Files
OpenLLM/openllm-python/src/openllm/bundle/_package.py
2023-08-30 13:52:35 -04:00

290 lines
14 KiB
Python

# mypy: disable-error-code="misc"
from __future__ import annotations
import importlib.metadata
import inspect
import logging
import os
import string
import typing as t
from pathlib import Path
import fs
import fs.copy
import fs.errors
import orjson
from simple_di import Provide
from simple_di import inject
import bentoml
import openllm_core
from bentoml._internal.bento.build_config import BentoBuildConfig
from bentoml._internal.bento.build_config import DockerOptions
from bentoml._internal.bento.build_config import ModelSpec
from bentoml._internal.bento.build_config import PythonOptions
from bentoml._internal.configuration.containers import BentoMLContainer
from . import oci
if t.TYPE_CHECKING:
from fs.base import FS
import openllm
from bentoml._internal.bento import BentoStore
from bentoml._internal.models.model import ModelStore
from openllm_core._typing_compat import LiteralContainerRegistry
from openllm_core._typing_compat import LiteralContainerVersionStrategy
from openllm_core._typing_compat import LiteralString
logger = logging.getLogger(__name__)
OPENLLM_DEV_BUILD = 'OPENLLM_DEV_BUILD'
def build_editable(path: str,
package: t.Literal['openllm', 'openllm_core', 'openllm_client'] = 'openllm') -> str | None:
'''Build OpenLLM if the OPENLLM_DEV_BUILD environment variable is set.'''
if str(os.environ.get(OPENLLM_DEV_BUILD, False)).lower() != 'true': return None
# We need to build the package in editable mode, so that we can import it
from build import ProjectBuilder
from build.env import IsolatedEnvBuilder
module_location = openllm_core.utils.pkg.source_locations(package)
if not module_location:
raise RuntimeError(
'Could not find the source location of OpenLLM. Make sure to unset OPENLLM_DEV_BUILD if you are developing OpenLLM.'
)
pyproject_path = Path(module_location).parent.parent / 'pyproject.toml'
if os.path.isfile(pyproject_path.__fspath__()):
logger.info('Generating built wheels for package %s...', package)
with IsolatedEnvBuilder() as env:
builder = ProjectBuilder(pyproject_path.parent)
builder.python_executable = env.executable
builder.scripts_dir = env.scripts_dir
env.install(builder.build_system_requires)
return builder.build('wheel', path, config_settings={'--global-option': '--quiet'})
raise RuntimeError(
'Custom OpenLLM build is currently not supported. Please install OpenLLM from PyPI or built it from Git source.')
def construct_python_options(llm: openllm.LLM[t.Any, t.Any],
llm_fs: FS,
extra_dependencies: tuple[str, ...] | None = None,
adapter_map: dict[str, str | None] | None = None,
) -> PythonOptions:
packages = ['openllm', 'scipy'] # apparently bnb misses this one
if adapter_map is not None: packages += ['openllm[fine-tune]']
# NOTE: add openllm to the default dependencies
# if users has openllm custom built wheels, it will still respect
# that since bentoml will always install dependencies from requirements.txt
# first, then proceed to install everything inside the wheels/ folder.
if extra_dependencies is not None: packages += [f'openllm[{k}]' for k in extra_dependencies]
req = llm.config['requirements']
if req is not None: packages.extend(req)
if str(os.environ.get('BENTOML_BUNDLE_LOCAL_BUILD', False)).lower() == 'false':
packages.append(f"bentoml>={'.'.join([str(i) for i in openllm_core.utils.pkg.pkg_version_info('bentoml')])}")
env = llm.config['env']
framework_envvar = env['framework_value']
if framework_envvar == 'flax':
if not openllm_core.utils.is_flax_available():
raise ValueError(f"Flax is not available, while {env.framework} is set to 'flax'")
packages.extend(
[importlib.metadata.version('flax'),
importlib.metadata.version('jax'),
importlib.metadata.version('jaxlib')])
elif framework_envvar == 'tf':
if not openllm_core.utils.is_tf_available():
raise ValueError(f"TensorFlow is not available, while {env.framework} is set to 'tf'")
candidates = ('tensorflow', 'tensorflow-cpu', 'tensorflow-gpu', 'tf-nightly', 'tf-nightly-cpu', 'tf-nightly-gpu',
'intel-tensorflow', 'intel-tensorflow-avx512', 'tensorflow-rocm', 'tensorflow-macos',
)
# For the metadata, we have to look for both tensorflow and tensorflow-cpu
for candidate in candidates:
try:
pkgver = importlib.metadata.version(candidate)
if pkgver == candidate: packages.extend(['tensorflow'])
else:
_tf_version = importlib.metadata.version(candidate)
packages.extend([f'tensorflow>={_tf_version}'])
break
except importlib.metadata.PackageNotFoundError:
pass # Ok to ignore here since we actually need to check for all possible tensorflow distribution.
