mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-02-19 15:18:12 -05:00
Generally correctly format it with ruff format and manual style Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
86 lines
3.2 KiB
Python
86 lines
3.2 KiB
Python
from __future__ import annotations
|
|
import importlib, typing as t
|
|
from openllm_core._typing_compat import M, ParamSpec, T, TypeGuard, Concatenate
|
|
from openllm_core.exceptions import OpenLLMException
|
|
|
|
if t.TYPE_CHECKING:
|
|
from bentoml import Model
|
|
from .._llm import LLM
|
|
|
|
P = ParamSpec('P')
|
|
|
|
|
|
def load_tokenizer(llm: LLM[M, T], **tokenizer_attrs: t.Any) -> TypeGuard[T]:
|
|
import cloudpickle, fs, transformers
|
|
from bentoml._internal.models.model import CUSTOM_OBJECTS_FILENAME
|
|
from .transformers._helpers import process_config
|
|
|
|
tokenizer_attrs = {**llm.llm_parameters[-1], **tokenizer_attrs}
|
|
|
|
config, *_ = process_config(llm.bentomodel.path, llm.trust_remote_code)
|
|
|
|
bentomodel_fs = fs.open_fs(llm.bentomodel.path)
|
|
if bentomodel_fs.isfile(CUSTOM_OBJECTS_FILENAME):
|
|
with bentomodel_fs.open(CUSTOM_OBJECTS_FILENAME, 'rb') as cofile:
|
|
try:
|
|
tokenizer = cloudpickle.load(cofile)['tokenizer']
|
|
except KeyError:
|
|
raise OpenLLMException(
|
|
"Bento model does not have tokenizer. Make sure to save the tokenizer within the model via 'custom_objects'. "
|
|
'For example: "bentoml.transformers.save_model(..., custom_objects={\'tokenizer\': tokenizer})"'
|
|
) from None
|
|
else:
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(bentomodel_fs.getsyspath('/'), trust_remote_code=llm.trust_remote_code, **tokenizer_attrs)
|
|
|
|
if tokenizer.pad_token_id is None:
|
|
if config.pad_token_id is not None:
|
|
tokenizer.pad_token_id = config.pad_token_id
|
|
elif config.eos_token_id is not None:
|
|
tokenizer.pad_token_id = config.eos_token_id
|
|
elif tokenizer.eos_token_id is not None:
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
return tokenizer
|
|
|
|
|
|
def _make_dispatch_function(fn: str) -> t.Callable[Concatenate[LLM[M, T], P], TypeGuard[M | T | Model]]:
|
|
def caller(llm: LLM[M, T], *args: P.args, **kwargs: P.kwargs) -> TypeGuard[M | T | Model]:
|
|
"""Generic function dispatch to correct serialisation submodules based on LLM runtime.
|
|
|
|
> [!NOTE] See 'openllm.serialisation.transformers' if 'llm.__llm_backend__ in ("pt", "vllm")'
|
|
|
|
> [!NOTE] See 'openllm.serialisation.ggml' if 'llm.__llm_backend__="ggml"'
|
|
|
|
> [!NOTE] See 'openllm.serialisation.ctranslate' if 'llm.__llm_backend__="ctranslate"'
|
|
"""
|
|
if llm.__llm_backend__ == 'ggml':
|
|
serde = 'ggml'
|
|
elif llm.__llm_backend__ == 'ctranslate':
|
|
serde = 'ctranslate'
|
|
elif llm.__llm_backend__ in {'pt', 'vllm'}:
|
|
serde = 'transformers'
|
|
else:
|
|
raise OpenLLMException(f'Not supported backend {llm.__llm_backend__}')
|
|
return getattr(importlib.import_module(f'.{serde}', 'openllm.serialisation'), fn)(llm, *args, **kwargs)
|
|
|
|
return caller
|
|
|
|
|
|
_extras = ['get', 'import_model', 'load_model']
|
|
_import_structure = {'ggml', 'transformers', 'ctranslate', 'constants'}
|
|
__all__ = ['load_tokenizer', *_extras, *_import_structure]
|
|
|
|
|
|
def __dir__() -> t.Sequence[str]:
|
|
return sorted(__all__)
|
|
|
|
|
|
def __getattr__(name: str) -> t.Any:
|
|
if name == 'load_tokenizer':
|
|
return load_tokenizer
|
|
elif name in _import_structure:
|
|
return importlib.import_module(f'.{name}', __name__)
|
|
elif name in _extras:
|
|
return _make_dispatch_function(name)
|
|
else:
|
|
raise AttributeError(f'{__name__} has no attribute {name}')
|