mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-01-19 21:08:22 -05:00
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com> * feat: continuous batching Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> * chore: add changeloe Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> * chore: add one shot generation Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> --------- Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
284 lines
11 KiB
Python
Executable File
284 lines
11 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
from __future__ import annotations
|
|
import dataclasses, os, typing as t, sys, inflection, tomlkit
|
|
from ghapi.all import GhApi
|
|
if t.TYPE_CHECKING: from tomlkit.items import Array, Table
|
|
|
|
ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
sys.path.insert(0, os.path.join(ROOT, 'openllm-python', 'src'))
|
|
|
|
import openllm
|
|
|
|
_OWNER, _REPO = 'bentoml', 'openllm'
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class Classifier:
|
|
identifier: t.Dict[str, str] = dataclasses.field(
|
|
default_factory=lambda: {
|
|
'status': 'Development Status',
|
|
'environment': 'Environment',
|
|
'license': 'License',
|
|
'topic': 'Topic',
|
|
'os': 'Operating System',
|
|
'audience': 'Intended Audience',
|
|
'typing': 'Typing',
|
|
'language': 'Programming Language',
|
|
})
|
|
joiner: str = ' :: '
|
|
|
|
@staticmethod
|
|
def status() -> dict[int, str]:
|
|
return {v: status for v, status in zip(range(1, 8), ['1 - Planning', '2 - Pre-Alpha', '3 - Alpha', '4 - Beta', '5 - Production/Stable', '6 - Mature', '7 - Inactive'])}
|
|
|
|
@staticmethod
|
|
def apache() -> str:
|
|
return Classifier.create_classifier('license', 'OSI Approved', 'Apache Software License')
|
|
|
|
@staticmethod
|
|
def create_classifier(identifier: str, *decls: t.Any) -> str:
|
|
cls_ = Classifier()
|
|
if identifier not in cls_.identifier:
|
|
raise ValueError(f'{identifier} is not yet supported (supported alias: {Classifier.identifier})')
|
|
return cls_.joiner.join([cls_.identifier[identifier], *decls])
|
|
|
|
@staticmethod
|
|
def create_python_classifier(implementation: list[str] | None = None, supported_version: list[str] | None = None) -> list[str]:
|
|
if supported_version is None: supported_version = ['3.8', '3.9', '3.10', '3.11', '3.12']
|
|
if implementation is None: implementation = ['CPython', 'PyPy']
|
|
base = [Classifier.create_classifier('language', 'Python'), Classifier.create_classifier('language', 'Python', '3')]
|
|
base.append(Classifier.create_classifier('language', 'Python', '3', 'Only'))
|
|
base.extend([Classifier.create_classifier('language', 'Python', version) for version in supported_version])
|
|
base.extend([Classifier.create_classifier('language', 'Python', 'Implementation', impl) for impl in implementation])
|
|
return base
|
|
|
|
@staticmethod
|
|
def create_status_classifier(level: int) -> str:
|
|
return Classifier.create_classifier('status', Classifier.status()[level])
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class Dependencies:
|
|
name: str
|
|
