/*-----------------------------------------*\ | GigabyteRGBFusion2SMBusController.cpp | | | | Driver for Gigabyte Aorus RGB Fusion 2 | | SMBus lighting controller | | | | Adam Honse (CalcProgrammer1) 3/12/2020 | | Matt Harper 5/5/2020 | \*-----------------------------------------*/ #include "GigabyteRGBFusion2SMBusController.h" #include #include #include #ifdef DEBUG #include #include #endif RGBFusion2SMBusController::RGBFusion2SMBusController(i2c_smbus_interface* bus, rgb_fusion_dev_id dev, std::string mb_name) { this->bus = bus; this->dev = dev; this->name = mb_name; memset(led_data, 0, 10*16); led_count = 10; // Protocol supports 10 'slots' } RGBFusion2SMBusController::~RGBFusion2SMBusController() { } unsigned int RGBFusion2SMBusController::GetLEDCount() { return(led_count); } std::string RGBFusion2SMBusController::GetDeviceName() { return(name); } std::string RGBFusion2SMBusController::GetDeviceLocation() { std::string return_string(bus->device_name); char addr[5]; snprintf(addr, 5, "0x%02X", dev); return_string.append(", address "); return_string.append(addr); return("I2C: " + return_string); } /* Writes are performed in 32 byte chunks. If we need to write the second 16 bytes, * we must necessarily write the first 16 as well. Given that reading the existing state * from the device is not yet possible, unfortunately we may overwrite existing device * states if the state transition did not occur within in the same OpenRGB instance. * That is to say, the current behavior is non-deal but the best we have */ void RGBFusion2SMBusController::WriteLED(int led) { unsigned short register_offset = led / 2; // Relying on integer division to truncate unsigned short write_register = RGB_FUSION_2_LED_START_ADDR + 2*register_offset; // Adjust if we are writing the second 16 bytes if(led % 2) { led -= 1; } #ifdef DEBUG std::cout << std::hex << write_register << "\t"; for(int i = 0; i < 2; i++) { for(int j = 0; j < 16; j++) { std::cout << std::setw(2) << std::setfill('0') << std::hex << (int)led_data[led+i][j] << " "; } std::cout << " "; } std::cout << std::endl; #endif bus->i2c_smbus_write_block_data(RGB_FUSION_2_SMBUS_ADDR, write_register, 32, led_data[led]); } void RGBFusion2SMBusController::Apply() { // Protocol expects terminating sequence 0x01ff written to register 0x17 bus->i2c_smbus_write_word_data(RGB_FUSION_2_SMBUS_ADDR, RGB_FUSION_2_APPLY_ADDR, RGB_FUSION_2_ACTION_APPLY); } void RGBFusion2SMBusController::SetLEDEffect ( unsigned int led, int mode, unsigned int brightness, unsigned int speed, unsigned char red, unsigned char green, unsigned char blue ) { led_data[led][RGB_FUSION_2_IDX_MODE] = mode; led_data[led][RGB_FUSION_2_IDX_RED] = red; led_data[led][RGB_FUSION_2_IDX_GREEN] = green; led_data[led][RGB_FUSION_2_IDX_BLUE] = blue; led_data[led][RGB_FUSION_2_IDX_BRIGHTNESS] = 0x64; switch (mode) { case RGB_FUSION_2_MODE_PULSE: // Timer 1: On time // Timer 2: Off time led_data[led][RGB_FUSION_2_TIMER_1_LSB] = 0x20 * speed; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x03 * speed; led_data[led][RGB_FUSION_2_TIMER_2_LSB] = 0x20 * speed; led_data[led][RGB_FUSION_2_TIMER_2_MSB] = 0x03 * speed; break; case RGB_FUSION_2_MODE_DIGITAL_WAVE: // Timer 1: Wave Speed led_data[led][RGB_FUSION_2_TIMER_1_LSB] = speed; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x00; led_data[led][RGB_FUSION_2_IDX_BRIGHTNESS] = brightness; break; case RGB_FUSION_2_MODE_DIGITAL_A: // Timer 1: Directly controls speed of LED sections