Files
astronomy/source/js/astronomy.js

4139 lines
168 KiB
JavaScript

/**
@preserve
Astronomy library for JavaScript (browser and Node.js).
https://github.com/cosinekitty/astronomy
MIT License
Copyright (c) 2019 Don Cross <cosinekitty@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
/**
* @fileoverview Astronomy calculation library for browser scripting and Node.js.
*
* @author Don Cross <cosinekitty@gmail.com>
* @license MIT
*/
'use strict';
/**
* @name Astronomy
* @namespace Astronomy
*/
(function(Astronomy){
'use strict';
const J2000 = new Date('2000-01-01T12:00:00Z');
const T0 = 2451545.0;
const MJD_BASIS = 2400000.5; // mjd + MJD_BASIS = jd
const Y2000_IN_MJD = T0 - MJD_BASIS; // the 2000.0 epoch expressed in MJD
const PI2 = 2 * Math.PI;
const ARC = 3600 * (180 / Math.PI); // arcseconds per radian
const ERAD = 6378136.6; // mean earth radius in meters
const AU = 1.4959787069098932e+11; // astronomical unit in meters
const C_AUDAY = 173.1446326846693; // speed of light in AU/day
const ASEC2RAD = 4.848136811095359935899141e-6;
const DEG2RAD = 0.017453292519943296;
const RAD2DEG = 57.295779513082321;
const ASEC180 = 180 * 60 * 60; // arcseconds per 180 degrees (or pi radians)
const ASEC360 = 2 * ASEC180; // arcseconds per 360 degrees (or 2*pi radians)
const ANGVEL = 7.2921150e-5;
const KM_PER_AU = 1.4959787069098932e+8;
const AU_PER_PARSEC = ASEC180 / Math.PI; // exact definition of how many AU = one parsec
const SUN_MAG_1AU = -0.17 - 5*Math.log10(AU_PER_PARSEC); // formula from JPL Horizons
const MEAN_SYNODIC_MONTH = 29.530588; // average number of days for Moon to return to the same phase
const SECONDS_PER_DAY = 24 * 3600;
const MILLIS_PER_DAY = SECONDS_PER_DAY * 1000;
const SOLAR_DAYS_PER_SIDEREAL_DAY = 0.9972695717592592;
const SUN_RADIUS_AU = 4.6505e-3;
const MOON_RADIUS_AU = 1.15717e-5;
const REFRACTION_NEAR_HORIZON = 34 / 60; // degrees of refractive "lift" seen for objects near horizon
let ob2000; // lazy-evaluated mean obliquity of the ecliptic at J2000, in radians
let cos_ob2000;
let sin_ob2000;
//========================================================================================
// BEGIN performance measurement
/**
* Holds performance metrics for developers to optimize execution speed.
* Most users can safely ignore this class.
*
* @class
*
* @memberof Astronomy
*
* @property {number} search_func
* Number of times {@link Astronomy.Search} called a <code>func</code> passed to it.
*
* @property {number} search
* Number of times {@link Astronomy.Search} was called.
*
* @property {number} longitude_search
* Number of times {@link Astronomy.SearchRelativeLongitude} was called.
*
* @property {number} longitude_iter
* The total number of iterations executed inside {@link Astronomy.SearchRelativeLongitude}.
*
* @property {number} lunar_apsis_calls
* The number of times {@link Astronomy.SearchLunarApsis} was called.
*
* @property {number} lunar_apsis_iter
* The number of search iterations inside {@link Astronomy.SearchLunarApsis}.
*
* @property {number} calcmoon
* The number of times the Moon's position was calculated. (This is an expensive operation.)
*/
class PerformanceInfo {
constructor() {
this.search_func = 0;
this.search = 0;
this.longitude_search = 0;
this.longitude_iter = 0;
this.lunar_apsis_calls = 0;
this.lunar_apsis_iter = 0;
this.calcmoon = 0;
}
/**
* Creates a copy of a <code>PerformanceInfo</code> object.
* This allows us to create a snapshot of the performance metrics
* that can be handed back to outside code that will not change
* as the Astronomy code continues to execute and change the metrics.
