mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-02-06 22:02:09 -05:00
Probably not going to fix anything, just delaying the problem. Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>
432 lines
20 KiB
Python
432 lines
20 KiB
Python
from __future__ import annotations
|
|
import functools, logging, os, warnings, typing as t
|
|
import attr, inflection, orjson, bentoml, openllm
|
|
from openllm_core._schemas import GenerationOutput
|
|
from openllm_core._typing_compat import (
|
|
AdapterMap,
|
|
AdapterTuple,
|
|
AdapterType,
|
|
LiteralBackend,
|
|
LiteralDtype,
|
|
LiteralQuantise,
|
|
LiteralSerialisation,
|
|
M,
|
|
T,
|
|
)
|
|
from openllm_core.exceptions import MissingDependencyError
|
|
from openllm_core.utils import (
|
|
DEBUG,
|
|
apply,
|
|
check_bool_env,
|
|
codegen,
|
|
first_not_none,
|
|
flatten_attrs,
|
|
gen_random_uuid,
|
|
generate_hash_from_file,
|
|
getenv,
|
|
is_ctranslate_available,
|
|
is_peft_available,
|
|
is_vllm_available,
|
|
resolve_filepath,
|
|
validate_is_path,
|
|
)
|
|
|
|
from .exceptions import ForbiddenAttributeError, OpenLLMException
|
|
from .serialisation.constants import PEFT_CONFIG_NAME
|
|
|
|
if t.TYPE_CHECKING:
|
|
import torch, transformers
|
|
from peft.config import PeftConfig
|
|
from openllm_core._configuration import LLMConfig
|
|
from ._runners import Runner
|
|
|
|
logger = logging.getLogger(__name__)
|
|
_AdapterTuple: type[AdapterTuple] = codegen.make_attr_tuple_class('AdapterTuple', ['adapter_id', 'name', 'config'])
|
|
ResolvedAdapterMap = t.Dict[AdapterType, t.Dict[str, t.Tuple['PeftConfig', str]]]
|
|
|
|
|
|
@attr.define(slots=False, repr=False, init=False)
|
|
class LLM(t.Generic[M, T]):
|
|
async def generate(self, prompt, prompt_token_ids=None, stop=None, stop_token_ids=None, request_id=None, adapter_name=None, **attrs):
|
|
if adapter_name is not None and self.__llm_backend__ != 'pt': raise NotImplementedError(f'Adapter is not supported with {self.__llm_backend__}.')
|
|
config = self.config.model_construct_env(**attrs)
|
|
texts, token_ids = [[]] * config['n'], [[]] * config['n']
|
|
async for result in self.generate_iterator(
|
|
prompt, prompt_token_ids, stop, stop_token_ids, request_id, adapter_name, **config.model_dump(flatten=True)
|
|
):
|
|
for output in result.outputs:
|
|
texts[output.index].append(output.text)
|
|
token_ids[output.index].extend(output.token_ids)
|
|
if (final_result := result) is None: raise RuntimeError('No result is returned.')
|
|
return final_result.with_options(
|
|
prompt=prompt,
|
|
outputs=[
|
|
output.with_options(text=''.join(texts[output.index]), token_ids=token_ids[output.index])
|
|
for output in final_result.outputs
|
|
],
|
|
)
|
|
|
|
async def generate_iterator(self, prompt, prompt_token_ids=None, stop=None, stop_token_ids=None, request_id=None, adapter_name=None, **attrs):
|
|
from bentoml._internal.runner.runner_handle import DummyRunnerHandle
|
|
if adapter_name is not None and self.__llm_backend__ != 'pt': raise NotImplementedError(f'Adapter is not supported with {self.__llm_backend__}.')
|
|
|
|
if isinstance(self.runner._runner_handle, DummyRunnerHandle):
|
|
if os.getenv('BENTO_PATH') is not None:
|
|
raise RuntimeError('Runner client failed to set up correctly.')
