Files
OpenLLM/tools/update-readme.py
2023-07-20 07:46:33 -04:00

119 lines
4.3 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2023 BentoML Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import os
import typing as t
import inflection
import tomlkit
import openllm
START_COMMENT = f"<!-- {os.path.basename(__file__)}: start -->\n"
END_COMMENT = f"<!-- {os.path.basename(__file__)}: stop -->\n"
ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
def main() -> int:
with open(os.path.join(ROOT, "pyproject.toml"), "r") as f:
deps = tomlkit.parse(f.read()).value["project"]["optional-dependencies"]
with open(os.path.join(ROOT, "README.md"), "r") as f:
readme = f.readlines()
start_index, stop_index = readme.index(START_COMMENT), readme.index(END_COMMENT)
formatted: dict[
t.Literal["Model", "Architecture", "CPU", "GPU", "URL", "Installation", "Model Ids"], list[str | list[str]]
] = {
"Model": [],
"Architecture": [],
"URL": [],
"CPU": [],
"GPU": [],
"Model Ids": [],
"Installation": [],
}
max_install_len_div = 0
for name, config_cls in openllm.CONFIG_MAPPING.items():
dashed = inflection.dasherize(name)
formatted["Model"].append(dashed)
formatted["Architecture"].append(config_cls.__openllm_architecture__)
formatted["URL"].append(config_cls.__openllm_url__)
formatted["GPU"].append("")
formatted["CPU"].append("" if not config_cls.__openllm_requires_gpu__ else "")
formatted["Model Ids"].append(config_cls.__openllm_model_ids__)
if dashed in deps:
instruction = f'```bash\npip install "openllm[{dashed}]"\n```'
else:
instruction = "```bash\npip install openllm\n```"
if len(instruction) > max_install_len_div:
max_install_len_div = len(instruction)
formatted["Installation"].append(instruction)
meta: list[str] = ["\n", "<table align='center'>\n"]
# NOTE: headers
meta += ["<tr>\n"]
meta.extend([f"<th>{header}</th>\n" for header in formatted.keys() if header not in ("URL",)])
meta += ["</tr>\n"]
# NOTE: rows
for name, architecture, url, cpu, gpu, model_ids, installation in t.cast(
t.Iterable[t.Tuple[str, str, str, str, str, t.List[str], str]], zip(*formatted.values())
):
meta += "<tr>\n"
# configure architecture URL
cfg_cls = openllm.CONFIG_MAPPING[name]
if cfg_cls.__openllm_trust_remote_code__:
arch = f"<td><a href={url}><code>{architecture}</code></a></td>\n"
else:
model_name = {
"dolly_v2": "gpt_neox",
"stablelm": "gpt_neox",
"starcoder": "gpt_bigcode",
"flan_t5": "t5",
}.get(cfg_cls.__openllm_model_name__, cfg_cls.__openllm_model_name__)
arch = f"<td><a href=https://huggingface.co/docs/transformers/main/model_doc/{model_name}#transformers.{architecture}><code>{architecture}</code></a></td>\n"
meta.extend(
[
f"\n<td><a href={url}>{name}</a></td>\n",
arch,
f"<td>{cpu}</td>\n",
f"<td>{gpu}</td>\n",
]
)
format_with_links: list[str] = []
for lid in model_ids:
format_with_links.append(f"<li><a href=https://huggingface.co/{lid}><code>{lid}</code></a></li>")
meta.append("<td>\n\n<ul>" + "\n".join(format_with_links) + "</ul>\n\n</td>\n")
meta.append(f"<td>\n\n{installation}\n\n</td>\n")
meta += "</tr>\n"
meta.extend(["</table>\n", "\n"])
readme = readme[:start_index] + [START_COMMENT] + meta + [END_COMMENT] + readme[stop_index + 1 :]
with open(os.path.join(ROOT, "README.md"), "w") as f:
f.writelines(readme)
return 0
if __name__ == "__main__":
raise SystemExit(main())