mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-01-20 13:29:35 -05:00
194 lines
5.9 KiB
Python
194 lines
5.9 KiB
Python
from __future__ import annotations
|
|
import time
|
|
import typing as t
|
|
|
|
import attr
|
|
|
|
import openllm_core
|
|
|
|
from openllm_core.utils import converter
|
|
|
|
|
|
@attr.define
|
|
class ErrorResponse:
|
|
message: str
|
|
type: str
|
|
object: str = 'error'
|
|
param: t.Optional[str] = None
|
|
code: t.Optional[str] = None
|
|
|
|
|
|
@attr.define
|
|
class CompletionRequest:
|
|
prompt: str
|
|
model: str = attr.field(default=None)
|
|
suffix: t.Optional[str] = attr.field(default=None)
|
|
max_tokens: t.Optional[int] = attr.field(default=16)
|
|
temperature: t.Optional[float] = attr.field(default=1.0)
|
|
top_p: t.Optional[float] = attr.field(default=1.0)
|
|
n: t.Optional[int] = attr.field(default=1)
|
|
stream: t.Optional[bool] = attr.field(default=False)
|
|
logprobs: t.Optional[int] = attr.field(default=None)
|
|
echo: t.Optional[bool] = attr.field(default=False)
|
|
stop: t.Optional[t.Union[str, t.List[str]]] = attr.field(default=None)
|
|
presence_penalty: t.Optional[float] = attr.field(default=0.0)
|
|
frequency_penalty: t.Optional[float] = attr.field(default=0.0)
|
|
logit_bias: t.Optional[t.Dict[str, float]] = attr.field(default=None)
|
|
user: t.Optional[str] = attr.field(default=None)
|
|
# supported by vLLM and us
|
|
top_k: t.Optional[int] = attr.field(default=None)
|
|
best_of: t.Optional[int] = attr.field(default=1)
|
|
|
|
|
|
@attr.define
|
|
class ChatCompletionRequest:
|
|
messages: t.List[t.Dict[str, str]]
|
|
model: str = attr.field(default=None)
|
|
functions: t.List[t.Dict[str, str]] = attr.field(default=attr.Factory(list))
|
|
function_calls: t.List[t.Dict[str, str]] = attr.field(default=attr.Factory(list))
|
|
temperature: t.Optional[float] = attr.field(default=None)
|
|
top_p: t.Optional[float] = attr.field(default=None)
|
|
n: t.Optional[int] = attr.field(default=None)
|
|
stream: t.Optional[bool] = attr.field(default=False)
|
|
stop: t.Optional[t.Union[str, t.List[str]]] = attr.field(default=None)
|
|
max_tokens: t.Optional[int] = attr.field(default=None)
|
|
presence_penalty: t.Optional[float] = attr.field(default=None)
|
|
frequency_penalty: t.Optional[float] = attr.field(default=None)
|
|
logit_bias: t.Optional[t.Dict[str, float]] = attr.field(default=None)
|
|
user: t.Optional[str] = attr.field(default=None)
|
|
# supported by vLLM and us
|
|
top_k: t.Optional[int] = attr.field(default=None)
|
|
best_of: t.Optional[int] = attr.field(default=1)
|
|
|
|
|
|
@attr.define
|
|
class LogProbs:
|
|
text_offset: t.List[int] = attr.field(default=attr.Factory(list))
|
|
token_logprobs: t.List[float] = attr.field(default=attr.Factory(list))
|
|
tokens: t.List[str] = attr.field(default=attr.Factory(list))
|
|
top_logprobs: t.List[t.Dict[str, t.Any]] = attr.field(default=attr.Factory(list))
|
|
|
|
|
|
@attr.define
|
|
class UsageInfo:
|
|
prompt_tokens: int = attr.field(default=0)
|
|
completion_tokens: int = attr.field(default=0)
|
|
total_tokens: int = attr.field(default=0)
|
|
|
|
|
|
@attr.define
|
|
class CompletionResponseChoice:
|
|
index: int
|
|
text: str
|
|
logprobs: t.Optional[LogProbs] = None
|
|
finish_reason: t.Optional[str] = None