|
|
else:
|
|
self.runner.init_local(quiet=True)
|
|
config = self.config.model_construct_env(**attrs)
|
|
|
|
stop_token_ids = stop_token_ids or []
|
|
eos_token_id = attrs.get('eos_token_id', config['eos_token_id'])
|
|
if eos_token_id and not isinstance(eos_token_id, list): eos_token_id = [eos_token_id]
|
|
stop_token_ids.extend(eos_token_id or [])
|
|
if (config_eos := config['eos_token_id']) and config_eos not in stop_token_ids: stop_token_ids.append(config_eos)
|
|
if self.tokenizer.eos_token_id not in stop_token_ids: stop_token_ids.append(self.tokenizer.eos_token_id)
|
|
if stop is None:
|
|
stop = set()
|
|
elif isinstance(stop, str):
|
|
stop = {stop}
|
|
else:
|
|
stop = set(stop)
|
|
for tid in stop_token_ids:
|
|
if tid: stop.add(self.tokenizer.decode(tid))
|
|
|
|
if prompt_token_ids is None:
|
|
if prompt is None: raise ValueError('Either prompt or prompt_token_ids must be specified.')
|
|
prompt_token_ids = self.tokenizer.encode(prompt)
|
|
|
|
request_id = gen_random_uuid() if request_id is None else request_id
|
|
previous_texts, previous_num_tokens = [''] * config['n'], [0] * config['n']
|
|
try:
|
|
generator = self.runner.generate_iterator.async_stream(prompt_token_ids, request_id, stop=list(stop), adapter_name=adapter_name, **config.model_dump(flatten=True))
|
|
except Exception as err:
|
|
raise RuntimeError(f'Failed to start generation task: {err}') from err
|
|
|
|
try:
|
|
async for out in generator:
|
|
generated = GenerationOutput.from_runner(out).with_options(prompt=prompt)
|
|
delta_outputs = [None] * len(generated.outputs)
|
|
for output in generated.outputs:
|
|
i = output.index
|
|
delta_tokens, delta_text = output.token_ids[previous_num_tokens[i] :], output.text[len(previous_texts[i]) :]
|
|
previous_texts[i], previous_num_tokens[i] = output.text, len(output.token_ids)
|
|
delta_outputs[i] = output.with_options(text=delta_text, token_ids=delta_tokens)
|
|
yield generated.with_options(outputs=delta_outputs)
|
|
except Exception as err:
|
|
raise RuntimeError(f'Exception caught during generation: {err}') from err
|
|
|
|
# NOTE: If you are here to see how generate_iterator and generate works, see above.
|
|
# The below are mainly for internal implementation that you don't have to worry about.
|
|
_model_id: str; _revision: t.Optional[str] #
|
|
_quantization_config: t.Optional[t.Union[transformers.BitsAndBytesConfig, transformers.GPTQConfig, transformers.AwqConfig]]
|
|
_quantise: t.Optional[LiteralQuantise]; _model_decls: t.Tuple[t.Any, ...]; __model_attrs: t.Dict[str, t.Any] #
|
|
__tokenizer_attrs: t.Dict[str, t.Any]; _tag: bentoml.Tag; _adapter_map: t.Optional[AdapterMap] #
|
|
_serialisation: LiteralSerialisation; _local: bool; _max_model_len: t.Optional[int] #
|
|
_gpu_memory_utilization: float
|
|
|
|
__llm_dtype__: t.Union[LiteralDtype, t.Literal['auto', 'half', 'float']] = 'auto'
|
|
__llm_torch_dtype__: 'torch.dtype' = None
|
|
__llm_config__: t.Optional[LLMConfig] = None
|
|
__llm_backend__: LiteralBackend = None
|
|
__llm_quantization_config__: t.Optional[t.Union[transformers.BitsAndBytesConfig, transformers.GPTQConfig, transformers.AwqConfig]] = None
|
|
__llm_runner__: t.Optional[Runner[M, T]] = None
|
|
__llm_model__: t.Optional[M] = None
|
|
__llm_tokenizer__: t.Optional[T] = None
|
|
__llm_adapter_map__: t.Optional[ResolvedAdapterMap] = None
|
|
__llm_trust_remote_code__: bool = False
|
|
|
|
def __init__(
|
|
self,
|
|
model_id,
|
|
model_version=None,
|
|
model_tag=None,
|
|
llm_config=None,
|
|
backend=None,
|
|
*args,
|
|
quantize=None,
|
|
quantization_config=None,
|
|
adapter_map=None,
|
|
serialisation='safetensors',
|
|
trust_remote_code=False,
|
|
embedded=False,
|
|
dtype='auto',
|
|
low_cpu_mem_usage=True,
|
|
max_model_len=None,
|
|
gpu_memory_utilization=0.9,
|
|
_eager=True,
|
|
**attrs,
|
|
):