*
* @returns {Astronomy.PerformanceInfo}
*/
Clone() {
const clone = new PerformanceInfo();
clone.search_func = this.search_func;
clone.search = this.search;
clone.longitude_search = this.longitude_search;
clone.longitude_iter = this.longitude_iter;
clone.lunar_apsis_calls = this.lunar_apsis_calls;
clone.lunar_apsis_iter = this.lunar_apsis_iter;
clone.calcmoon = this.calcmoon;
return clone;
}
}
let Perf = new PerformanceInfo();
/**
* Takes a snapshot of the current state of the performance metrics.
* The metrics inside the returned object will not change and can be retained by calling code
* to be compared with later snapshots.
*
* @returns {Astronomy.PerformanceInfo}
*/
Astronomy.GetPerformanceMetrics = function() {
return Perf.Clone();
}
/**
* Resets the internal performance metrics back to their initial states.
* You can call this before starting a new series of performance tests.
*/
Astronomy.ResetPerformanceMetrics = function() {
Perf = new PerformanceInfo();
}
// END performance measurement
//========================================================================================
function Frac(x) {
return x - Math.floor(x);
}
/**
* Calculates the angle in degrees between two vectors.
* The angle is measured in the plane that contains both vectors.
*
* @param {Astronomy.Vector} a
* The first of a pair of vectors between which to measure an angle.
*
* @param {Astronomy.Vector} b
* The second of a pair of vectors between which to measure an angle.
*
* @returns {number}
* The angle between the two vectors expressed in degrees.
* The value is in the range [0, 180].
*/
function AngleBetween(a, b) {
const aa = (a.x*a.x + a.y*a.y + a.z*a.z);
if (Math.abs(aa) < 1.0e-8)
throw `AngleBetween: first vector is too short.`;
const bb = (b.x*b.x + b.y*b.y + b.z*b.z);
if (Math.abs(bb) < 1.0e-8)
throw `AngleBetween: second vector is too short.`;
const dot = (a.x*b.x + a.y*b.y + a.z*b.z) / Math.sqrt(aa * bb);
if (dot <= -1.0)
return 180;
if (dot >= +1.0)
return 0;
const angle = RAD2DEG * Math.acos(dot);
return angle;
}
/**
* @constant {string[]} Astronomy.Bodies
* An array of strings, each a name of a supported astronomical body.
* Not all bodies are valid for all functions, but any string not in this
* list is not supported at all.
*/
Astronomy.Bodies = [
'Sun',
'Moon',
'Mercury',
'Venus',
'Earth',
'Mars',
'Jupiter',
'Saturn',
'Uranus',
'Neptune',
'Pluto'
];
const Planet = {
Mercury: { OrbitalPeriod: 87.969 },
Venus: { OrbitalPeriod: 224.701 },
Earth: { OrbitalPeriod: 365.256 },
Mars: { OrbitalPeriod: 686.980 },
Jupiter: { OrbitalPeriod: 4332.589 },
Saturn: { OrbitalPeriod: 10759.22 },
Uranus: { OrbitalPeriod: 30685.4 },
Neptune: { OrbitalPeriod: 60189.0 },
Pluto: { OrbitalPeriod: 90560.0 }
};
const vsop = {
Mercury: [
[
[
[4.40250710144, 0.00000000000, 0.00000000000],
[0.40989414977, 1.48302034195, 26087.90314157420],
[0.05046294200, 4.47785489551, 52175.80628314840],
[0.00855346844, 1.16520322459, 78263.70942472259],
[0.00165590362, 4.11969163423, 104351.61256629678],
[0.00034561897, 0.77930768443, 130439.51570787099],
[0.00007583476, 3.71348404924, 156527.41884944518]
],
[
[26087.90313685529, 0.00000000000, 0.00000000000],
[0.01131199811, 6.21874197797, 26087.90314157420],
[0.00292242298, 3.04449355541, 52175.80628314840],
