mirror of
https://github.com/cosinekitty/astronomy.git
synced 2026-01-05 22:17:48 -05:00
339 lines
14 KiB
Plaintext
339 lines
14 KiB
Plaintext
============
|
|
VSOP87 FILES BDL-9502
|
|
============
|
|
|
|
|
|
REFERENCE
|
|
=========
|
|
|
|
Bretagnon P., Francou G., : 1988, Astron. Astrophys., 202, 309.
|
|
|
|
|
|
ADRESS
|
|
======
|
|
|
|
Pierre Bretagnon, Gerard Francou
|
|
Bureau des Longitudes
|
|
77, Avenue Denfert-Rochereau
|
|
F75014, Paris, France
|
|
Tel : (1) 40 51 22 69 (1) 40 51 22 60
|
|
E-Mail : pierre@bdl.fr francou@bdl.fr
|
|
Fax : (1) 46 33 28 34
|
|
|
|
|
|
DESCRIPTION
|
|
===========
|
|
|
|
The VSOP87 files contain the VSOP87 analytical solutions of the motion
|
|
of the planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus,
|
|
Neptune and Earth-Moon Barycenter.
|
|
|
|
There are six different versions of the theory VSOP87 which may be recognized
|
|
by the type of coordinates and the reference frame.
|
|
|
|
The main version VSOP87 consists of the series in elliptic elements as in the
|
|
case of previous solution VSOP82 and the other versions VSOP87 are built in
|
|
rectangular variables (versions A,C,E) or spherical variables (versions B,D).
|
|
|
|
The reference frame is defined by the dynamical equinox and ecliptic J2000 for
|
|
the main version VSOP87 and the versions A, B, E, and by the dynamical equinox
|
|
and ecliptic of the date for the versions C and D.
|
|
|
|
|
|
FILE SUMMARY
|
|
============
|
|
|
|
Name Size Kb Contents
|
|
---- ------- --------
|
|
|
|
VSOP87.mer 644.1 Mercury Heliocentric elliptic elements J2000
|
|
VSOP87.ven 401.4 Venus Heliocentric elliptic elements J2000
|
|
VSOP87.emb 563.0 Earth-Moon Heliocentric elliptic elements J2000
|
|
VSOP87.mar 1002.8 Mars Heliocentric elliptic elements J2000
|
|
VSOP87.jup 812.5 Jupiter Heliocentric elliptic elements J2000
|
|
VSOP87.sat 1645.9 Saturn Heliocentric elliptic elements J2000
|
|
VSOP87.ura 2023.2 Uranus Heliocentric elliptic elements J2000
|
|
VSOP87.nep 1070.5 Neptune Heliocentric elliptic elements J2000
|
|
|
|
VSOP87A.mer 848.1 Mercury Heliocentric rectangular variables J2000
|
|
VSOP87A.ven 315.9 Venus Heliocentric rectangular variables J2000
|
|
VSOP87A.ear 472.9 Earth Heliocentric rectangular variables J2000
|
|
VSOP87A.emb 444.2 Earth-Moon Heliocentric rectangular variables J2000
|
|
VSOP87A.mar 943.1 Mars Heliocentric rectangular variables J2000
|
|
VSOP87A.jup 592.1 Jupiter Heliocentric rectangular variables J2000
|
|
VSOP87A.sat 1001.5 Saturn Heliocentric rectangular variables J2000
|
|
VSOP87A.ura 705.3 Uranus Heliocentric rectangular variables J2000
|
|
VSOP87A.nep 352.5 Neptune Heliocentric rectangular variables J2000
|
|
|
|
VSOP87B.mer 949.8 Mercury Heliocentric spherical variables J2000
|
|
VSOP87B.ven 229.8 Venus Heliocentric spherical variables J2000
|
|
VSOP87B.ear 343.4 Earth Heliocentric spherical variables J2000
|
|
VSOP87B.mar 853.6 Mars Heliocentric spherical variables J2000
|
|
VSOP87B.jup 484.5 Jupiter Heliocentric spherical variables J2000
|
|
VSOP87B.sat 848.9 Saturn Heliocentric spherical variables J2000
|
|
VSOP87B.ura 702.6 Uranus Heliocentric spherical variables J2000
|
|
VSOP87B.nep 270.9 Neptune Heliocentric spherical variables J2000
|
|
|
|
VSOP87C.mer 1087.0 Mercury Heliocentric rectangular variables of date
|
|
VSOP87C.ven 386.6 Venus Heliocentric rectangular variables of date
|
|
VSOP87C.ear 560.1 Earth Heliocentric rectangular variables of date
|
|