else:
if not openllm_core.utils.is_torch_available():
raise ValueError('PyTorch is not available. Make sure to have it locally installed.')
packages.extend([f'torch>={importlib.metadata.version("torch")}'])
wheels: list[str] = []
built_wheels: list[str | None] = [
build_editable(llm_fs.getsyspath('/'), t.cast(t.Literal['openllm', 'openllm_core', 'openllm_client'], p))
for p in ('openllm_core', 'openllm_client', 'openllm')
]
if all(i for i in built_wheels):
wheels.extend([llm_fs.getsyspath(f"/{i.split('/')[-1]}") for i in t.cast(t.List[str], built_wheels)])
return PythonOptions(packages=packages,
wheels=wheels,
lock_packages=False,
extra_index_url=['https://download.pytorch.org/whl/cu118'])
def construct_docker_options(llm: openllm.LLM[t.Any, t.Any], _: FS, workers_per_resource: float,
quantize: LiteralString | None, bettertransformer: bool | None,
adapter_map: dict[str, str | None] | None, dockerfile_template: str | None,
runtime: t.Literal['ggml', 'transformers'], serialisation_format: t.Literal['safetensors',
'legacy'],
container_registry: LiteralContainerRegistry,
container_version_strategy: LiteralContainerVersionStrategy) -> DockerOptions:
from openllm.cli._factory import parse_config_options
environ = parse_config_options(llm.config, llm.config['timeout'], workers_per_resource, None, True, os.environ.copy())
env: openllm_core.utils.EnvVarMixin = llm.config['env']
if env['framework_value'] == 'vllm': serialisation_format = 'legacy'
env_dict = {
env.framework: env['framework_value'],
env.config: f"'{llm.config.model_dump_json().decode()}'",
env.model_id: f'/home/bentoml/bento/models/{llm.tag.path()}',
'OPENLLM_MODEL': llm.config['model_name'],
'OPENLLM_SERIALIZATION': serialisation_format,
'OPENLLM_ADAPTER_MAP': f"'{orjson.dumps(adapter_map).decode()}'",
'BENTOML_DEBUG': str(True),
'BENTOML_QUIET': str(False),
'BENTOML_CONFIG_OPTIONS': f"'{environ['BENTOML_CONFIG_OPTIONS']}'",
}
if adapter_map: env_dict['BITSANDBYTES_NOWELCOME'] = os.environ.get('BITSANDBYTES_NOWELCOME', '1')
# We need to handle None separately here, as env from subprocess doesn't accept None value.
_env = openllm_core.utils.EnvVarMixin(llm.config['model_name'],
bettertransformer=bettertransformer,
quantize=quantize,
runtime=runtime)
env_dict[_env.bettertransformer] = str(_env['bettertransformer_value'])
if _env['quantize_value'] is not None: env_dict[_env.quantize] = t.cast(str, _env['quantize_value'])
env_dict[_env.runtime] = _env['runtime_value']
return DockerOptions(
base_image=f'{oci.CONTAINER_NAMES[container_registry]}:{oci.get_base_container_tag(container_version_strategy)}',
env=env_dict,
dockerfile_template=dockerfile_template)
OPENLLM_MODEL_NAME = '# openllm: model name'
OPENLLM_MODEL_ADAPTER_MAP = '# openllm: model adapter map'
class ModelNameFormatter(string.Formatter):
model_keyword: LiteralString = '__model_name__'
def __init__(self, model_name: str):
"""The formatter that extends model_name to be formatted the 'service.py'."""
