mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-01-19 04:51:18 -05:00
146 lines
6.0 KiB
Python
146 lines
6.0 KiB
Python
# mypy: disable-error-code="name-defined,no-redef"
|
|
from __future__ import annotations
|
|
import logging
|
|
import typing as t
|
|
|
|
import torch
|
|
import transformers
|
|
|
|
from openllm_core._typing_compat import LiteralQuantise
|
|
from openllm_core._typing_compat import overload
|
|
from openllm_core.exceptions import MissingDependencyError
|
|
from openllm_core.utils import is_autoawq_available
|
|
from openllm_core.utils import is_autogptq_available
|
|
from openllm_core.utils import is_bitsandbytes_available
|
|
from openllm_core.utils import is_optimum_supports_gptq
|
|
|
|
|
|
if t.TYPE_CHECKING:
|
|
from openllm_core._typing_compat import DictStrAny
|
|
|
|
from ._llm import LLM
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@overload
|
|
def infer_quantisation_config(
|
|
self: LLM[t.Any, t.Any], quantise: t.Literal['int8', 'int4'], **attrs: t.Any
|
|
) -> tuple[transformers.BitsAndBytesConfig, DictStrAny]: ...
|
|
|
|
|
|
@overload
|
|
def infer_quantisation_config(
|
|
self: LLM[t.Any, t.Any], quantise: t.Literal['gptq'], **attrs: t.Any
|
|
) -> tuple[transformers.GPTQConfig, DictStrAny]: ...
|
|
|
|
|
|
@overload
|
|
def infer_quantisation_config(
|
|
self: LLM[t.Any, t.Any], quantise: t.Literal['awq'], **attrs: t.Any
|
|
) -> tuple[transformers.AwqConfig, DictStrAny]: ...
|
|
|
|
|
|
def infer_quantisation_config(
|
|
self: LLM[t.Any, t.Any], quantise: LiteralQuantise, **attrs: t.Any
|
|
) -> tuple[transformers.BitsAndBytesConfig | transformers.GPTQConfig | transformers.AwqConfig, DictStrAny]:
|
|
# 8 bit configuration
|
|
int8_threshold = attrs.pop('llm_int8_threshhold', 6.0)
|
|
int8_enable_fp32_cpu_offload = attrs.pop('llm_int8_enable_fp32_cpu_offload', False)
|
|
int8_skip_modules: list[str] | None = attrs.pop('llm_int8_skip_modules', None)
|
|
int8_has_fp16_weight = attrs.pop('llm_int8_has_fp16_weight', False)
|
|
|
|
# shared arguments for gptq and awq
|
|
bits = attrs.pop('bits', 4)
|
|
group_size = attrs.pop('group_size', 128)
|
|
|
|
def create_awq_config() -> transformers.AwqConfig:
|
|
zero_point = attrs.pop('zero_point', True)
|
|
return transformers.AwqConfig(bits=bits, group_size=group_size, zero_point=zero_point)
|
|
|
|
def create_gptq_config() -> transformers.GPTQConfig:
|
|
gptq_tokenizer = attrs.pop('tokenizer', self.model_id)
|
|
gptq_dataset = attrs.pop('dataset', 'c4')
|
|
gptq_damp_percent = attrs.pop('damp_percent', 0.1)
|
|
gptq_desc_act = attrs.pop('desc_act', False)
|
|
gptq_sym = attrs.pop('sym', True)
|
|
gptq_true_sequential = attrs.pop('true_sequential', True)
|
|
gptq_use_cuda_fp16 = attrs.pop('use_cuda_fp16', True if torch.cuda.is_available() else False)
|
|
gptq_model_seqlen = attrs.pop('model_seqlen', None)
|
|
gptq_block_name_to_quantize = attrs.pop('block_name_to_quantize', None)
|
|
gptq_module_name_preceding_first_block = attrs.pop('module_name_preceding_first_block', None)
|
|
gptq_batch_size = attrs.pop('batch_size', 1)
|
|
gptq_pad_token_id = attrs.pop('pad_token_id', None)
|
|
disable_exllama = attrs.pop('disable_exllama', False) # backward compatibility