led_data[led][RGB_FUSION_2_TIMER_1_LSB] = speed; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x00; // Setting this to any number other than 0 slows down the effect led_data[led][RGB_FUSION_2_IDX_OPT_1] = 0x01; // Doesn't do anything, but always defaults to 0x01 break; case RGB_FUSION_2_MODE_DIGITAL_B: // Timer 1: Direct control of section speed and pulsing led_data[led][RGB_FUSION_2_TIMER_1_LSB] = speed; // Main effect speed led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x00; // Only sets to 0x01 in min speed. Makes light section blink for shorter periods led_data[led][RGB_FUSION_2_IDX_OPT_1] = 0x05 - (speed / 60); // Changes between 0x01 and 0x04 along with speed. Controls light trail length. break; case RGB_FUSION_2_MODE_DIGITAL_C: // Timer 1: Effect Speed led_data[led][RGB_FUSION_2_TIMER_1_LSB] = speed; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x00; // Like Digital A, slows down the effect, but never sets to another number. led_data[led][RGB_FUSION_2_IDX_OPT_1] = 0x04; // Fixed at 0x04. Does nothing. break; case RGB_FUSION_2_MODE_DIGITAL_D: // Timer 1: Effect Speed led_data[led][RGB_FUSION_2_TIMER_1_LSB] = speed; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x00; // Like Digital A, slows down the effect, but never sets to another number. led_data[led][RGB_FUSION_2_IDX_OPT_1] = 0x04; // Fixed at 0x04. Does nothing. led_data[led][RGB_FUSION_2_IDX_BRIGHTNESS] = brightness; break; case RGB_FUSION_2_MODE_DIGITAL_E: // Timer 1: Effect Speed led_data[led][RGB_FUSION_2_TIMER_1_LSB] = speed; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0; // Like Digital A, slows down the effect, but never sets to another number. led_data[led][RGB_FUSION_2_IDX_OPT_1] = 0x05 - (speed / 50); // Changes between 0x02 and 0x04 according to speed, might be similar to Digital B. break; case RGB_FUSION_2_MODE_DIGITAL_F: // Timer 1: Effect Speed led_data[led][RGB_FUSION_2_TIMER_1_LSB] = speed; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x00; // Like Digital A, slows down the effect, but never sets to another number. led_data[led][RGB_FUSION_2_IDX_OPT_1] = 0x04; // Fixed at 0x04. Does nothing. led_data[led][RGB_FUSION_2_IDX_BRIGHTNESS] = brightness; break; case RGB_FUSION_2_MODE_DIGITAL_G: // Timer 1: Effect Speed led_data[led][RGB_FUSION_2_TIMER_1_LSB] = speed; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x00; // Like Digital A, slows down the effect, but never sets to another number. led_data[led][RGB_FUSION_2_IDX_OPT_1] = 0x04; // Fixed at 0x04. Does nothing. led_data[led][RGB_FUSION_2_IDX_BRIGHTNESS] = brightness; break; case RGB_FUSION_2_MODE_COLOR_CYCLE: // Timer 1: Cycle time led_data[led][RGB_FUSION_2_TIMER_1_LSB] = 0x00; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x03 * speed; led_data[led][RGB_FUSION_2_IDX_OPT_1] = 0x07; // Number of colors to cycle through. Valid range [1-7] led_data[led][RGB_FUSION_2_IDX_OPT_2] = 0x00; // Color cycle, or color cycle and pulse. [0,1] led_data[led][RGB_FUSION_2_IDX_BRIGHTNESS] = brightness; break; case RGB_FUSION_2_MODE_FLASHING: /* Timer 1: On time * Timer 2: Interval * Timer 3: Cycle time */ led_data[led][RGB_FUSION_2_TIMER_1_LSB] = 0x64; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0; led_data[led][RGB_FUSION_2_TIMER_2_LSB] = 0xc8; led_data[led][RGB_FUSION_2_TIMER_2_MSB] = 0; led_data[led][RGB_FUSION_2_TIMER_3_LSB] = 0xd0; led_data[led][RGB_FUSION_2_TIMER_3_MSB] = 0x07; led_data[led][RGB_FUSION_2_IDX_OPT_1] = speed; // Controls number of flashes break; } WriteLED(led); }