git_repo_url: t.Optional[str] = None
|
|
branch: t.Optional[str] = None
|
|
extensions: t.Optional[t.List[str]] = None
|
|
subdirectory: t.Optional[str] = None
|
|
requires_gpu: bool = False
|
|
lower_constraint: t.Optional[str] = None
|
|
upper_constraint: t.Optional[str] = None
|
|
platform: t.Optional[t.Tuple[t.Literal['Linux', 'Windows', 'Darwin'], t.Literal['eq', 'ne']]] = None
|
|
|
|
def with_options(self, **kwargs: t.Any) -> Dependencies:
|
|
return dataclasses.replace(self, **kwargs)
|
|
|
|
@property
|
|
def has_constraint(self) -> bool:
|
|
return self.lower_constraint is not None or self.upper_constraint is not None
|
|
|
|
@property
|
|
def pypi_extensions(self) -> str:
|
|
return '' if self.extensions is None else f"[{','.join(self.extensions)}]"
|
|
|
|
@staticmethod
|
|
def platform_restriction(platform: t.LiteralString, op: t.Literal['eq', 'ne'] = 'eq') -> str:
|
|
return f'platform_system{"==" if op == "eq" else "!="}"{platform}"'
|
|
|
|
def to_str(self) -> str:
|
|
deps: list[str] = []
|
|
if self.lower_constraint is not None and self.upper_constraint is not None:
|
|
dep = f'{self.name}{self.pypi_extensions}>={self.lower_constraint},<{self.upper_constraint}'
|
|
elif self.lower_constraint is not None:
|
|
dep = f'{self.name}{self.pypi_extensions}>={self.lower_constraint}'
|
|
elif self.upper_constraint is not None:
|
|
dep = f'{self.name}{self.pypi_extensions}<{self.upper_constraint}'
|
|
elif self.subdirectory is not None:
|
|
dep = f'{self.name}{self.pypi_extensions} @ git+https://github.com/{self.git_repo_url}.git#subdirectory={self.subdirectory}'
|
|
elif self.branch is not None:
|
|
dep = f'{self.name}{self.pypi_extensions} @ git+https://github.com/{self.git_repo_url}.git@{self.branch}'
|
|
else:
|
|
dep = f'{self.name}{self.pypi_extensions}'
|
|
deps.append(dep)
|
|
if self.platform: deps.append(self.platform_restriction(*self.platform))
|
|
return ';'.join(deps)
|
|
|
|
@classmethod
|
|
def from_tuple(cls, *decls: t.Any) -> Dependencies:
|
|
return cls(*decls)
|
|
|
|
lower_bentoml_constraint = '1.1.2'
|
|
_BENTOML_EXT = ['io']
|
|
_TRANSFORMERS_EXT = ['torch', 'tokenizers', 'accelerate']
|
|
|
|
_BASE_DEPENDENCIES = [
|
|
Dependencies(name='bentoml', extensions=_BENTOML_EXT, lower_constraint=lower_bentoml_constraint),
|
|
Dependencies(name='transformers', extensions=_TRANSFORMERS_EXT, lower_constraint='4.32.1'),
|
|
Dependencies(name='openllm-client'),
|
|
Dependencies(name='openllm-core'),
|
|
Dependencies(name='safetensors'),
|
|
Dependencies(name='optimum', lower_constraint="1.12.0"),
|
|
Dependencies(name='accelerate'),
|
|
Dependencies(name='ghapi'),
|
|
Dependencies(name='tabulate', extensions=['widechars'], lower_constraint='0.9.0'),
|
|
Dependencies(name='click', lower_constraint='8.1.3'),
|
|
Dependencies(name='cuda-python', platform=('Darwin', 'ne')),
|
|
Dependencies(name='bitsandbytes', upper_constraint='0.42'), # 0.41 works with CUDA 11.8
|
|
]
|
|
|
|
_ALL_RUNTIME_DEPS = ['flax>=0.7', 'jax', 'jaxlib', 'tensorflow', 'keras']
|
|
FINE_TUNE_DEPS = ['peft>=0.5.0', 'bitsandbytes', 'datasets', 'accelerate', 'trl']
|
|
