mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-01-28 09:21:59 -05:00
* chore(service): cleanup API Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com> * chore: running tools Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com> * fix: tests import Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com> --------- Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
360 lines
15 KiB
Python
360 lines
15 KiB
Python
# mypy: disable-error-code="no-redef"
|
|
from __future__ import annotations
|
|
import inspect
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
import types
|
|
import typing as t
|
|
import warnings
|
|
|
|
import psutil
|
|
|
|
import bentoml
|
|
|
|
from bentoml._internal.resource import get_resource
|
|
from bentoml._internal.resource import system_resources
|
|
from bentoml._internal.runner.strategy import THREAD_ENVS
|
|
from openllm_core._typing_compat import overload
|
|
from openllm_core.utils import DEBUG
|
|
from openllm_core.utils import ReprMixin
|
|
|
|
class DynResource(t.Protocol):
|
|
resource_id: t.ClassVar[str]
|
|
|
|
@classmethod
|
|
def from_system(cls) -> t.Sequence[t.Any]:
|
|
...
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
def _strtoul(s: str) -> int:
|
|
"""Return -1 or positive integer sequence string starts with,."""
|
|
if not s: return -1
|
|
idx = 0
|
|
for idx, c in enumerate(s):
|
|
if not (c.isdigit() or (idx == 0 and c in '+-')): break
|
|
if idx + 1 == len(s): idx += 1 # noqa: PLW2901
|
|
# NOTE: idx will be set via enumerate
|
|
return int(s[:idx]) if idx > 0 else -1
|
|
|
|
def _parse_list_with_prefix(lst: str, prefix: str) -> list[str]:
|
|
rcs: list[str] = []
|
|
for elem in lst.split(','):
|
|
# Repeated id results in empty set
|
|
if elem in rcs: return []
|
|
# Anything other but prefix is ignored
|
|
if not elem.startswith(prefix): break
|
|
rcs.append(elem)
|
|
return rcs
|
|
|
|
_STACK_LEVEL = 3
|
|
|
|
@overload # variant: default callback
|
|
def _parse_visible_devices() -> list[str] | None:
|
|
...
|
|
|
|
@overload # variant: specify None, and respect_env
|
|
def _parse_visible_devices(default_var: None, *, respect_env: t.Literal[True]) -> list[str] | None:
|
|
...
|
|
|
|
@overload # variant: default var is something other than None
|
|
def _parse_visible_devices(default_var: str = ..., *, respect_env: t.Literal[False]) -> list[str]:
|
|
...
|
|
|
|
def _parse_visible_devices(default_var: str | None = None, respect_env: bool = True) -> list[str] | None:
|
|
"""CUDA_VISIBLE_DEVICES aware with default var for parsing spec."""
|
|
if respect_env:
|
|
spec = os.environ.get('CUDA_VISIBLE_DEVICES', default_var)
|
|
if not spec: return None
|
|
else:
|
|
if default_var is None: raise ValueError('spec is required to be not None when parsing spec.')
|
|
spec = default_var
|
|
|
|
if spec.startswith('GPU-'): return _parse_list_with_prefix(spec, 'GPU-')
|
|
if spec.startswith('MIG-'): return _parse_list_with_prefix(spec, 'MIG-')
|
|
# XXX: We need to somehow handle cases such as '100m'
|
|
# CUDA_VISIBLE_DEVICES uses something like strtoul
|
|
# which makes `1gpu2,2ampere` is equivalent to `1,2`
|
|
rc: list[int] = []
|
|
for el in spec.split(','):
|
|
x = _strtoul(el.strip())
|
|
# Repeated ordinal results in empty set
|
|
if x in rc: return []
|
|
# Negative value aborts the sequence
|
|
if x < 0: break
|
|
rc.append(x)
|
|
return [str(i) for i in rc]
|
|
|
|
def _from_system(cls: type[DynResource]) -> list[str]:
|
|
visible_devices = _parse_visible_devices()
|
|
if visible_devices is None:
|
|
if cls.resource_id == 'amd.com/gpu':
|
|
if not psutil.LINUX:
|
|
if DEBUG: logger.debug('AMD GPUs is currently only supported on Linux.')