|
|
gptq_use_exllama = attrs.pop('use_exllama', True)
|
|
if disable_exllama:
|
|
gptq_use_exllama = False
|
|
return transformers.GPTQConfig(
|
|
bits=bits,
|
|
tokenizer=gptq_tokenizer,
|
|
dataset=gptq_dataset,
|
|
group_size=group_size,
|
|
damp_percent=gptq_damp_percent,
|
|
desc_act=gptq_desc_act,
|
|
sym=gptq_sym,
|
|
true_sequential=gptq_true_sequential,
|
|
use_cuda_fp16=gptq_use_cuda_fp16,
|
|
model_seqlen=gptq_model_seqlen,
|
|
block_name_to_quantize=gptq_block_name_to_quantize,
|
|
module_name_preceding_first_block=gptq_module_name_preceding_first_block,
|
|
batch_size=gptq_batch_size,
|
|
pad_token_id=gptq_pad_token_id,
|
|
use_exllama=gptq_use_exllama,
|
|
exllama_config={'version': 1},
|
|
) # XXX: See how to migrate to v2
|
|
|
|
def create_int8_config(int8_skip_modules: list[str] | None) -> transformers.BitsAndBytesConfig:
|
|
# if int8_skip_modules is None: int8_skip_modules = []
|
|
# if 'lm_head' not in int8_skip_modules and self.config_class.__openllm_model_type__ == 'causal_lm':
|
|
# logger.debug("Skipping 'lm_head' for quantization for %s", self.__name__)
|
|
# int8_skip_modules.append('lm_head')
|
|
return transformers.BitsAndBytesConfig(
|
|
load_in_8bit=True,
|
|
llm_int8_enable_fp32_cpu_offload=int8_enable_fp32_cpu_offload,
|
|
llm_int8_threshhold=int8_threshold,
|
|
llm_int8_skip_modules=int8_skip_modules,
|
|
llm_int8_has_fp16_weight=int8_has_fp16_weight,
|
|
)
|
|
|
|
# 4 bit configuration
|
|
int4_compute_dtype = attrs.pop('bnb_4bit_compute_dtype', torch.bfloat16)
|
|
int4_quant_type = attrs.pop('bnb_4bit_quant_type', 'nf4')
|
|
int4_use_double_quant = attrs.pop('bnb_4bit_use_double_quant', True)
|
|
|
|
# NOTE: Quantization setup quantize is a openllm.LLM feature, where we can quantize the model with bitsandbytes or quantization aware training.
|
|
if not is_bitsandbytes_available():
|
|
raise RuntimeError(
|
|
'Quantization requires bitsandbytes to be installed. Make sure to install OpenLLM with \'pip install "openllm[fine-tune]"\''
|
|
)
|
|
if quantise == 'int8':
|
|
quantisation_config = create_int8_config(int8_skip_modules)
|
|
elif quantise == 'int4':
|
|
quantisation_config = transformers.BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_compute_dtype=int4_compute_dtype,
|
|
bnb_4bit_quant_type=int4_quant_type,
|
|
bnb_4bit_use_double_quant=int4_use_double_quant,
|
|
)
|
|
elif quantise == 'gptq':
|
|
if not is_autogptq_available() or not is_optimum_supports_gptq():
|
|
raise MissingDependencyError(
|
|
"'quantize=\"gptq\"' requires 'auto-gptq' and 'optimum>=0.12' to be installed (missing or failed to import). Make sure to do 'pip install \"openllm[gptq]\"'"
|
|
)
|
|
else:
|
|
quantisation_config = create_gptq_config()
|
|
elif quantise == 'awq':
|
|
if not is_autoawq_available():
|
|
raise MissingDependencyError(
|
|
"quantize='awq' requires 'auto-awq' to be installed (missing or failed to import). Make sure to do 'pip install \"openllm[awq]\"'."
|
|
)
|
|
else:
|
|
quantisation_config = create_awq_config()
|
|
else:
|
|
raise ValueError(f"'quantize' must be one of ['int8', 'int4', 'gptq', 'awq'], got {quantise} instead.")
|
|
return quantisation_config, attrs
|