FLAN_T5_DEPS = _ALL_RUNTIME_DEPS
|
|
OPT_DEPS = _ALL_RUNTIME_DEPS
|
|
GRPC_DEPS = ['openllm-client[grpc]']
|
|
OPENAI_DEPS = ['openai', 'tiktoken']
|
|
AGENTS_DEPS = ['transformers[agents]>=4.30', 'diffusers', 'soundfile']
|
|
PLAYGROUND_DEPS = ['jupyter', 'notebook', 'ipython', 'jupytext', 'nbformat']
|
|
GGML_DEPS = ['ctransformers']
|
|
GPTQ_DEPS = ['auto-gptq[triton]>=0.4.2', 'optimum>=1.12.0']
|
|
VLLM_DEPS = ['vllm>=0.1.7', 'ray']
|
|
|
|
_base_requirements: dict[str, t.Any] = {
|
|
inflection.dasherize(name): config_cls.__openllm_requirements__ for name, config_cls in openllm.CONFIG_MAPPING.items() if config_cls.__openllm_requirements__
|
|
}
|
|
|
|
# shallow copy from locals()
|
|
_locals = locals().copy()
|
|
|
|
# NOTE: update this table when adding new external dependencies
|
|
# sync with openllm.utils.OPTIONAL_DEPENDENCIES
|
|
_base_requirements.update({v: _locals.get(f'{inflection.underscore(v).upper()}_DEPS') for v in openllm.utils.OPTIONAL_DEPENDENCIES})
|
|
|
|
_base_requirements = {k: v for k, v in sorted(_base_requirements.items())}
|
|
|
|
fname = f'{os.path.basename(os.path.dirname(__file__))}/{os.path.basename(__file__)}'
|
|
|
|
def correct_style(it: t.Any) -> t.Any:
|
|
return it
|
|
|
|
def create_classifiers() -> Array:
|
|
arr = correct_style(tomlkit.array())
|
|
arr.extend([
|
|
Classifier.create_status_classifier(5),
|
|
Classifier.create_classifier('environment', 'GPU', 'NVIDIA CUDA'),
|
|
Classifier.create_classifier('environment', 'GPU', 'NVIDIA CUDA', '12'),
|
|
Classifier.create_classifier('environment', 'GPU', 'NVIDIA CUDA', '11.8'),
|
|
Classifier.create_classifier('environment', 'GPU', 'NVIDIA CUDA', '11.7'),
|
|
Classifier.apache(),
|
|
Classifier.create_classifier('topic', 'Scientific/Engineering', 'Artificial Intelligence'),
|
|
Classifier.create_classifier('topic', 'Software Development', 'Libraries'),
|
|
Classifier.create_classifier('os', 'OS Independent'),
|
|
Classifier.create_classifier('audience', 'Developers'),
|
|
Classifier.create_classifier('audience', 'Science/Research'),
|
|
Classifier.create_classifier('audience', 'System Administrators'),
|
|
Classifier.create_classifier('typing', 'Typed'),
|
|
*Classifier.create_python_classifier(),
|
|
])
|
|
return arr.multiline(True)
|
|
|
|
def create_optional_table() -> Table:
|
|
all_array = tomlkit.array()
|
|
all_array.append(f"openllm[{','.join(_base_requirements)}]")
|
|
|
|
table = tomlkit.table(is_super_table=True)
|
|
_base_requirements.update({'full': correct_style(all_array.multiline(True)), 'all': tomlkit.array('["openllm[full]"]')})
|
|
table.update({k: v for k, v in sorted(_base_requirements.items())})
|
|
table.add(tomlkit.nl())
|
|
|
|
return table
|
|
|
|
def create_url_table(_info: t.Any) -> Table:
|
|
table = tomlkit.table()
|
|
_urls = {
|
|
'Blog': 'https://modelserving.com',
|
|
'Chat': 'https://discord.gg/openllm',
|
|
'Documentation': 'https://github.com/bentoml/openllm#readme',
|
|
'GitHub': _info.html_url,
|
|
'History': f'{_info.html_url}/blob/main/CHANGELOG.md',
|
|
'Homepage': _info.homepage,
|
|
'Tracker': f'{_info.html_url}/issues',