|
|
return []
|
|
# ROCm does not currently have the rocm_smi wheel.
|
|
# So we need to use the ctypes bindings directly.
|
|
# we don't want to use CLI because parsing is a pain.
|
|
sys.path.append('/opt/rocm/libexec/rocm_smi')
|
|
try:
|
|
from ctypes import byref
|
|
from ctypes import c_uint32
|
|
|
|
# refers to https://github.com/RadeonOpenCompute/rocm_smi_lib/blob/master/python_smi_tools/rsmiBindings.py
|
|
from rsmiBindings import rocmsmi
|
|
from rsmiBindings import rsmi_status_t
|
|
|
|
device_count = c_uint32(0)
|
|
ret = rocmsmi.rsmi_num_monitor_devices(byref(device_count))
|
|
if ret == rsmi_status_t.RSMI_STATUS_SUCCESS: return [str(i) for i in range(device_count.value)]
|
|
return []
|
|
# In this case the binary is not found, returning empty list
|
|
except (ModuleNotFoundError, ImportError):
|
|
return []
|
|
finally:
|
|
sys.path.remove('/opt/rocm/libexec/rocm_smi')
|
|
else:
|
|
try:
|
|
from cuda import cuda
|
|
cuda.cuInit(0)
|
|
_, dev = cuda.cuDeviceGetCount()
|
|
return [str(i) for i in range(dev)]
|
|
except (ImportError, RuntimeError, AttributeError):
|
|
return []
|
|
return visible_devices
|
|
|
|
@overload
|
|
def _from_spec(cls: type[DynResource], spec: int) -> list[str]:
|
|
...
|
|
|
|
@overload
|
|
def _from_spec(cls: type[DynResource], spec: list[int | str]) -> list[str]:
|
|
...
|
|
|
|
@overload
|
|
def _from_spec(cls: type[DynResource], spec: str) -> list[str]:
|
|
...
|
|
|
|
def _from_spec(cls: type[DynResource], spec: t.Any) -> list[str]:
|
|
if isinstance(spec, int):
|
|
if spec in (-1, 0): return []
|
|
if spec < -1: raise ValueError('Spec cannot be < -1.')
|
|
return [str(i) for i in range(spec)]
|
|
elif isinstance(spec, str):
|
|
if not spec: return []
|
|
if spec.isdigit(): spec = ','.join([str(i) for i in range(_strtoul(spec))])
|
|
return _parse_visible_devices(spec, respect_env=False)
|
|
elif isinstance(spec, list):
|
|
return [str(x) for x in spec]
|
|
else:
|
|
raise TypeError(f"'{cls.__name__}.from_spec' only supports parsing spec of type int, str, or list, got '{type(spec)}' instead.")
