mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-01-22 06:19:35 -05:00
85 lines
3.7 KiB
Python
Executable File
85 lines
3.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023 BentoML Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
import typing as t
|
|
|
|
import inflection
|
|
import tomlkit
|
|
|
|
import openllm
|
|
|
|
START_COMMENT = f"<!-- {os.path.basename(__file__)}: start -->\n"
|
|
END_COMMENT = f"<!-- {os.path.basename(__file__)}: stop -->\n"
|
|
|
|
ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
def main() -> int:
|
|
with open(os.path.join(ROOT, "pyproject.toml"), "r") as f:
|
|
deps = tomlkit.parse(f.read()).value["project"]["optional-dependencies"]
|
|
with open(os.path.join(ROOT, "README.md"), "r") as f:
|
|
readme = f.readlines()
|
|
|
|
start_index, stop_index = readme.index(START_COMMENT), readme.index(END_COMMENT)
|
|
formatted: dict[t.Literal["Model", "Architecture", "URL", "Installation", "Model Ids"], list[str | list[str]]] = {"Model": [], "Architecture": [], "URL": [], "Model Ids": [], "Installation": [],}
|
|
max_install_len_div = 0
|
|
for name, config_cls in openllm.CONFIG_MAPPING.items():
|
|
dashed = inflection.dasherize(name)
|
|
formatted["Model"].append(dashed)
|
|
formatted["Architecture"].append(config_cls.__openllm_architecture__)
|
|
formatted["URL"].append(config_cls.__openllm_url__)
|
|
formatted["Model Ids"].append(config_cls.__openllm_model_ids__)
|
|
if dashed in deps:
|
|
instruction = f'```bash\npip install "openllm[{dashed}]"\n```'
|
|
else:
|
|
instruction = "```bash\npip install openllm\n```"
|
|
if len(instruction) > max_install_len_div:
|
|
max_install_len_div = len(instruction)
|
|
formatted["Installation"].append(instruction)
|
|
|
|
meta: list[str] = ["\n", "<table align='center'>\n"]
|
|
|
|
# NOTE: headers
|
|
meta += ["<tr>\n"]
|
|
meta.extend([f"<th>{header}</th>\n" for header in formatted.keys() if header not in ("URL",)])
|
|
meta += ["</tr>\n"]
|
|
# NOTE: rows
|
|
for name, architecture, url, model_ids, installation in t.cast(t.Iterable[t.Tuple[str, str, str, t.List[str], str]], zip(*formatted.values())):
|
|
meta += "<tr>\n"
|
|
# configure architecture URL
|
|
cfg_cls = openllm.CONFIG_MAPPING[name]
|
|
if cfg_cls.__openllm_trust_remote_code__:
|
|
arch = f"<td><a href={url}><code>{architecture}</code></a></td>\n"
|
|
else:
|
|
model_name = {"dolly_v2": "gpt_neox", "stablelm": "gpt_neox", "starcoder": "gpt_bigcode", "flan_t5": "t5",}.get(cfg_cls.__openllm_model_name__, cfg_cls.__openllm_model_name__)
|
|
arch = f"<td><a href=https://huggingface.co/docs/transformers/main/model_doc/{model_name}#transformers.{architecture}><code>{architecture}</code></a></td>\n"
|
|
meta.extend([f"\n<td><a href={url}>{name}</a></td>\n", arch,])
|
|
format_with_links: list[str] = []
|
|
for lid in model_ids:
|
|
format_with_links.append(f"<li><a href=https://huggingface.co/{lid}><code>{lid}</code></a></li>")
|
|
meta.append("<td>\n\n<ul>" + "\n".join(format_with_links) + "</ul>\n\n</td>\n")
|
|
meta.append(f"<td>\n\n{installation}\n\n</td>\n")
|
|
meta += "</tr>\n"
|
|
meta.extend(["</table>\n", "\n"])
|
|
|
|
readme = readme[:start_index] + [START_COMMENT] + meta + [END_COMMENT] + readme[stop_index + 1:]
|
|
with open(os.path.join(ROOT, "README.md"), "w") as f:
|
|
f.writelines(readme)
|
|
return 0
|
|
|
|
if __name__ == "__main__": raise SystemExit(main())
|