|
|
'Twitter': 'https://twitter.com/bentomlai',
|
|
}
|
|
table.update({k: v for k, v in sorted(_urls.items())})
|
|
return table
|
|
|
|
def build_system() -> Table:
|
|
table = tomlkit.table()
|
|
table.add('build-backend', 'hatchling.build')
|
|
requires_array = correct_style(tomlkit.array())
|
|
requires_array.extend(['hatchling==1.18.0', 'hatch-vcs==0.3.0', 'hatch-fancy-pypi-readme==23.1.0'])
|
|
table.add('requires', requires_array.multiline(True))
|
|
return table
|
|
|
|
def authors() -> Array:
|
|
arr = correct_style(tomlkit.array())
|
|
arr.append(dict(name='Aaron Pham', email='aarnphm@bentoml.com'))
|
|
arr.append(dict(name='BentoML Team', email='contact@bentoml.com'))
|
|
return arr.multiline(True)
|
|
|
|
def keywords() -> Array:
|
|
arr = correct_style(tomlkit.array())
|
|
arr.extend([
|
|
'MLOps',
|
|
'AI',
|
|
'BentoML',
|
|
'Model Serving',
|
|
'Model Deployment',
|
|
'LLMOps',
|
|
'Falcon',
|
|
'Vicuna',
|
|
'Llama 2',
|
|
'Fine tuning',
|
|
'Serverless',
|
|
'Large Language Model',
|
|
'Generative AI',
|
|
'StableLM',
|
|
'Alpaca',
|
|
'PyTorch',
|
|
'Transformers'
|
|
])
|
|
return arr.multiline(True)
|
|
|
|
def build_cli_extensions() -> Table:
|
|
table = tomlkit.table()
|
|
ext: dict[str, str] = {'openllm': 'openllm.cli.entrypoint:cli'}
|
|
ext.update({
|
|
f'openllm-{inflection.dasherize(ke)}': f'openllm.cli.extension.{ke}:cli' for ke in sorted([
|
|
fname[:-3]
|
|
for fname in os.listdir(os.path.abspath(os.path.join(ROOT, 'openllm-python', 'src', 'openllm', 'cli', 'extension')))
|
|
if fname.endswith('.py') and not fname.startswith('__')
|
|
])
|
|
})
|
|
table.update(ext)
|
|
return table
|
|
|
|
def main() -> int:
|
|
api = GhApi(owner=_OWNER, repo=_REPO, authenticate=False)
|
|
_info = api.repos.get()
|
|
with open(os.path.join(ROOT, 'openllm-python', 'pyproject.toml'), 'r') as f:
|
|
pyproject = tomlkit.parse(f.read())
|
|
|
|
dependencies_array = correct_style(tomlkit.array())
|
|
dependencies_array.extend([v.to_str() for v in _BASE_DEPENDENCIES])
|
|
# dynamic field
|
|
dyn_arr = tomlkit.array()
|
|
dyn_arr.extend(['version', 'readme'])
|
|
|
|
pyproject['build-system'] = build_system()
|
|
pyproject['project']['authors'] = authors()
|
|
pyproject['project']['classifiers'] = create_classifiers()
|
|
pyproject['project']['dependencies'] = dependencies_array.multiline(True)
|
|
pyproject['project']['description'] = f'{_info.name}: {_info.description}'
|
|
pyproject['project']['dynamic'] = dyn_arr
|
|
pyproject['project']['keywords'] = keywords()
|
|
pyproject['project']['license'] = _info.license.spdx_id
|
|
pyproject['project']['name'] = f'{_info.name.lower()}'
|
|
pyproject['project']['requires-python'] = '>=3.8'
|
|
|
|
pyproject['project']['urls'] = create_url_table(_info)
|
|
pyproject['project']['scripts'] = build_cli_extensions()
|
|
pyproject['project']['optional-dependencies'] = create_optional_table()
|
|
|
|
with open(os.path.join(ROOT, 'openllm-python', 'pyproject.toml'), 'w') as f:
|
|
f.write(tomlkit.dumps(pyproject))
|
|
return 0
|
|
|
|
if __name__ == '__main__': raise SystemExit(main())
|