|
|
|
|
def _raw_device_uuid_nvml() -> list[str] | None:
|
|
from ctypes import CDLL
|
|
from ctypes import byref
|
|
from ctypes import c_int
|
|
from ctypes import c_void_p
|
|
from ctypes import create_string_buffer
|
|
|
|
try:
|
|
nvml_h = CDLL('libnvidia-ml.so.1')
|
|
except Exception:
|
|
warnings.warn('Failed to find nvidia binding', stacklevel=_STACK_LEVEL)
|
|
return None
|
|
|
|
rc = nvml_h.nvmlInit()
|
|
if rc != 0:
|
|
warnings.warn("Can't initialize NVML", stacklevel=_STACK_LEVEL)
|
|
return None
|
|
dev_count = c_int(-1)
|
|
rc = nvml_h.nvmlDeviceGetCount_v2(byref(dev_count))
|
|
if rc != 0:
|
|
warnings.warn('Failed to get available device from system.', stacklevel=_STACK_LEVEL)
|
|
return None
|
|
uuids: list[str] = []
|
|
for idx in range(dev_count.value):
|
|
dev_id = c_void_p()
|
|
rc = nvml_h.nvmlDeviceGetHandleByIndex_v2(idx, byref(dev_id))
|
|
if rc != 0:
|
|
warnings.warn(f'Failed to get device handle for {idx}', stacklevel=_STACK_LEVEL)
|
|
return None
|
|
buf_len = 96
|
|
buf = create_string_buffer(buf_len)
|
|
rc = nvml_h.nvmlDeviceGetUUID(dev_id, buf, buf_len)
|
|
if rc != 0:
|
|
warnings.warn(f'Failed to get device UUID for {idx}', stacklevel=_STACK_LEVEL)
|
|
return None
|
|
uuids.append(buf.raw.decode('ascii').strip('\0'))
|
|
del nvml_h
|
|
return uuids
|
|
|
|
def _validate(cls: type[DynResource], val: list[t.Any]) -> None:
|
|
if cls.resource_id == 'amd.com/gpu':
|
|
raise RuntimeError("AMD GPU validation is not yet supported. Make sure to call 'get_resource(..., validate=False)'")
|
|
if not all(isinstance(i, str) for i in val): raise ValueError('Input list should be all string type.')
|
|
|
|
try:
|
|
from cuda import cuda
|
|
|
|
err, *_ = cuda.cuInit(0)
|
|
if err != cuda.CUresult.CUDA_SUCCESS:
|
|
raise RuntimeError('Failed to initialise CUDA runtime binding.')
|
|
# correctly parse handle
|
|
for el in val:
|
|
if el.startswith('GPU-') or el.startswith('MIG-'):
|
|
uuids = _raw_device_uuid_nvml()
|
|
if uuids is None: raise ValueError('Failed to parse available GPUs UUID')
|
|
if el not in uuids: raise ValueError(f'Given UUID {el} is not found with available UUID (available: {uuids})')
|
|
elif el.isdigit():
|
|
err, _ = cuda.cuDeviceGet(int(el))
|
|
if err != cuda.CUresult.CUDA_SUCCESS: raise ValueError(f'Failed to get device {el}')
|
|
except (ImportError, RuntimeError):
|
|
pass
|
|
|
|
def _make_resource_class(name: str, resource_kind: str, docstring: str) -> type[DynResource]:
|
|
return types.new_class(
|
|
name, (bentoml.Resource[t.List[str]], ReprMixin), {'resource_id': resource_kind}, lambda ns: ns.update({
|
|
'resource_id': resource_kind,
|
|
'from_spec': classmethod(_from_spec),
|
|
'from_system': classmethod(_from_system),
|
|
'validate': classmethod(_validate),
|
|
'__repr_keys__': property(lambda _: {'resource_id'}),
|
|
'__doc__': inspect.cleandoc(docstring),
|
|
'__module__': 'openllm._strategies'
|
|
}))
|
|
|
|
# NOTE: we need to hint these t.Literal since mypy is to dumb to infer this as literal 🤦
|
|
_TPU_RESOURCE: t.Literal['cloud-tpus.google.com/v2'] = 'cloud-tpus.google.com/v2'
|
|
_AMD_GPU_RESOURCE: t.Literal['amd.com/gpu'] = 'amd.com/gpu'
|
|
_NVIDIA_GPU_RESOURCE: t.Literal['nvidia.com/gpu'] = 'nvidia.com/gpu'
|
|
_CPU_RESOURCE: t.Literal['cpu'] = 'cpu'
|
|
|
|
NvidiaGpuResource = _make_resource_class(
|
|
'NvidiaGpuResource', _NVIDIA_GPU_RESOURCE, '''NVIDIA GPU resource.
