mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-01-22 14:31:26 -05:00
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
131 lines
3.9 KiB
Python
131 lines
3.9 KiB
Python
# Copyright 2023 BentoML Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Telemetry related for OpenLLM tracking.
|
|
|
|
Users can disable this with OPENLLM_DO_NOT_TRACK envvar.
|
|
"""
|
|
from __future__ import annotations
|
|
import contextlib
|
|
import functools
|
|
import importlib.metadata
|
|
import logging
|
|
import os
|
|
import re
|
|
import typing as t
|
|
|
|
import attr
|
|
|
|
import openllm
|
|
from bentoml._internal.utils import analytics as _internal_analytics
|
|
|
|
|
|
if t.TYPE_CHECKING:
|
|
from .._types import P
|
|
from .._types import T
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
|
|
|
|
# This variable is a proxy that will control BENTOML_DO_NOT_TRACK
|
|
OPENLLM_DO_NOT_TRACK = "OPENLLM_DO_NOT_TRACK"
|
|
|
|
DO_NOT_TRACK = os.environ.get(OPENLLM_DO_NOT_TRACK, str(False)).upper()
|
|
|
|
|
|
@functools.lru_cache(maxsize=1)
|
|
def do_not_track() -> bool:
|
|
return DO_NOT_TRACK in ENV_VARS_TRUE_VALUES
|
|
|
|
|
|
@functools.lru_cache(maxsize=1)
|
|
def _usage_event_debugging() -> bool:
|
|
# For BentoML developers only - debug and print event payload if turned on
|
|
return os.environ.get("__BENTOML_DEBUG_USAGE", str(False)).lower() == "true"
|
|
|
|
|
|
def silent(func: t.Callable[P, T]) -> t.Callable[P, T]:
|
|
@functools.wraps(func)
|
|
def wrapper(*args: P.args, **kwargs: P.kwargs) -> t.Any:
|
|
try:
|
|
return func(*args, **kwargs)
|
|
except Exception as err:
|
|
if _usage_event_debugging():
|
|
if openllm.utils.get_debug_mode():
|
|
logger.error("Tracking Error: %s", err, stack_info=True, stacklevel=3)
|
|
else:
|
|
logger.info("Tracking Error: %s", err)
|
|
else:
|
|
logger.debug("Tracking Error: %s", err)
|
|
|
|
return wrapper
|
|
|
|
|
|
@silent
|
|
def track(event_properties: attr.AttrsInstance) -> None:
|
|
if do_not_track():
|
|
return
|
|
_internal_analytics.track(t.cast("_internal_analytics.schemas.EventMeta", event_properties))
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def set_bentoml_tracking() -> t.Generator[None, None, None]:
|
|
original_value = os.environ.pop(_internal_analytics.BENTOML_DO_NOT_TRACK, str(False))
|
|
try:
|
|
os.environ[_internal_analytics.BENTOML_DO_NOT_TRACK] = str(do_not_track())
|
|
yield
|
|
finally:
|
|
os.environ[_internal_analytics.BENTOML_DO_NOT_TRACK] = original_value
|
|
|
|
|
|
class EventMeta:
|
|
@property
|
|
def event_name(self) -> str:
|
|
# camel case to snake case
|
|
event_name = re.sub(r"(?<!^)(?=[A-Z])", "_", self.__class__.__name__).lower()
|
|
# remove "_event" suffix
|
|
suffix_to_remove = "_event"
|
|
if event_name.endswith(suffix_to_remove):
|
|
event_name = event_name[: -len(suffix_to_remove)]
|
|
return event_name
|
|
|
|
|
|
@attr.define
|
|
class OpenllmCliEvent(EventMeta):
|
|
cmd_group: str
|
|
cmd_name: str
|
|
openllm_version: str = importlib.metadata.version("openllm")
|
|
|
|
# NOTE: reserved for the do_not_track logics
|
|
duration_in_ms: t.Any = attr.field(default=None)
|
|
error_type: str = attr.field(default=None)
|
|
return_code: int = attr.field(default=None)
|
|
|
|
|
|
@attr.define
|
|
class StartInitEvent(EventMeta):
|
|
model_name: str
|
|
llm_config: t.Dict[str, t.Any] = attr.field(default=None)
|
|
|
|
@staticmethod
|
|
def handler(llm_config: openllm.LLMConfig) -> StartInitEvent:
|
|
return StartInitEvent(model_name=llm_config["model_name"], llm_config=llm_config.model_dump())
|
|
|
|
|
|
def track_start_init(llm_config: openllm.LLMConfig) -> None:
|
|
if do_not_track():
|
|
return
|
|
track(StartInitEvent.handler(llm_config))
|