[0.00075775081, 6.08568821653, 78263.70942472259],
[0.00019676525, 2.80965111777, 104351.61256629678]
]
],
[
[
[0.11737528961, 1.98357498767, 26087.90314157420],
[0.02388076996, 5.03738959686, 52175.80628314840],
[0.01222839532, 3.14159265359, 0.00000000000],
[0.00543251810, 1.79644363964, 78263.70942472259],
[0.00129778770, 4.83232503958, 104351.61256629678],
[0.00031866927, 1.58088495658, 130439.51570787099],
[0.00007963301, 4.60972126127, 156527.41884944518]
],
[
[0.00274646065, 3.95008450011, 26087.90314157420],
[0.00099737713, 3.14159265359, 0.00000000000]
]
],
[
[
[0.39528271651, 0.00000000000, 0.00000000000],
[0.07834131818, 6.19233722598, 26087.90314157420],
[0.00795525558, 2.95989690104, 52175.80628314840],
[0.00121281764, 6.01064153797, 78263.70942472259],
[0.00021921969, 2.77820093972, 104351.61256629678],
[0.00004354065, 5.82894543774, 130439.51570787099]
],
[
[0.00217347740, 4.65617158665, 26087.90314157420],
[0.00044141826, 1.42385544001, 52175.80628314840]
]
]
],
Venus: [
[
[
[3.17614666774, 0.00000000000, 0.00000000000],
[0.01353968419, 5.59313319619, 10213.28554621100],
[0.00089891645, 5.30650047764, 20426.57109242200],
[0.00005477194, 4.41630661466, 7860.41939243920],
[0.00003455741, 2.69964447820, 11790.62908865880],
[0.00002372061, 2.99377542079, 3930.20969621960],
[0.00001317168, 5.18668228402, 26.29831979980],
[0.00001664146, 4.25018630147, 1577.34354244780],
[0.00001438387, 4.15745084182, 9683.59458111640],
[0.00001200521, 6.15357116043, 30639.85663863300]
],
[
[10213.28554621638, 0.00000000000, 0.00000000000],
[0.00095617813, 2.46406511110, 10213.28554621100],
[0.00007787201, 0.62478482220, 20426.57109242200]
]
],
[
[
[0.05923638472, 0.26702775812, 10213.28554621100],
[0.00040107978, 1.14737178112, 20426.57109242200],
[0.00032814918, 3.14159265359, 0.00000000000]
],
[
[0.00287821243, 1.88964962838, 10213.28554621100]
]
],
[
[
[0.72334820891, 0.00000000000, 0.00000000000],
[0.00489824182, 4.02151831717, 10213.28554621100],
[0.00001658058, 4.90206728031, 20426.57109242200]
],
[
[0.00034551041, 0.89198706276, 10213.28554621100]
]
]
],
Earth: [
[
[
[1.75347045673, 0.00000000000, 0.00000000000],
[0.03341656453, 4.66925680415, 6283.07584999140],
[0.00034894275, 4.62610242189, 12566.15169998280],
[0.00003417572, 2.82886579754, 3.52311834900],
[0.00003497056, 2.74411783405, 5753.38488489680],
[0.00003135899, 3.62767041756, 77713.77146812050],
[0.00002676218, 4.41808345438, 7860.41939243920],
[0.00002342691, 6.13516214446, 3930.20969621960],
[0.00001273165, 2.03709657878, 529.69096509460],
[0.00001324294, 0.74246341673, 11506.76976979360],
[0.00000901854, 2.04505446477, 26.29831979980],
[0.00001199167, 1.10962946234, 1577.34354244780],
[0.00000857223, 3.50849152283, 398.14900340820],
[0.00000779786, 1.17882681962, 5223.69391980220],
[0.00000990250, 5.23268072088, 5884.92684658320],
[0.00000753141, 2.53339052847, 5507.55323866740],
[0.00000505267, 4.58292599973, 18849.22754997420],
[0.00000492392, 4.20505711826, 775.52261132400],
[0.00000356672, 2.91954114478, 0.06731030280],
[0.00000284125, 1.89869240932, 796.29800681640],
[0.00000242879, 0.34481445893, 5486.77784317500],
[0.00000317087, 5.84901948512, 11790.62908865880],
[0.00000271112, 0.31486255375, 10977.07880469900],
[0.00000206217, 4.80646631478, 2544.31441988340],