|
|
torch_dtype = attrs.pop('torch_dtype', None) # backward compatible
|
|
if torch_dtype is not None:
|
|
warnings.warn('The argument "torch_dtype" is deprecated and will be removed in the future. Please use "dtype" instead.', DeprecationWarning, stacklevel=3); dtype = torch_dtype
|
|
_local = False
|
|
if validate_is_path(model_id): model_id, _local = resolve_filepath(model_id), True
|
|
backend = getenv('backend', default=backend)
|
|
if backend is None: backend = self._cascade_backend()
|
|
dtype = getenv('dtype', default=dtype, var=['TORCH_DTYPE'])
|
|
if dtype is None: logger.warning('Setting dtype to auto. Inferring from framework specific models'); dtype = 'auto'
|
|
quantize = getenv('quantize', default=quantize, var=['QUANITSE'])
|
|
attrs.update({'low_cpu_mem_usage': low_cpu_mem_usage})
|
|
# parsing tokenizer and model kwargs, as the hierarchy is param pass > default
|
|
model_attrs, tokenizer_attrs = flatten_attrs(**attrs)
|
|
if model_tag is None:
|
|
model_tag, model_version = self._make_tag_components(model_id, model_version, backend=backend)
|
|
if model_version: model_tag = f'{model_tag}:{model_version}'
|
|
|
|
self.__attrs_init__(
|
|
model_id=model_id,
|
|
revision=model_version,
|
|
tag=bentoml.Tag.from_taglike(model_tag),
|
|
quantization_config=quantization_config,
|
|
quantise=getattr(self._Quantise, backend)(self, quantize),
|
|
model_decls=args,
|
|
adapter_map=convert_peft_config_type(adapter_map) if adapter_map is not None else None,
|
|
serialisation=serialisation,
|
|
local=_local,
|
|
max_model_len=getenv('max_model_len', default=max_model_len),
|
|
gpu_memory_utilization=getenv('gpu_memory_utilization', default=gpu_memory_utilization),
|
|
LLM__model_attrs=model_attrs,
|
|
LLM__tokenizer_attrs=tokenizer_attrs,
|
|
llm_dtype__=dtype.lower(),
|
|
llm_backend__=backend,
|
|
llm_config__=llm_config,
|
|
llm_trust_remote_code__=trust_remote_code,
|
|
)
|
|
if _eager:
|
|
try:
|
|
model = bentoml.models.get(self.tag)
|
|
except bentoml.exceptions.NotFound:
|
|
model = openllm.serialisation.import_model(self, trust_remote_code=self.trust_remote_code)
|
|
# resolve the tag
|
|
self._tag = model.tag
|
|
if not _eager and embedded: raise RuntimeError("Embedded mode is not supported when '_eager' is False.")
|
|
if embedded:
|
|
logger.warning('NOT RECOMMENDED in production and SHOULD ONLY used for development.'); self.runner.init_local(quiet=True)
|
|
class _Quantise:
|
|
@staticmethod
|
|
def pt(llm: LLM, quantise=None): return quantise
|
|
@staticmethod
|
|
def vllm(llm: LLM, quantise=None): return quantise
|
|
@staticmethod
|
|
def ctranslate(llm: LLM, quantise=None):
|
|
if quantise in {'int4', 'awq', 'gptq', 'squeezellm'}: raise ValueError(f"Quantisation '{quantise}' is not supported for backend 'ctranslate'")
|
|
if quantise == 'int8': quantise = 'int8_float16' if llm._has_gpus else 'int8_float32'
|
|
return quantise
|
|
@apply(lambda val: tuple(str.lower(i) if i else i for i in val))
|
|
def _make_tag_components(self, model_id: str, model_version: str | None, backend: str) -> tuple[str, str | None]:
|
|
model_id, *maybe_revision = model_id.rsplit(':')
|
|
if len(maybe_revision) > 0:
|
|
if model_version is not None: logger.warning("revision is specified (%s). 'model_version=%s' will be ignored.", maybe_revision[0], model_version)
|
|
model_version = maybe_revision[0]
|
|
if validate_is_path(model_id):
|
|
model_id, model_version = resolve_filepath(model_id), first_not_none(model_version, default=generate_hash_from_file(model_id))
|
|
return f'{backend}-{normalise_model_name(model_id)}', model_version
|
|
@functools.cached_property
|
|
def _has_gpus(self):
|
|
try:
|
|
from cuda import cuda
|
|
err, *_ = cuda.cuInit(0)
|
|
if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError('Failed to initialise CUDA runtime binding.')