VSOP87C.mar 1106.7 Mars Heliocentric rectangular variables of date
|
|
VSOP87C.jup 741.2 Jupiter Heliocentric rectangular variables of date
|
|
VSOP87C.sat 1170.5 Saturn Heliocentric rectangular variables of date
|
|
VSOP87C.ura 932.3 Uranus Heliocentric rectangular variables of date
|
|
VSOP87C.nep 385.4 Neptune Heliocentric rectangular variables of date
|
|
|
|
VSOP87D.mer 910.4 Mercury Heliocentric spherical variables of date
|
|
VSOP87D.ven 226.1 Venus Heliocentric spherical variables of date
|
|
VSOP87D.ear 324.8 Earth Heliocentric spherical variables of date
|
|
VSOP87D.mar 731.6 Mars Heliocentric spherical variables of date
|
|
VSOP87D.jup 465.6 Jupiter Heliocentric spherical variables of date
|
|
VSOP87D.sat 768.3 Saturn Heliocentric spherical variables of date
|
|
VSOP87D.ura 532.7 Uranus Heliocentric spherical variables of date
|
|
VSOP87D.nep 258.8 Neptune Heliocentric spherical variables of date
|
|
|
|
VSOP87E.mer 1050.4 Mercury Barycentric rectangular variables J2000
|
|
VSOP87E.ven 621.8 Venus Barycentric rectangular variables J2000
|
|
VSOP87E.ear 741.3 Earth Barycentric rectangular variables J2000
|
|
VSOP87E.mar 1009.9 Mars Barycentric rectangular variables J2000
|
|
VSOP87E.jup 606.5 Jupiter Barycentric rectangular variables J2000
|
|
VSOP87E.sat 1002.8 Saturn Barycentric rectangular variables J2000
|
|
VSOP87E.ura 683.5 Uranus Barycentric rectangular variables J2000
|
|
VSOP87E.nep 319.6 Neptune Barycentric rectangular variables J2000
|
|
VSOP87E.sun 884.7 Sun Barycentric rectangular variables J2000
|
|
--------------------------------------------------------------------------------
|
|
|
|
|
|
CONTENTS
|
|
========
|
|
|
|
A VSOP87 file deals with a body and a version of the theory.
|
|
It contains trigonometric series which represent the coordinates of the body :
|
|
elliptic, rectangular or spherical coordinates according to the version.
|
|
|
|
These coordinates are functions of time, periodic and Poisson series,
|
|
given under two forms :
|
|
|
|
(1) T**alpha * (S sin phi + K cos phi)
|
|
with : phi = SUM [i=1,12] [a(i)*lambda(i)]
|
|
|
|
(2) T**alpha * A * cos(B+CT)
|
|
|
|
where T : time expressed in Thousands of Julian Years (tjy)
|
|
elapsed from J2000 (JD2451545.0).
|
|
alpha : degree of time in-between 0 and 5.
|
|
|
|
The amplitudes S, K and A are expressed in au/(tjy**alpha) for the distances
|
|
and in rad/(tjy**alpha) for angular variables.
|
|
The phase B is expressed in radians.
|
|
The frequency C is expressed in rad/tjy.
|
|
The coefficients a(i) are integers.
|
|
|
|
The means longitudes lambda(i) are expressed in radians :
|
|
lambda (1) = 4.40260884240 + 26087.9031415742 * T Mercury
|
|
lambda (2) = 3.17614669689 + 10213.2855462110 * T Venus
|
|
lambda (3) = 1.75347045953 + 6283.0758499914 * T Earth
|
|
lambda (4) = 6.20347611291 + 3340.6124266998 * T Mars
|
|
lambda (5) = 0.59954649739 + 529.6909650946 * T Jupiter
|
|
lambda (6) = 0.87401675650 + 213.2990954380 * T Saturn
|
|
lambda (7) = 5.48129387159 + 74.7815985673 * T Uranus
|
|
lambda (8) = 5.31188628676 + 38.1330356378 * T Neptune
|
|
lambda (9) = 5.19846674103 + 77713.7714681205 * T Moon D
|
|
lambda (10) = 1.62790523337 + 84334.6615813083 * T Moon F
|
|
lambda (11) = 2.35555589827 + 83286.9142695536 * T Moon l
|
|
lambda (12) = 3.81034454697 + 83997.0911355954 * T Moon Lm
|
|
|
|
In a VSOP87 file the series of each coordinates are recognized by the degree
|
|
alpha of time variable T :
|
|
- periodic series : alpha=0,
|
|
- Poisson series : alpha>0.