[0.00000205478, 1.86953770281, 5573.14280143310],
[0.00000202318, 2.45767790232, 6069.77675455340],
[0.00000126225, 1.08295459501, 20.77539549240],
[0.00000155516, 0.83306084617, 213.29909543800]
],
[
[6283.07584999140, 0.00000000000, 0.00000000000],
[0.00206058863, 2.67823455808, 6283.07584999140],
[0.00004303419, 2.63512233481, 12566.15169998280]
],
[
[0.00008721859, 1.07253635559, 6283.07584999140]
]
],
[
[
],
[
[0.00227777722, 3.41376620530, 6283.07584999140],
[0.00003805678, 3.37063423795, 12566.15169998280]
]
],
[
[
[1.00013988784, 0.00000000000, 0.00000000000],
[0.01670699632, 3.09846350258, 6283.07584999140],
[0.00013956024, 3.05524609456, 12566.15169998280],
[0.00003083720, 5.19846674381, 77713.77146812050],
[0.00001628463, 1.17387558054, 5753.38488489680],
[0.00001575572, 2.84685214877, 7860.41939243920],
[0.00000924799, 5.45292236722, 11506.76976979360],
[0.00000542439, 4.56409151453, 3930.20969621960],
[0.00000472110, 3.66100022149, 5884.92684658320]
],
[
[0.00103018607, 1.10748968172, 6283.07584999140],
[0.00001721238, 1.06442300386, 12566.15169998280]
],
[
[0.00004359385, 5.78455133808, 6283.07584999140]
]
]
],
Mars: [
[
[
[6.20347711581, 0.00000000000, 0.00000000000],
[0.18656368093, 5.05037100270, 3340.61242669980],
[0.01108216816, 5.40099836344, 6681.22485339960],
[0.00091798406, 5.75478744667, 10021.83728009940],
[0.00027744987, 5.97049513147, 3.52311834900],
[0.00010610235, 2.93958560338, 2281.23049651060],
[0.00012315897, 0.84956094002, 2810.92146160520],
[0.00008926784, 4.15697846427, 0.01725365220],
[0.00008715691, 6.11005153139, 13362.44970679920],
[0.00006797556, 0.36462229657, 398.14900340820],
[0.00007774872, 3.33968761376, 5621.84292321040],
[0.00003575078, 1.66186505710, 2544.31441988340],
[0.00004161108, 0.22814971327, 2942.46342329160],
[0.00003075252, 0.85696614132, 191.44826611160],
[0.00002628117, 0.64806124465, 3337.08930835080],
[0.00002937546, 6.07893711402, 0.06731030280],
[0.00002389414, 5.03896442664, 796.29800681640],
[0.00002579844, 0.02996736156, 3344.13554504880],
[0.00001528141, 1.14979301996, 6151.53388830500],
[0.00001798806, 0.65634057445, 529.69096509460],
[0.00001264357, 3.62275122593, 5092.15195811580],
[0.00001286228, 3.06796065034, 2146.16541647520],
[0.00001546404, 2.91579701718, 1751.53953141600],
[0.00001024902, 3.69334099279, 8962.45534991020],
[0.00000891566, 0.18293837498, 16703.06213349900],
[0.00000858759, 2.40093811940, 2914.01423582380],
[0.00000832715, 2.46418619474, 3340.59517304760],
[0.00000832720, 4.49495782139, 3340.62968035200],
[0.00000712902, 3.66335473479, 1059.38193018920],
[0.00000748723, 3.82248614017, 155.42039943420],
[0.00000723861, 0.67497311481, 3738.76143010800],
[0.00000635548, 2.92182225127, 8432.76438481560],
[0.00000655162, 0.48864064125, 3127.31333126180],
[0.00000550474, 3.81001042328, 0.98032106820],
[0.00000552750, 4.47479317037, 1748.01641306700],
[0.00000425966, 0.55364317304, 6283.07584999140],
[0.00000415131, 0.49662285038, 213.29909543800],
[0.00000472167, 3.62547124025, 1194.44701022460],
[0.00000306551, 0.38052848348, 6684.74797174860],
[0.00000312141, 0.99853944405, 6677.70173505060],
[0.00000293198, 4.22131299634, 20.77539549240],
[0.00000302375, 4.48618007156, 3532.06069281140],
[0.00000274027, 0.54222167059, 3340.54511639700],