|
|
|
|
This is a modified version of internal's BentoML's NvidiaGpuResource
|
|
where it respects and parse CUDA_VISIBLE_DEVICES correctly.''')
|
|
AmdGpuResource = _make_resource_class(
|
|
'AmdGpuResource', _AMD_GPU_RESOURCE, '''AMD GPU resource.
|
|
|
|
Since ROCm will respect CUDA_VISIBLE_DEVICES, the behaviour of from_spec, from_system are similar to
|
|
``NvidiaGpuResource``. Currently ``validate`` is not yet supported.''')
|
|
|
|
class CascadingResourceStrategy(bentoml.Strategy, ReprMixin):
|
|
"""This is extends the default BentoML strategy where we check for NVIDIA GPU resource -> AMD GPU resource -> CPU resource.
|
|
|
|
It also respect CUDA_VISIBLE_DEVICES for both AMD and NVIDIA GPU.
|
|
See https://rocm.docs.amd.com/en/develop/understand/gpu_isolation.html#cuda-visible-devices
|
|
for ROCm's support for CUDA_VISIBLE_DEVICES.
|
|
|
|
TODO: Support CloudTPUResource
|
|
"""
|
|
@classmethod
|
|
def get_worker_count(cls, runnable_class: type[bentoml.Runnable], resource_request: dict[str, t.Any] | None, workers_per_resource: float) -> int:
|
|
"""Return the number of workers to be used for the given runnable class.
|
|
|
|
Note that for all available GPU, the number of workers will always be 1.
|
|
"""
|
|
if resource_request is None: resource_request = system_resources()
|
|
# use NVIDIA
|
|
kind = 'nvidia.com/gpu'
|
|
nvidia_req = get_resource(resource_request, kind)
|
|
if nvidia_req is not None: return 1
|
|
# use AMD
|
|
kind = 'amd.com/gpu'
|
|
amd_req = get_resource(resource_request, kind, validate=False)
|
|
if amd_req is not None: return 1
|
|
# use CPU
|
|
cpus = get_resource(resource_request, 'cpu')
|
|
if cpus is not None and cpus > 0:
|
|
if 'cpu' not in runnable_class.SUPPORTED_RESOURCES:
|
|
logger.warning('No known supported resource available for %s, falling back to using CPU.', runnable_class)
|
|
|
|
if runnable_class.SUPPORTS_CPU_MULTI_THREADING:
|
|
if isinstance(workers_per_resource, float) and workers_per_resource < 1.0:
|
|
raise ValueError('Fractional CPU multi threading support is not yet supported.')
|
|
return int(workers_per_resource)
|
|
return math.ceil(cpus) * workers_per_resource
|
|
|
|
# this should not be reached by user since we always read system resource as default
|
|
raise ValueError(f'No known supported resource available for {runnable_class}. Please check your resource request. Leaving it blank will allow BentoML to use system resources.')
|
|
|
|
@classmethod
|
|
def get_worker_env(cls, runnable_class: type[bentoml.Runnable], resource_request: dict[str, t.Any] | None, workers_per_resource: int | float, worker_index: int) -> dict[str, t.Any]:
|
|
"""Get worker env for this given worker_index.
|
|
|
|
Args:
|
|
runnable_class: The runnable class to be run.
|
|
resource_request: The resource request of the runnable.
|
|
workers_per_resource: # of workers per resource.
|
|
worker_index: The index of the worker, start from 0.