|
|
err, num_gpus = cuda.cuDeviceGetCount()
|
|
if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError('Failed to get CUDA device count.')
|
|
return True
|
|
except (ImportError, RuntimeError):
|
|
return False
|
|
@property
|
|
def _torch_dtype(self):
|
|
import torch, transformers
|
|
_map = _torch_dtype_mapping()
|
|
if not isinstance(self.__llm_torch_dtype__, torch.dtype):
|
|
try:
|
|
hf_config = transformers.AutoConfig.from_pretrained(self.bentomodel.path, trust_remote_code=self.trust_remote_code)
|
|
except OpenLLMException:
|
|
hf_config = transformers.AutoConfig.from_pretrained(self.model_id, trust_remote_code=self.trust_remote_code)
|
|
config_dtype = getattr(hf_config, 'torch_dtype', None)
|
|
if config_dtype is None: config_dtype = torch.float32
|
|
if self.__llm_dtype__ == 'auto':
|
|
if config_dtype == torch.float32:
|
|
torch_dtype = torch.float16
|
|
else:
|
|
torch_dtype = config_dtype
|
|
else:
|
|
if self.__llm_dtype__ not in _map: raise ValueError(f"Unknown dtype '{self.__llm_dtype__}'")
|
|
torch_dtype = _map[self.__llm_dtype__]
|
|
self.__llm_torch_dtype__ = torch_dtype
|
|
return self.__llm_torch_dtype__
|
|
@property
|
|
def _model_attrs(self): return {**self.import_kwargs[0], **self.__model_attrs}
|
|
@_model_attrs.setter
|
|
def _model_attrs(self, value): self.__model_attrs = value
|
|
@property
|
|
def _tokenizer_attrs(self): return {**self.import_kwargs[1], **self.__tokenizer_attrs}
|
|
def _cascade_backend(self) -> LiteralBackend:
|
|
logger.warning('It is recommended to specify the backend explicitly. Cascading backend might lead to unexpected behaviour.')
|
|
if self._has_gpus:
|
|
if is_vllm_available():
|
|
return 'vllm'
|
|
elif is_ctranslate_available():
|
|
return 'ctranslate'
|
|
elif is_ctranslate_available():
|
|
return 'ctranslate'
|
|
else:
|
|
return 'pt'
|
|
def __setattr__(self, attr, value):
|
|
if attr in {'model', 'tokenizer', 'runner', 'import_kwargs'}: raise ForbiddenAttributeError(f'{attr} should not be set during runtime.')
|
|
super().__setattr__(attr, value)
|
|
def __del__(self):
|
|
try:
|
|
del self.__llm_model__, self.__llm_tokenizer__, self.__llm_adapter_map__
|
|
except AttributeError:
|
|
pass
|
|
def __repr_args__(self): yield from (('model_id', self._model_id if not self._local else self.tag.name), ('revision', self._revision if self._revision else self.tag.version), ('backend', self.__llm_backend__), ('type', self.llm_type))
|
|
def __repr__(self) -> str: return f'{self.__class__.__name__} {orjson.dumps({k: v for k, v in self.__repr_args__()}, option=orjson.OPT_INDENT_2).decode()}'
|
|
@property
|
|
def import_kwargs(self): return {'device_map': 'auto' if self._has_gpus else None, 'torch_dtype': self._torch_dtype}, {'padding_side': 'left', 'truncation_side': 'left'}
|
|
@property
|
|
def trust_remote_code(self):
|
|
env = os.getenv('TRUST_REMOTE_CODE')
|
|
if env is not None: return check_bool_env('TRUST_REMOTE_CODE', env)
|
|
return self.__llm_trust_remote_code__
|
|
@property
|
|
def model_id(self): return self._model_id
|
|
@property
|
|
def revision(self): return self._revision
|
|
@property
|
|
def tag(self): return self._tag
|
|
@property
|
|
def bentomodel(self): return openllm.serialisation.get(self)
|
|
@property
|
|
def quantization_config(self):
|
|
if self.__llm_quantization_config__ is None:
|
|
from ._quantisation import infer_quantisation_config
|
|
if self._quantization_config is not None:
|
|
self.__llm_quantization_config__ = self._quantization_config
|
|
elif self._quantise is not None:
|
|
self.__llm_quantization_config__, self._model_attrs = infer_quantisation_config(self, self._quantise, **self._model_attrs)
|
|
else:
|
|
raise ValueError("Either 'quantization_config' or 'quantise' must be specified.")