|
|
|
|
|
|
@attr.define
|
|
class CompletionResponseStreamChoice:
|
|
index: int
|
|
text: str
|
|
logprobs: t.Optional[LogProbs] = None
|
|
finish_reason: t.Optional[str] = None
|
|
|
|
|
|
@attr.define
|
|
class CompletionStreamResponse:
|
|
model: str
|
|
choices: t.List[CompletionResponseStreamChoice]
|
|
object: str = 'text_completion'
|
|
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('cmpl')))
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.monotonic())))
|
|
|
|
|
|
@attr.define
|
|
class CompletionResponse:
|
|
choices: t.List[CompletionResponseChoice]
|
|
model: str
|
|
usage: UsageInfo
|
|
object: str = 'text_completion'
|
|
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('cmpl')))
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.monotonic())))
|
|
|
|
|
|
LiteralRole = t.Literal['system', 'user', 'assistant']
|
|
|
|
|
|
@attr.define
|
|
class Delta:
|
|
role: t.Optional[LiteralRole] = None
|
|
content: t.Optional[str] = None
|
|
|
|
|
|
@attr.define
|
|
class ChatMessage:
|
|
role: LiteralRole
|
|
content: str
|
|
|
|
|
|
converter.register_unstructure_hook(ChatMessage, lambda msg: {'role': msg.role, 'content': msg.content})
|
|
|
|
|
|
@attr.define
|
|
class ChatCompletionResponseStreamChoice:
|
|
index: int
|
|
delta: Delta
|
|
finish_reason: t.Optional[str] = attr.field(default=None)
|
|
|
|
|
|
@attr.define
|
|
class ChatCompletionResponseChoice:
|
|
index: int
|
|
message: ChatMessage
|
|
finish_reason: t.Optional[str] = attr.field(default=None)
|
|
|
|
|
|
@attr.define
|
|
class ChatCompletionResponse:
|
|
choices: t.List[ChatCompletionResponseChoice]
|
|
model: str
|
|
object: str = 'chat.completion'
|
|
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('chatcmpl')))
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.monotonic())))
|
|
usage: UsageInfo = attr.field(default=attr.Factory(lambda: UsageInfo()))
|
|
|
|
|
|
@attr.define
|
|
class ChatCompletionStreamResponse:
|
|
choices: t.List[ChatCompletionResponseStreamChoice]
|
|
model: str
|
|
object: str = 'chat.completion.chunk'
|
|
id: str = attr.field(default=attr.Factory(lambda: openllm_core.utils.gen_random_uuid('chatcmpl')))
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.monotonic())))
|
|
|
|
|
|
@attr.define
|
|
class ModelCard:
|
|
id: str
|
|
object: str = 'model'
|
|
created: int = attr.field(default=attr.Factory(lambda: int(time.monotonic())))
|
|
owned_by: str = 'na'
|
|
|
|
|
|
@attr.define
|
|
class ModelList:
|
|
object: str = 'list'
|
|
data: t.List[ModelCard] = attr.field(factory=list)
|
|
|
|
|
|
async def get_conversation_prompt(request: ChatCompletionRequest, llm_config: openllm_core.LLMConfig) -> str:
|
|
conv = llm_config.get_conversation_template()
|
|
for message in request.messages:
|
|
msg_role = message['role']
|
|
if msg_role == 'system':
|
|
conv.set_system_message(message['content'])
|
|
elif msg_role == 'user':
|
|
conv.append_message(conv.roles[0], message['content'])
|
|
elif msg_role == 'assistant':
|
|
conv.append_message(conv.roles[1], message['content'])
|
|
else:
|
|
raise ValueError(f'Unknown role: {msg_role}')
|
|
# Add a blank message for the assistant.
|
|
conv.append_message(conv.roles[1], '')
|
|
return conv.get_prompt()
|