|
|
|
|
Series follow one another according to the order of coordinates and for each
|
|
coordinate they follow one another by increasing order of time alpha.
|
|
|
|
For each term of a serie there is one record in the file.
|
|
|
|
The terms of the series are placed according to decreasing values of the sum
|
|
of absolute value of S plus absolute value of K.
|
|
|
|
The quantities related to one term are placed in the order :
|
|
a(i) (i=1,12), S, K, A, B, C.
|
|
|
|
|
|
ORGANIZATION
|
|
============
|
|
|
|
In VSOP87 files, there are two types of records :
|
|
(a) "header record" : characteristics of the series.
|
|
(b) "term record" : quantities linked to one term of a serie.
|
|
|
|
For each file, a serie corresponds to one "header record" (a) followed
|
|
by one or several "term records" (b).
|
|
|
|
|
|
HEADER RECORD
|
|
=============
|
|
|
|
Fortran format : 17x,i1,4x,a7,12x,i1,17x,i1,i7
|
|
|
|
Specifications :
|
|
- iv : code of VSOP87 version integer i1 col.18
|
|
- bo : name of body character a7 col.23-29
|
|
- ic : index of coordinate integer i1 col.42
|
|
- it : degree alpha of time variable T integer i1 col.60
|
|
- in : number of terms of series integer i7 col.61-67
|
|
|
|
The code iv of the version is :
|
|
iv = 0 for the main version VSOP87
|
|
iv = 1 for the version VSOP87A
|
|
iv = 2 for the version VSOP87B
|
|
iv = 3 for the version VSOP87C
|
|
iv = 4 for the version VSOP87D
|
|
iv = 5 for the version VSOP87E
|
|
|
|
The names bo of the bodies are :
|
|
MERCURY, VENUS, EARTH, MARS, JUPITER, SATURN, URANUS, NEPTUNE, SUN,
|
|
and EMB for the Earth-Moon Barycenter.
|
|
|
|
The index ic of the coordinates are :
|
|
- for the elliptic coordinates (main version) :
|
|
1 : semi-major axis
|
|
2 : mean longitude
|
|
3 : k = e cos(p) e : eccentricity
|
|
4 : h = e sin(p) p : perihelion longitude
|
|
5 : q = sin(g) cos(G) g : semi-inclination
|
|
6 : p = sin(g) sin(G) G : ascending node longitude
|
|
- for the rectangular coordinates (versions A,C,E) :
|
|
1 : X
|
|
2 : Y
|
|
3 : Z
|
|
- for the spherical coordinates (versions B,D) :
|
|
1 : Longitude
|
|
2 : Latitude
|
|
3 : Radius
|
|
|
|
The degree alpha of the time variable is equal to :
|
|
0 for periodic series, 1 to 5 for Poisson series.
|
|
|
|
|
|
TERM RECORD
|
|
===========
|
|
|
|
Fortran format : 1x,4i1,i5,12i3,f15.11,2f18.11,f14.11,f20.11
|
|
|
|
Specifications :
|
|
iv : code of VSOP87 version integer i1 col.02
|
|
ib : code of body integer i1 col.03
|
|
ic : index of coordinate integer i1 col.04
|
|
it : degree alpha of time variable T integer i1 col.05
|
|
n : rank of the term in a serie integer i5 col.06-10
|
|
a : 12 coefficients a of mean longitudes integer 12i3 col.11-46
|
|
S : amplitude S real dp f15.11 col.47-61
|
|
K : amplitude K real dp f18.11 col.62-79
|
|
A : amplitude A real dp f18.11 col.80-97
|
|
B : phase B real dp f14.11 col.98-111
|
|
C : frequency C read dp f20.11 col.112-131
|
|
|
|
The codes of the bodies are :
|
|
1 : Mercury
|
|
2 : Venus
|
|
3 : Earth for the versions A-E and Earth-Moon Barycenter for the main version
|
|
4 : Mars
|
|
5 : Jupiter
|
|
6 : Saturn
|
|
7 : Uranus
|
|
8 : Neptune
|
|
9 : Earth-Moon barycenter for the version A and Sun for the version E.
