Commit Graph

4 Commits

Author SHA1 Message Date
Don Cross
8a153315cf Simplified and optimized nutation formula.
While trying to convert ecliptic coordinates from mean
equinox of date to true equinox of date, I ran into excessive
overhead from the IAU2000B nutation model. The fact that it
uses 77 trigonometric terms made the calculations a lot slower.

https://apps.dtic.mil/sti/pdfs/AD1112517.pdf
Page 4 in the above document mentions a shorter series
“NOD version 2” that has 13 terms instead of 77 as used in IAU2000B.
I had not noticed NOD2 before, because it appears only in
the FORTRAN version of NOVAS 3.x, not the C version.

After reading the FORTRAN code, I realized NOD2 is the same
as IAU2000B, only it keeps the first 13 of 77 terms.
The terms are already arranged in descending order of
significance, so it is easy to truncate the series.

Based on this discovery, I realized I could achieve all of
the required accuracy needed for Astronomy Engine by
keeping only the first 5 terms of the nutation series.
This tremendously speeds up nutation calculations while
sacrificing only a couple of arcseconds of accuracy.

It also makes the minified JavaScript code smaller:
Before: 119500 bytes.
After:  116653 bytes.

So that's what I did here. Most of the work was updating
unit tests for accepting slightly different calculation
results.

The nutation formula change did trigger detection of a
lurking bug in the inverse_terra functions, which convert
a geocentric vector into latitude, longitude, and elevation
(i.e. an Observer object). The Newton's Method loop in
this function was not always converging, resulting in
an infinite loop. I fixed that by increasing the
convergence threshold and throwing an exception
if the loop iterates more than 10 times.

I also fixed a couple of bugs in the `demotest` scripts.
2022-12-04 10:31:15 -05:00
Don Cross
3f71bfeb63 Kotlin: convert Observer to StateVector.
Added `Observer.toStateVector` and `Observer.toVector` for converting
an observer's geographic location to position and velocity vectors
relative to the Earth's center.

Reworked the C unit test to output a text file that can be used
as reference, to make sure the Kotlin output matches.
2022-04-09 17:00:36 -04:00
Don Cross
4741bf3bed C ObserverState: added unit test.
The unit test uses two JPL Horizons data sets: the center of
the Earth as seen from the surface of the Earth, and the
Earth/Moon Barycenter (EMB) as seen from the surface of the Earth.
2021-11-17 20:31:22 -05:00
Don Cross
f4e40e764a Implemented C ObserverState, but not yet tested.
I am starting to work on a function to find the position
and velocity vectors for an observer on the surface of the Earth.
I created the C function Astronomy_ObserverState(), but I don't
yet have a unit test for it.
2021-11-16 19:14:40 -05:00