[0.00000281079, 5.88163521788, 1349.86740965880],
[0.00000231183, 1.28242156993, 3870.30339179440],
[0.00000283602, 5.76885434940, 3149.16416058820],
[0.00000236117, 5.75503217933, 3333.49887969900],
[0.00000274033, 0.13372524985, 3340.67973700260],
[0.00000299395, 2.78323740866, 6254.62666252360]
],
[
[3340.61242700512, 0.00000000000, 0.00000000000],
[0.01457554523, 3.60433733236, 3340.61242669980],
[0.00168414711, 3.92318567804, 6681.22485339960],
[0.00020622975, 4.26108844583, 10021.83728009940],
[0.00003452392, 4.73210393190, 3.52311834900],
[0.00002586332, 4.60670058555, 13362.44970679920],
[0.00000841535, 4.45864030426, 2281.23049651060]
],
[
[0.00058152577, 2.04961712429, 3340.61242669980],
[0.00013459579, 2.45738706163, 6681.22485339960]
]
],
[
[
[0.03197134986, 3.76832042431, 3340.61242669980],
[0.00298033234, 4.10616996305, 6681.22485339960],
[0.00289104742, 0.00000000000, 0.00000000000],
[0.00031365539, 4.44651053090, 10021.83728009940],
[0.00003484100, 4.78812549260, 13362.44970679920]
],
[
[0.00217310991, 6.04472194776, 3340.61242669980],
[0.00020976948, 3.14159265359, 0.00000000000],
[0.00012834709, 1.60810667915, 6681.22485339960]
]
],
[
[
[1.53033488271, 0.00000000000, 0.00000000000],
[0.14184953160, 3.47971283528, 3340.61242669980],
[0.00660776362, 3.81783443019, 6681.22485339960],
[0.00046179117, 4.15595316782, 10021.83728009940],
[0.00008109733, 5.55958416318, 2810.92146160520],
[0.00007485318, 1.77239078402, 5621.84292321040],
[0.00005523191, 1.36436303770, 2281.23049651060],
[0.00003825160, 4.49407183687, 13362.44970679920],
[0.00002306537, 0.09081579001, 2544.31441988340],
[0.00001999396, 5.36059617709, 3337.08930835080],
[0.00002484394, 4.92545639920, 2942.46342329160],
[0.00001960195, 4.74249437639, 3344.13554504880],
[0.00001167119, 2.11260868341, 5092.15195811580],
[0.00001102816, 5.00908403998, 398.14900340820],
[0.00000899066, 4.40791133207, 529.69096509460],
[0.00000992252, 5.83861961952, 6151.53388830500],
[0.00000807354, 2.10217065501, 1059.38193018920],
[0.00000797915, 3.44839203899, 796.29800681640],
[0.00000740975, 1.49906336885, 2146.16541647520]
],
[
[0.01107433345, 2.03250524857, 3340.61242669980],
[0.00103175887, 2.37071847807, 6681.22485339960],
[0.00012877200, 0.00000000000, 0.00000000000],
[0.00010815880, 2.70888095665, 10021.83728009940]
],
[
[0.00044242249, 0.47930604954, 3340.61242669980],
[0.00008138042, 0.86998389204, 6681.22485339960]
]
]
],
Jupiter: [
[
[
[0.59954691494, 0.00000000000, 0.00000000000],
[0.09695898719, 5.06191793158, 529.69096509460],
[0.00573610142, 1.44406205629, 7.11354700080],
[0.00306389205, 5.41734730184, 1059.38193018920],
[0.00097178296, 4.14264726552, 632.78373931320],
[0.00072903078, 3.64042916389, 522.57741809380],
[0.00064263975, 3.41145165351, 103.09277421860],
[0.00039806064, 2.29376740788, 419.48464387520],
[0.00038857767, 1.27231755835, 316.39186965660],
[0.00027964629, 1.78454591820, 536.80451209540],
[0.00013589730, 5.77481040790, 1589.07289528380],
[0.00008246349, 3.58227925840, 206.18554843720],
[0.00008768704, 3.63000308199, 949.17560896980],
[0.00007368042, 5.08101194270, 735.87651353180],
[0.00006263150, 0.02497628807, 213.29909543800],
[0.00006114062, 4.51319998626, 1162.47470440780],
[0.00004905396, 1.32084470588, 110.20632121940],
[0.00005305285, 1.30671216791, 14.22709400160],
