig) -> str:
conv_template = _conversation.get_conv_template(model, llm_config)
for message in messages:
if message['role'] == 'system': conv_template.set_system_message(message['content'])
else: conv_template.append_message(message['role'], message['content'])
conv_template.append_message('assistant', '')
return conv_template.get_prompt()