Files
OpenLLM/openllm-python/tests/configuration_test.py

153 lines
5.6 KiB
Python

from __future__ import annotations
import contextlib
import os
import typing as t
from unittest import mock
import attr
import pytest
from hypothesis import assume, given, strategies as st
import openllm
from openllm_core._configuration import GenerationConfig, ModelSettings, field_env_key
from ._strategies._configuration import make_llm_config, model_settings
def test_forbidden_access():
cl_ = make_llm_config(
'ForbiddenAccess',
{
'default_id': 'huggingface/t5-tiny-testing',
'model_ids': ['huggingface/t5-tiny-testing', 'bentoml/t5-tiny-testing'],
'architecture': 'PreTrainedModel',
'requirements': ['bentoml'],
},
)
assert pytest.raises(openllm.exceptions.ForbiddenAttributeError, cl_.__getattribute__, cl_(), '__config__')
assert pytest.raises(openllm.exceptions.ForbiddenAttributeError, cl_.__getattribute__, cl_(), 'GenerationConfig')
assert pytest.raises(openllm.exceptions.ForbiddenAttributeError, cl_.__getattribute__, cl_(), 'SamplingParams')
assert openllm.utils.lenient_issubclass(cl_.__openllm_generation_class__, GenerationConfig)
@given(model_settings())
def test_class_normal_gen(gen_settings: ModelSettings):
assume(gen_settings['default_id'] and all(i for i in gen_settings['model_ids']))
cl_: type[openllm.LLMConfig] = make_llm_config('NotFullLLM', gen_settings)
assert issubclass(cl_, openllm.LLMConfig)
for key in gen_settings:
assert object.__getattribute__(cl_, f'__openllm_{key}__') == gen_settings.__getitem__(key)
@given(model_settings(), st.integers())
def test_simple_struct_dump(gen_settings: ModelSettings, field1: int):
cl_ = make_llm_config('IdempotentLLM', gen_settings, fields=(('field1', 'float', field1),))
assert cl_().model_dump()['field1'] == field1
@given(model_settings(), st.integers())
def test_config_derivation(gen_settings: ModelSettings, field1: int):
cl_ = make_llm_config('IdempotentLLM', gen_settings, fields=(('field1', 'float', field1),))
new_cls = cl_.model_derivate('DerivedLLM', default_id='asdfasdf')
assert new_cls.__openllm_default_id__ == 'asdfasdf'
@given(model_settings())
def test_config_derived_follow_attrs_protocol(gen_settings: ModelSettings):
cl_ = make_llm_config('AttrsProtocolLLM', gen_settings)
assert attr.has(cl_)
@given(
model_settings(),
st.integers(max_value=283473),
st.floats(min_value=0.0, max_value=1.0),
st.integers(max_value=283473),
st.floats(min_value=0.0, max_value=1.0),
)
def test_complex_struct_dump(
gen_settings: ModelSettings, field1: int, temperature: float, input_field1: int, input_temperature: float
):
cl_ = make_llm_config(
'ComplexLLM',
gen_settings,
fields=(('field1', 'float', field1),),
generation_fields=(('temperature', temperature),),
)
sent = cl_()
assert sent.model_dump()['field1'] == field1
assert sent.model_dump()['generation_config']['temperature'] == temperature
assert sent.model_dump(flatten=True)['field1'] == field1
assert sent.model_dump(flatten=True)['temperature'] == temperature
passed = cl_(field1=input_field1, temperature=input_temperature)
assert passed.model_dump()['field1'] == input_field1
assert passed.model_dump()['generation_config']['temperature'] == input_temperature
assert passed.model_dump(flatten=True)['field1'] == input_field1
assert passed.model_dump(flatten=True)['temperature'] == input_temperature
pas_nested = cl_(generation_config={'temperature': input_temperature}, field1=input_field1)
assert pas_nested.model_dump()['field1'] == input_field1
assert pas_nested.model_dump()['generation_config']['temperature'] == input_temperature
@contextlib.contextmanager
def patch_env(**attrs: t.Any):
with mock.patch.dict(os.environ, attrs, clear=True):
yield
def test_struct_envvar():
with patch_env(**{field_env_key('field1'): '4', field_env_key('temperature', suffix='generation'): '0.2'}):
class EnvLLM(openllm.LLMConfig):
__config__ = {'default_id': 'asdfasdf', 'model_ids': ['asdf', 'asdfasdfads'], 'architecture': 'PreTrainedModel'}
field1: int = 2
class GenerationConfig:
temperature: float = 0.8
sent = EnvLLM.model_construct_env()
assert sent.field1 == 4
assert sent['temperature'] == 0.2
overwrite_default = EnvLLM()
assert overwrite_default.field1 == 4
assert overwrite_default['temperature'] == 0.2
def test_struct_provided_fields():
class EnvLLM(openllm.LLMConfig):
__config__ = {'default_id': 'asdfasdf', 'model_ids': ['asdf', 'asdfasdfads'], 'architecture': 'PreTrainedModel'}
field1: int = 2
class GenerationConfig:
temperature: float = 0.8
sent = EnvLLM.model_construct_env(field1=20, temperature=0.4)
assert sent.field1 == 20
assert sent.generation_config.temperature == 0.4
def test_struct_envvar_with_overwrite_provided_env(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as mk:
mk.setenv(field_env_key('field1'), str(4.0))
mk.setenv(field_env_key('temperature', suffix='generation'), str(0.2))
sent = make_llm_config(
'OverwriteWithEnvAvailable',
{'default_id': 'asdfasdf', 'model_ids': ['asdf', 'asdfasdfads'], 'architecture': 'PreTrainedModel'},
fields=(('field1', 'float', 3.0),),
).model_construct_env(field1=20.0, temperature=0.4)
assert sent.generation_config.temperature == 0.4
assert sent.field1 == 20.0
@pytest.mark.parametrize('model_name', openllm.CONFIG_MAPPING.keys())
def test_configuration_dict_protocol(model_name: str):
config = openllm.AutoConfig.for_model(model_name)
assert isinstance(config.items(), list)
assert isinstance(config.keys(), list)
assert isinstance(config.values(), list)
assert isinstance(dict(config), dict)