|
|
return self.__llm_quantization_config__
|
|
@property
|
|
def has_adapters(self): return self._adapter_map is not None
|
|
@property
|
|
def local(self): return self._local
|
|
@property
|
|
def quantise(self): return self._quantise
|
|
@property
|
|
def llm_type(self): return normalise_model_name(self._model_id)
|
|
@property
|
|
def llm_parameters(self): return (self._model_decls, self._model_attrs), self._tokenizer_attrs
|
|
@property
|
|
def identifying_params(self):
|
|
return {
|
|
'configuration': self.config.model_dump_json().decode(),
|
|
'model_ids': orjson.dumps(self.config['model_ids']).decode(),
|
|
'model_id': self.model_id,
|
|
}
|
|
@property
|
|
def tokenizer(self):
|
|
if self.__llm_tokenizer__ is None: self.__llm_tokenizer__ = openllm.serialisation.load_tokenizer(self, **self.llm_parameters[-1])
|
|
return self.__llm_tokenizer__
|
|
@property
|
|
def runner(self):
|
|
from ._runners import runner
|
|
if self.__llm_runner__ is None: self.__llm_runner__ = runner(self)
|
|
return self.__llm_runner__
|
|
def prepare(self, adapter_type='lora', use_gradient_checking=True, **attrs):
|
|
if self.__llm_backend__ != 'pt': raise RuntimeError('Fine tuning is only supported for PyTorch backend.')
|
|
from peft.mapping import get_peft_model
|
|
from peft.utils.other import prepare_model_for_kbit_training
|
|
|
|
model = get_peft_model(
|
|
prepare_model_for_kbit_training(self.model, use_gradient_checkpointing=use_gradient_checking),
|
|
self.config['fine_tune_strategies']
|
|
.get(adapter_type, self.config.make_fine_tune_config(adapter_type))
|
|
.train().with_config(**attrs).build(),
|
|
)
|
|
if DEBUG: model.print_trainable_parameters()
|
|
return model, self.tokenizer
|
|
def prepare_for_training(self, *args, **attrs): logger.warning('`prepare_for_training` is deprecated and will be removed in the future. Use `prepare` instead.'); return self.prepare(*args, **attrs)
|
|
@property
|
|
def adapter_map(self):
|
|
if not is_peft_available(): raise MissingDependencyError("Failed to import 'peft'. Make sure to do 'pip install \"openllm[fine-tune]\"'")
|
|
if not self.has_adapters: raise AttributeError('Adapter map is not available.')
|
|
assert self._adapter_map is not None
|
|
if self.__llm_adapter_map__ is None:
|
|
_map: ResolvedAdapterMap = {k: {} for k in self._adapter_map}
|
|
for adapter_type, adapter_tuple in self._adapter_map.items():
|
|
base = first_not_none(
|
|
self.config['fine_tune_strategies'].get(adapter_type), default=self.config.make_fine_tune_config(adapter_type),
|
|
)
|
|
for adapter in adapter_tuple: _map[adapter_type][adapter.name] = (base.with_config(**adapter.config).build(), adapter.adapter_id)
|
|
self.__llm_adapter_map__ = _map
|
|
return self.__llm_adapter_map__
|
|
@property
|
|
def model(self):
|
|
if self.__llm_model__ is None:
|
|
model = openllm.serialisation.load_model(self, *self._model_decls, **self._model_attrs)