|
|
|
|
|
|
TIME SCALE
|
|
==========
|
|
|
|
The time used in VSOP87 theory is dynamical time.
|
|
We can considered this time equal to Terrestrial Time (TT) which is
|
|
measured by international atomic time TAI.
|
|
So, the time argument in VSOP87 theory is equal to TAI + 32.184 s.
|
|
|
|
|
|
REFERENCE SYSTEM
|
|
================
|
|
|
|
The coordinates of the main version VSOP87 and of the version A, B, and E are
|
|
are given in the inertial frame defined by the dynamical equinox and ecliptic
|
|
J2000 (JD2451545.0).
|
|
|
|
The coordinates of the version C an D are given in the frame defined by the
|
|
mean equinox and ecliptic of the date. This frame is deduced from the previous
|
|
one by precessional moving between J2000 and the epoch of the date.
|
|
|
|
The rectangular coordinates of VSOP87A and VSOP87E defined in dynamical ecliptic
|
|
frame J2000 can be connected to the equatorial frame FK5 J2000 with the
|
|
following rotation :
|
|
|
|
X +1.000000000000 +0.000000440360 -0.000000190919 X
|
|
Y = -0.000000479966 +0.917482137087 -0.397776982902 Y
|
|
Z FK5 0.000000000000 +0.397776982902 +0.917482137087 Z VSOP87A
|
|
|
|
|
|
PRECISION
|
|
=========
|
|
|
|
The main version of VSOP87 is similar to the previous theory VSOP82.
|
|
In the both cases the constants of integration have been determined by
|
|
fitting to the numerical integration DE200 of the Jet Propulsion Laboratory.
|
|
|
|
The differences between VSOP87 and VSOP82 mainly improve the validity time-span
|
|
for Mercury, Venus, Earth-Moon barycenter and Mars with a precision of 1" for
|
|
4000 years before and after J2000.
|
|
The same precision is ensured for Jupiter and Saturn over 2000 years and for
|
|
Uranus and Neptune over 6000 years before and after J2000.
|
|
|
|
The size of the relative precision p0 of VSOP87 solutions is given hereunder.
|
|
That means that the actual precision is close by p0*a0 au for the distances
|
|
(a0 being the semi-major axis) and close by p0 radian for the other variables.
|
|
By derivation with respect to time expressed in day (d), the precision of the
|
|
velocities is close by p0*a0 au/d for the distances and close by p0 radian/d
|
|
for the other variables.
|
|
|
|
Body a0 (au) p0 (10**-8)
|
|
---- ------- -----------
|
|
Mercury 0.3871 0.6
|
|
Venus 0.7233 2.5
|
|
Earth 1.0000 2.5
|
|
Mars 1.5237 10.0
|
|
Jupiter 5.2026 35.0
|
|
Saturn 9.5547 70.0
|
|
Uranus 19.2181 8.0
|
|
Neptune 30.1096 42.0
|
|
|
|
|
|
COMPUTATION
|
|
===========
|
|
|
|
Being given a julian date JD expressed in dynamical time (TAI+32.184s) and a
|
|
body (planets, Earth-Moon Barycenter, or Sun) associated to a version of the
|
|
theory VSOP87 :
|
|
1/ select the file corresponding to the body and the version,
|
|
2/ read sequentially the terms of the series in the records of the file,
|
|
3/ apply for each term the formulae (1) or (2) with T=(JD-2451545)/365250,
|
|
4/ add up the terms so computed for every one coordinate.
|
|
|
|
The file vsop87.f contains the Fortran 77 subroutine VSOP87 that computes the
|
|
coordinates for each file of different versions of VSOP87 solutions.
|
|
The VSOP87 file has to be defined and opened in the program which called this
|
|
subroutine.
|
|
|
|
A Fortran 77 program is also provided in file example.f which compute planetary
|
|
ephemerides with the subroutine VSOP87.
|
|
|
|
The subroutine VSOP87 and the program EXAMPLE (Fortran 77) are provided to
|
|
illustrate the computation of an ephemeris. If the user wants to improve the
|
|
rapidity of computation, it is recommanded to transform VSOP87 files in direct
|
|
access and/or to read series in memory once at all.
|
|
|
|
Some results of substitution of time in VSOP87 series are given in the file
|
|
vsop87.chk to check up the validity of computation made by the users.
|
|
|
|
|
|
End of document
|