mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-02-19 07:06:02 -05:00
143 lines
5.0 KiB
Python
143 lines
5.0 KiB
Python
from __future__ import annotations
|
|
import time
|
|
import typing as t
|
|
|
|
import attr
|
|
|
|
import openllm_core
|
|
|
|
from openllm import _conversation
|
|
|
|
@attr.define
|
|
class CompletionRequest:
|
|
prompt: str
|
|
model: str = attr.field(default=None)
|
|
suffix: t.Optional[str] = attr.field(default=None)
|
|
max_tokens: t.Optional[int] = attr.field(default=16)
|
|
temperature: t.Optional[float] = attr.field(default=1.0)
|
|
top_p: t.Optional[float] = attr.field(default=1)
|
|
n: t.Optional[int] = attr.field(default=1)
|
|
stream: t.Optional[bool] = attr.field(default=False)
|
|
logprobs: t.Optional[int] = attr.field(default=None)
|
|
echo: t.Optional[bool] = attr.field(default=False)
|
|
stop: t.Optional[t.Union[str, t.List[str]]] = attr.field(default=None)
|
|
presence_penalty: t.Optional[float] = attr.field(default=0.0)
|
|
frequency_penalty: t.Optional[float] = attr.field(default=0.0)
|
|
best_of: t.Optional[int] = attr.field(default=1)
|
|
logit_bias: t.Optional[t.Dict[str, float]] = attr.field(default=None)
|
|
user: t.Optional[str] = attr.field(default=None)
|
|
|
|
@attr.define
|
|
class ChatCompletionRequest:
|
|
messages: t.List[t.Dict[str, str]]
|
|
model: str = attr.field(default=None)
|
|
functions: t.List[t.Dict[str, str]] = attr.field(default=attr.Factory(list))
|
|
function_calls: t.List[t.Dict[str, str]] = attr.field(default=attr.Factory(list))
|
|
temperature: t.Optional[float] = attr.field(default=1.0)
|
|
top_p: t.Optional[float] = attr.field(default=1)
|
|
n: t.Optional[int] = attr.field(default=1)
|
|
stream: t.Optional[bool] = attr.field(default=False)
|
|
stop: t.Optional[t.Union[str, t.List[str]]] = attr.field(default=None)
|
|
max_tokens: t.Optional[int] = attr.field(default=None)
|
|
presence_penalty: t.Optional[float] = attr.field(default=0.0)
|
|
frequency_penalty: t.Optional[float] = attr.field(default=0.0)
|
|
logit_bias: t.Optional[t.Dict[str, float]] = attr.field(default=None)
|
|
user: t.Optional[str] = attr.field(default=None)
|
|
|
|
@attr.define
|
|
class LogProbs:
|
|
text_offset: t.List[int] = attr.field(default=attr.Factory(list))
|
|
token_logprobs: t.List[float] = attr.field(default=attr.Factory(list))
|
|
tokens: t.List[str] = attr.field(default=attr.Factory(list))
|
|
top_logprobs: t.List[t.Dict[str, t.Any]] = attr.field(default=attr.Factory(list))
|
|
|
|
@attr.define
|
|
class CompletionTextChoice:
|
|
text: str
|
|
index: int
|
|
logprobs: LogProbs = attr.field(default=attr.Factory(lambda: LogProbs()))
|
|
finish_reason: str = attr.field(default=None)
|
|
|
|
@attr.define
|
|
class Usage:
|
|
prompt_tokens: int = attr.field(default=0)
|
|
completion_tokens: int = attr.field(default=0)
|
|
total_tokens: int = attr.field(default=0)
|
|
|
|
@attr.define
|
|
class CompletionResponse:
|
|
choices: t.List[CompletionTextChoice]
|
|
model: str
|
|
object: str = 'text_completion'
|
|
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('cmpl')))
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.monotonic())))
|
|
usage: Usage = attr.field(default=attr.Factory(lambda: Usage()))
|
|
|
|
@attr.define
|
|
class CompletionResponseStream:
|
|
choices: t.List[CompletionTextChoice]
|
|
model: str
|
|
object: str = 'text_completion'
|
|
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('cmpl')))
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.monotonic())))
|
|
|
|
LiteralRole = t.Literal['system', 'user', 'assistant']
|
|
|
|
class Message(t.TypedDict):
|
|
role: LiteralRole
|
|
content: str
|
|
|
|
@attr.define
|
|
class Delta:
|
|
role: LiteralRole
|
|
content: str
|
|
|
|
@attr.define
|
|
class ChatCompletionChoice:
|
|
index: int
|
|
message: Message
|
|
finish_reason: str = attr.field(default=None)
|
|
|
|
@attr.define
|
|
class ChatCompletionStreamChoice:
|
|
index: int
|
|
delta: Message
|
|
finish_reason: str = attr.field(default=None)
|
|
|
|
@attr.define
|
|
class ChatCompletionResponse:
|
|
choices: t.List[ChatCompletionChoice]
|
|
model: str
|
|
object: str = 'chat.completion'
|
|
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('chatcmpl')))
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.time())))
|
|
usage: Usage = attr.field(default=attr.Factory(lambda: Usage()))
|
|
|
|
@attr.define
|
|
class ChatCompletionResponseStream:
|
|
choices: t.List[ChatCompletionStreamChoice]
|
|
model: str
|
|
object: str = 'chat.completion.chunk'
|
|
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('chatcmpl')))
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.time())))
|
|
|
|
@attr.define
|
|
class ModelCard:
|
|
id: str
|
|
object: str = 'model'
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.time())))
|
|
owned_by: str = 'na'
|
|
|
|
@attr.define
|
|
class ModelList:
|
|
object: str = 'list'
|
|
data: t.List[ModelCard] = attr.field(factory=list)
|
|
|
|
def messages_to_prompt(messages: list[Message], model: str, llm_config: openllm_core.LLMConfig) -> str:
|
|
conv_template = _conversation.get_conv_template(model, llm_config)
|
|
for message in messages:
|
|
if message['role'] == 'system': conv_template.set_system_message(message['content'])
|
|
else: conv_template.append_message(message['role'], message['content'])
|
|
conv_template.append_message('assistant', '')
|
|
return conv_template.get_prompt()
|