|
|
# If OOM, then it is probably you don't have enough VRAM to run this model.
|
|
if self.__llm_backend__ == 'pt':
|
|
import torch
|
|
loaded_in_kbit = getattr(model, 'is_loaded_in_8bit', False) or getattr(model, 'is_loaded_in_4bit', False) or getattr(model, 'is_quantized', False)
|
|
if torch.cuda.is_available() and torch.cuda.device_count() == 1 and not loaded_in_kbit:
|
|
try:
|
|
model = model.to('cuda')
|
|
except Exception as err:
|
|
raise OpenLLMException(f'Failed to load model into GPU: {err}.\n') from err
|
|
if self.has_adapters:
|
|
logger.debug('Applying the following adapters: %s', self.adapter_map)
|
|
for adapter_dict in self.adapter_map.values():
|
|
for adapter_name, (peft_config, peft_model_id) in adapter_dict.items():
|
|
model.load_adapter(peft_model_id, adapter_name, peft_config=peft_config)
|
|
self.__llm_model__ = model
|
|
return self.__llm_model__
|
|
@property
|
|
def config(self):
|
|
import transformers
|
|
if self.__llm_config__ is None:
|
|
if self.__llm_backend__ == 'ctranslate':
|
|
try:
|
|
config = transformers.AutoConfig.from_pretrained(self.bentomodel.path_of('/hf'), trust_remote_code=self.trust_remote_code)
|
|
except OpenLLMException:
|
|
config = transformers.AutoConfig.from_pretrained(self.model_id, trust_remote_code=self.trust_remote_code)
|
|
for architecture in config.architectures:
|
|
if architecture in openllm.AutoConfig._CONFIG_MAPPING_NAMES_TO_ARCHITECTURE():
|
|
config = openllm.AutoConfig.infer_class_from_name(
|
|
openllm.AutoConfig._CONFIG_MAPPING_NAMES_TO_ARCHITECTURE()[architecture]
|
|
).model_construct_env(**self._model_attrs)
|
|
break
|
|
else:
|
|
raise OpenLLMException(f"Failed to infer the configuration class. Make sure the model is a supported model. Supported models are: {', '.join(openllm.AutoConfig._CONFIG_MAPPING_NAMES_TO_ARCHITECTURE.keys())}")
|
|
else:
|
|
config = openllm.AutoConfig.infer_class_from_llm(self).model_construct_env(**self._model_attrs)
|
|
self.__llm_config__ = config
|
|
return self.__llm_config__
|
|
|
|
@functools.lru_cache(maxsize=1)
|
|
def _torch_dtype_mapping() -> dict[str, torch.dtype]:
|
|
import torch; return {
|
|
'half': torch.float16, 'float16': torch.float16,
|
|
'float': torch.float32, 'float32': torch.float32,
|
|
'bfloat16': torch.bfloat16,
|
|
}
|
|
def normalise_model_name(name: str) -> str: return os.path.basename(resolve_filepath(name)) if validate_is_path(name) else inflection.dasherize(name.replace('/', '--'))
|
|
def convert_peft_config_type(adapter_map: dict[str, str]) -> AdapterMap:
|
|
if not is_peft_available(): raise RuntimeError("LoRA adapter requires 'peft' to be installed. Make sure to do 'pip install \"openllm[fine-tune]\"'")
|
|
from huggingface_hub import hf_hub_download
|
|
resolved: AdapterMap = {}
|
|
for path_or_adapter_id, name in adapter_map.items():
|
|
if name is None: raise ValueError('Adapter name must be specified.')
|
|
if os.path.isfile(os.path.join(path_or_adapter_id, PEFT_CONFIG_NAME)):
|
|
config_file = os.path.join(path_or_adapter_id, PEFT_CONFIG_NAME)
|
|
else:
|
|
try:
|
|
config_file = hf_hub_download(path_or_adapter_id, PEFT_CONFIG_NAME)
|
|
except Exception as err:
|
|
raise ValueError(f"Can't find '{PEFT_CONFIG_NAME}' at '{path_or_adapter_id}'") from err
|
|
with open(config_file, 'r') as file: resolved_config = orjson.loads(file.read())
|
|
_peft_type = resolved_config['peft_type'].lower()
|
|
if _peft_type not in resolved: resolved[_peft_type] = ()
|
|
resolved[_peft_type] += (_AdapterTuple((path_or_adapter_id, name, resolved_config)),)
|
|
return resolved
|