super().__init__()
self.model_name = model_name
def vformat(self, format_string: str, *args: t.Any, **attrs: t.Any) -> t.Any:
return super().vformat(format_string, (), {self.model_keyword: self.model_name})
def can_format(self, value: str) -> bool:
try:
self.parse(value)
return True
except ValueError:
return False
class ModelIdFormatter(ModelNameFormatter):
model_keyword: LiteralString = '__model_id__'
class ModelAdapterMapFormatter(ModelNameFormatter):
model_keyword: LiteralString = '__model_adapter_map__'
_service_file = Path(os.path.abspath(__file__)).parent.parent / '_service.py'
def write_service(llm: openllm.LLM[t.Any, t.Any], adapter_map: dict[str, str | None] | None, llm_fs: FS) -> None:
from openllm_core.utils import DEBUG
model_name = llm.config['model_name']
logger.debug('Generating service file for %s at %s (dir=%s)', model_name, llm.config['service_name'],
llm_fs.getsyspath('/'))
with open(_service_file.__fspath__(), 'r') as f:
src_contents = f.readlines()
for it in src_contents:
if OPENLLM_MODEL_NAME in it:
src_contents[src_contents.index(it)] = (
ModelNameFormatter(model_name).vformat(it)[:-(len(OPENLLM_MODEL_NAME) + 3)] + '\n')
elif OPENLLM_MODEL_ADAPTER_MAP in it:
src_contents[src_contents.index(it)] = (ModelAdapterMapFormatter(
orjson.dumps(adapter_map).decode()).vformat(it)[:-(len(OPENLLM_MODEL_ADAPTER_MAP) + 3)] + '\n')
script = f"# GENERATED BY 'openllm build {model_name}'. DO NOT EDIT\n\n" + ''.join(src_contents)
if DEBUG: logger.info('Generated script:\n%s', script)
llm_fs.writetext(llm.config['service_name'], script)
@inject
def create_bento(bento_tag: bentoml.Tag,
llm_fs: FS,
llm: openllm.LLM[t.Any, t.Any],
workers_per_resource: str | float,
quantize: LiteralString | None,
bettertransformer: bool | None,
dockerfile_template: str | None,
adapter_map: dict[str, str | None] | None = None,
extra_dependencies: tuple[str, ...] | None = None,
runtime: t.Literal['ggml', 'transformers'] = 'transformers',
serialisation_format: t.Literal['safetensors', 'legacy'] = 'safetensors',
container_registry: LiteralContainerRegistry = 'ecr',
container_version_strategy: LiteralContainerVersionStrategy = 'release',
_bento_store: BentoStore = Provide[BentoMLContainer.bento_store],
_model_store: ModelStore = Provide[BentoMLContainer.model_store]) -> bentoml.Bento:
framework_envvar = llm.config['env']['framework_value']
labels = dict(llm.identifying_params)
labels.update({
'_type': llm.llm_type,
'_framework': framework_envvar,
'start_name': llm.config['start_name'],
'base_name_or_path': llm.model_id,
'bundler': 'openllm.bundle'
})
if adapter_map: labels.update(adapter_map)
if isinstance(workers_per_resource, str):
if workers_per_resource == 'round_robin': workers_per_resource = 1.0
elif workers_per_resource == 'conserved':
workers_per_resource = 1.0 if openllm_core.utils.device_count() == 0 else float(1 /
openllm_core.utils.device_count())
else:
try:
workers_per_resource = float(workers_per_resource)
except ValueError:
raise ValueError(
"'workers_per_resource' only accept ['round_robin', 'conserved'] as possible strategies.") from None
elif isinstance(workers_per_resource, int):
workers_per_resource = float(workers_per_resource)
logger.info("Building Bento for '%s'", llm.config['start_name'])
# add service.py definition to this temporary folder
write_service(llm, adapter_map, llm_fs)
llm_spec = ModelSpec.from_item({'tag': str(llm.tag), 'alias': llm.tag.name})
build_config = BentoBuildConfig(service=f"{llm.config['service_name']}:svc",
name=bento_tag.name,
labels=labels,
description=f"OpenLLM service for {llm.config['start_name']}",
include=list(llm_fs.walk.files()),
exclude=['/venv', '/.venv', '__pycache__/', '*.py[cod]', '*$py.class'],
python=construct_python_options(llm, llm_fs, extra_dependencies, adapter_map),
models=[llm_spec],
docker=construct_docker_options(llm, llm_fs, workers_per_resource, quantize,
bettertransformer, adapter_map, dockerfile_template,
runtime, serialisation_format, container_registry,
container_version_strategy))
bento = bentoml.Bento.create(build_config=build_config, version=bento_tag.version, build_ctx=llm_fs.getsyspath('/'))
# NOTE: the model_id_path here are only used for setting this environment variable within the container built with for BentoLLM.
service_fs_path = fs.path.join('src', llm.config['service_name'])
service_path = bento._fs.getsyspath(service_fs_path)
with open(service_path, 'r') as f:
service_contents = f.readlines()
for it in service_contents:
if '__bento_name__' in it: service_contents[service_contents.index(it)] = it.format(__bento_name__=str(bento.tag))
script = ''.join(service_contents)
if openllm_core.utils.DEBUG: logger.info('Generated script:\n%s', script)
bento._fs.writetext(service_fs_path, script)
if 'model_store' in inspect.signature(bento.save).parameters:
return bento.save(bento_store=_bento_store, model_store=_model_store)
# backward arguments. `model_store` is added recently
return bento.save(bento_store=_bento_store)