Files
OpenLLM/src/openllm/utils/analytics.py
Aaron Pham c1ddb9ed7c feat: GPTQ + vLLM and LlaMA (#113)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-07-19 18:12:12 -04:00

131 lines
3.9 KiB
Python

# Copyright 2023 BentoML Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Telemetry related for OpenLLM tracking.
Users can disable this with OPENLLM_DO_NOT_TRACK envvar.
"""
from __future__ import annotations
import contextlib
import functools
import importlib.metadata
import logging
import os
import re
import typing as t
import attr
import openllm
from bentoml._internal.utils import analytics as _internal_analytics
if t.TYPE_CHECKING:
from .._types import P
from .._types import T
logger = logging.getLogger(__name__)
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
# This variable is a proxy that will control BENTOML_DO_NOT_TRACK
OPENLLM_DO_NOT_TRACK = "OPENLLM_DO_NOT_TRACK"
DO_NOT_TRACK = os.environ.get(OPENLLM_DO_NOT_TRACK, str(False)).upper()
@functools.lru_cache(maxsize=1)
def do_not_track() -> bool:
return DO_NOT_TRACK in ENV_VARS_TRUE_VALUES
@functools.lru_cache(maxsize=1)
def _usage_event_debugging() -> bool:
# For BentoML developers only - debug and print event payload if turned on
return os.environ.get("__BENTOML_DEBUG_USAGE", str(False)).lower() == "true"
def silent(func: t.Callable[P, T]) -> t.Callable[P, T]:
@functools.wraps(func)
def wrapper(*args: P.args, **kwargs: P.kwargs) -> t.Any:
try:
return func(*args, **kwargs)
except Exception as err:
if _usage_event_debugging():
if openllm.utils.get_debug_mode():
logger.error("Tracking Error: %s", err, stack_info=True, stacklevel=3)
else:
logger.info("Tracking Error: %s", err)
else:
logger.debug("Tracking Error: %s", err)
return wrapper
@silent
def track(event_properties: attr.AttrsInstance) -> None:
if do_not_track():
return
_internal_analytics.track(t.cast("_internal_analytics.schemas.EventMeta", event_properties))
@contextlib.contextmanager
def set_bentoml_tracking() -> t.Generator[None, None, None]:
original_value = os.environ.pop(_internal_analytics.BENTOML_DO_NOT_TRACK, str(False))
try:
os.environ[_internal_analytics.BENTOML_DO_NOT_TRACK] = str(do_not_track())
yield
finally:
os.environ[_internal_analytics.BENTOML_DO_NOT_TRACK] = original_value
class EventMeta:
@property
def event_name(self) -> str:
# camel case to snake case
event_name = re.sub(r"(?<!^)(?=[A-Z])", "_", self.__class__.__name__).lower()
# remove "_event" suffix
suffix_to_remove = "_event"
if event_name.endswith(suffix_to_remove):
event_name = event_name[: -len(suffix_to_remove)]
return event_name
@attr.define
class OpenllmCliEvent(EventMeta):
cmd_group: str
cmd_name: str
openllm_version: str = importlib.metadata.version("openllm")
# NOTE: reserved for the do_not_track logics
duration_in_ms: t.Any = attr.field(default=None)
error_type: str = attr.field(default=None)
return_code: int = attr.field(default=None)
@attr.define
class StartInitEvent(EventMeta):
model_name: str
llm_config: t.Dict[str, t.Any] = attr.field(default=None)
@staticmethod
def handler(llm_config: openllm.LLMConfig) -> StartInitEvent:
return StartInitEvent(model_name=llm_config["model_name"], llm_config=llm_config.model_dump())
def track_start_init(llm_config: openllm.LLMConfig) -> None:
if do_not_track():
return
track(StartInitEvent.handler(llm_config))