|
|
"""
|
|
cuda_env = os.environ.get('CUDA_VISIBLE_DEVICES', None)
|
|
disabled = cuda_env in ('', '-1')
|
|
environ: dict[str, t.Any] = {}
|
|
|
|
if resource_request is None: resource_request = system_resources()
|
|
# use NVIDIA
|
|
kind = 'nvidia.com/gpu'
|
|
typ = get_resource(resource_request, kind)
|
|
if typ is not None and len(typ) > 0 and kind in runnable_class.SUPPORTED_RESOURCES:
|
|
if disabled:
|
|
logger.debug('CUDA_VISIBLE_DEVICES is disabled, %s will not be using GPU.', worker_index)
|
|
environ['CUDA_VISIBLE_DEVICES'] = cuda_env
|
|
return environ
|
|
environ['CUDA_VISIBLE_DEVICES'] = cls.transpile_workers_to_cuda_envvar(workers_per_resource, typ, worker_index)
|
|
logger.debug('Environ for worker %s: %s', worker_index, environ)
|
|
return environ
|
|
# use AMD
|
|
kind = 'amd.com/gpu'
|
|
typ = get_resource(resource_request, kind, validate=False)
|
|
if typ is not None and len(typ) > 0 and kind in runnable_class.SUPPORTED_RESOURCES:
|
|
if disabled:
|
|
logger.debug('CUDA_VISIBLE_DEVICES is disabled, %s will not be using GPU.', worker_index)
|
|
environ['CUDA_VISIBLE_DEVICES'] = cuda_env
|
|
return environ
|
|
environ['CUDA_VISIBLE_DEVICES'] = cls.transpile_workers_to_cuda_envvar(workers_per_resource, typ, worker_index)
|
|
logger.debug('Environ for worker %s: %s', worker_index, environ)
|
|
return environ
|
|
# use CPU
|
|
cpus = get_resource(resource_request, 'cpu')
|
|
if cpus is not None and cpus > 0:
|
|
environ['CUDA_VISIBLE_DEVICES'] = '-1' # disable gpu
|
|
if runnable_class.SUPPORTS_CPU_MULTI_THREADING:
|
|
thread_count = math.ceil(cpus)
|
|
for thread_env in THREAD_ENVS:
|
|
environ[thread_env] = os.environ.get(thread_env, str(thread_count))
|
|
logger.debug('Environ for worker %s: %s', worker_index, environ)
|
|
return environ
|
|
for thread_env in THREAD_ENVS:
|
|
environ[thread_env] = os.environ.get(thread_env, '1')
|
|
return environ
|
|
return environ
|
|
|
|
@staticmethod
|
|
def transpile_workers_to_cuda_envvar(workers_per_resource: float | int, gpus: list[str], worker_index: int) -> str:
|
|
# Convert given workers_per_resource to correct CUDA_VISIBLE_DEVICES string.
|
|
if isinstance(workers_per_resource, float):
|
|
# NOTE: We hit this branch when workers_per_resource is set to
|
|
# float, for example 0.5 or 0.25
|
|
if workers_per_resource > 1:
|
|
raise ValueError("Currently, the default strategy doesn't support workers_per_resource > 1. It is recommended that one should implement a custom strategy in this case.")
|
|
# We are round the assigned resource here. This means if workers_per_resource=.4
|
|
# then it will round down to 2. If workers_per_source=0.6, then it will also round up to 2.
|
|
assigned_resource_per_worker = round(1 / workers_per_resource)
|
|
if len(gpus) < assigned_resource_per_worker:
|
|
logger.warning('Failed to allocate %s GPUs for %s (number of available GPUs < assigned workers per resource [%s])', gpus, worker_index, assigned_resource_per_worker)
|
|
raise IndexError(f"There aren't enough assigned GPU(s) for given worker id '{worker_index}' [required: {assigned_resource_per_worker}].")
|
|
assigned_gpu = gpus[assigned_resource_per_worker * worker_index:assigned_resource_per_worker * (worker_index + 1)]
|
|
dev = ','.join(assigned_gpu)
|
|
else:
|
|
idx = worker_index // workers_per_resource
|
|
if idx >= len(gpus):
|
|
raise ValueError(f'Number of available GPU ({gpus}) preceeds the given workers_per_resource {workers_per_resource}')
|
|
dev = str(gpus[idx])
|
|
return dev
|
|
|
|
__all__ = ['CascadingResourceStrategy', 'get_resource']
|