Files
OpenRGB/Controllers/RGBFusion2SMBusController/RGBFusion2SMBusController.cpp
2020-05-11 12:24:25 -05:00

140 lines
4.5 KiB
C++

/*-----------------------------------------*\
| RGBFusion2SMBusController.cpp |
| |
| Driver for Gigabyte Aorus RGB Fusion 2 |
| SMBus lighting controller |
| |
| Adam Honse (CalcProgrammer1) 3/12/2020 |
| Matt Harper 5/5/2020 |
\*-----------------------------------------*/
#include "RGBFusion2SMBusController.h"
#include <cstring>
#include <stdio.h>
#include <stdlib.h>
#ifdef DEBUG
#include <iostream>
#include <iomanip>
#endif
RGBFusion2SMBusController::RGBFusion2SMBusController(i2c_smbus_interface* bus, rgb_fusion_dev_id dev)
{
this->bus = bus;
this->dev = dev;
memset(led_data, 0, 10*16);
led_count = 10; // Protocol supports 10 'slots'
}
unsigned int RGBFusion2SMBusController::GetLEDCount()
{
return(led_count);
}
std::string RGBFusion2SMBusController::GetDeviceLocation()
{
std::string return_string(bus->device_name);
char addr[5];
snprintf(addr, 5, "0x%02X", dev);
return_string.append(", address ");
return_string.append(addr);
return(return_string);
}
/* Writes are performed in 32 byte chunks. If we need to write the second 16 bytes,
* we must necessarily write the first 16 as well. Given that reading the existing state
* from the device is not yet possible, unfortunately we may overwrite existing device
* states if the state transition did not occur within in the same OpenRGB instance.
* That is to say, the current behavior is non-deal but the best we have
*/
void RGBFusion2SMBusController::WriteLED(int led)
{
unsigned short register_offset = led / 2; // Relying on integer division to truncate
unsigned short write_register = RGB_FUSION_2_LED_START_ADDR + 2*register_offset;
// Adjust if we are writing the second 16 bytes
if(led % 2)
{
led -= 1;
}
#ifdef DEBUG
std::cout << std::hex << write_register << "\t";
for(int i = 0; i < 2; i++)
{
for(int j = 0; j < 16; j++)
{
std::cout << std::setw(2) << std::setfill('0') << std::hex << (int)led_data[led+i][j] << " ";
}
std::cout << " ";
}
std::cout << std::endl;
#endif
bus->i2c_smbus_write_block_data(RGB_FUSION_2_SMBUS_ADDR, write_register, 32, led_data[led]);
}
void RGBFusion2SMBusController::Apply()
{
// Protocol expects terminating sequence 0x01ff written to register 0x17
bus->i2c_smbus_write_word_data(RGB_FUSION_2_SMBUS_ADDR,
RGB_FUSION_2_APPLY_ADDR,
RGB_FUSION_2_ACTION_APPLY);
}
void RGBFusion2SMBusController::SetLEDEffect
(
unsigned int led,
int mode,
unsigned int speed,
unsigned char red,
unsigned char green,
unsigned char blue
)
{
led_data[led][RGB_FUSION_2_IDX_MODE] = mode;
led_data[led][RGB_FUSION_2_IDX_RED] = red;
led_data[led][RGB_FUSION_2_IDX_GREEN] = green;
led_data[led][RGB_FUSION_2_IDX_BLUE] = blue;
led_data[led][RGB_FUSION_2_IDX_BRIGHTNESS] = 0x64;
switch (mode)
{
case RGB_FUSION_2_MODE_PULSE:
// Timer 1: On time
// Timer 2: Off time
led_data[led][RGB_FUSION_2_TIMER_1_LSB] = 0x20 * speed;
led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x03 * speed;
led_data[led][RGB_FUSION_2_TIMER_2_LSB] = 0x20 * speed;
led_data[led][RGB_FUSION_2_TIMER_2_MSB] = 0x03 * speed;
break;
case RGB_FUSION_2_MODE_COLOR_CYCLE:
// Timer 1: Cycle time
led_data[led][RGB_FUSION_2_TIMER_1_LSB] = 0x00;
led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x03 * speed;
led_data[led][RGB_FUSION_2_IDX_OPT_1] = 0x07; // Number of colors to cycle through. Valid range [1-7]
led_data[led][RGB_FUSION_2_IDX_OPT_2] = 0x00; // Color cycle, or color cycle and pulse. [0,1]
break;
case RGB_FUSION_2_MODE_FLASHING:
/* Timer 1: On time
* Timer 2: Interval
* Timer 3: Cycle time */
led_data[led][RGB_FUSION_2_TIMER_1_LSB] = 0x64;
led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0;
led_data[led][RGB_FUSION_2_TIMER_2_LSB] = 0xc8;
led_data[led][RGB_FUSION_2_TIMER_2_MSB] = 0;
led_data[led][RGB_FUSION_2_TIMER_3_LSB] = 0xd0;
led_data[led][RGB_FUSION_2_TIMER_3_MSB] = 0x07;
led_data[led][RGB_FUSION_2_IDX_OPT_1] = speed; // Controls number of flashes
break;
}
WriteLED(led);
}