[0.00005305441, 4.18625634012, 1052.26838318840],
[0.00004647248, 4.69958103684, 3.93215326310],
[0.00003045023, 4.31676431084, 426.59819087600],
[0.00002609999, 1.56667394063, 846.08283475120],
[0.00002028191, 1.06376530715, 3.18139373770],
[0.00001764763, 2.14148655117, 1066.49547719000],
[0.00001722972, 3.88036268267, 1265.56747862640],
[0.00001920945, 0.97168196472, 639.89728631400],
[0.00001633223, 3.58201833555, 515.46387109300],
[0.00001431999, 4.29685556046, 625.67019231240],
[0.00000973272, 4.09764549134, 95.97922721780]
],
[
[529.69096508814, 0.00000000000, 0.00000000000],
[0.00489503243, 4.22082939470, 529.69096509460],
[0.00228917222, 6.02646855621, 7.11354700080],
[0.00030099479, 4.54540782858, 1059.38193018920],
[0.00020720920, 5.45943156902, 522.57741809380],
[0.00012103653, 0.16994816098, 536.80451209540],
[0.00006067987, 4.42422292017, 103.09277421860],
[0.00005433968, 3.98480737746, 419.48464387520],
[0.00004237744, 5.89008707199, 14.22709400160]
],
[
[0.00047233601, 4.32148536482, 7.11354700080],
[0.00030649436, 2.92977788700, 529.69096509460],
[0.00014837605, 3.14159265359, 0.00000000000]
]
],
[
[
[0.02268615702, 3.55852606721, 529.69096509460],
[0.00109971634, 3.90809347197, 1059.38193018920],
[0.00110090358, 0.00000000000, 0.00000000000],
[0.00008101428, 3.60509572885, 522.57741809380],
[0.00006043996, 4.25883108339, 1589.07289528380],
[0.00006437782, 0.30627119215, 536.80451209540]
],
[
[0.00078203446, 1.52377859742, 529.69096509460]
]
],
[
[
[5.20887429326, 0.00000000000, 0.00000000000],
[0.25209327119, 3.49108639871, 529.69096509460],
[0.00610599976, 3.84115365948, 1059.38193018920],
[0.00282029458, 2.57419881293, 632.78373931320],
[0.00187647346, 2.07590383214, 522.57741809380],
[0.00086792905, 0.71001145545, 419.48464387520],
[0.00072062974, 0.21465724607, 536.80451209540],
[0.00065517248, 5.97995884790, 316.39186965660],
[0.00029134542, 1.67759379655, 103.09277421860],
[0.00030135335, 2.16132003734, 949.17560896980],
[0.00023453271, 3.54023522184, 735.87651353180],
[0.00022283743, 4.19362594399, 1589.07289528380],
[0.00023947298, 0.27458037480, 7.11354700080],
[0.00013032614, 2.96042965363, 1162.47470440780],
[0.00009703360, 1.90669633585, 206.18554843720],
[0.00012749023, 2.71550286592, 1052.26838318840]
],
[
[0.01271801520, 2.64937512894, 529.69096509460],
[0.00061661816, 3.00076460387, 1059.38193018920],
[0.00053443713, 3.89717383175, 522.57741809380],
[0.00031185171, 4.88276958012, 536.80451209540],
[0.00041390269, 0.00000000000, 0.00000000000]
]
]
],
Saturn: [
[
[
[0.87401354025, 0.00000000000, 0.00000000000],
[0.11107659762, 3.96205090159, 213.29909543800],
[0.01414150957, 4.58581516874, 7.11354700080],
[0.00398379389, 0.52112032699, 206.18554843720],
[0.00350769243, 3.30329907896, 426.59819087600],
[0.00206816305, 0.24658372002, 103.09277421860],
[0.00079271300, 3.84007056878, 220.41264243880],
[0.00023990355, 4.66976924553, 110.20632121940],
[0.00016573588, 0.43719228296, 419.48464387520],
[0.00014906995, 5.76903183869, 316.39186965660],
[0.00015820290, 0.93809155235, 632.78373931320],
[0.00014609559, 1.56518472000, 3.93215326310],
[0.00013160301, 4.44891291899, 14.22709400160],
[0.00015053543, 2.71669915667, 639.89728631400],
[0.00013005299, 5.98119023644, 11.04570026390],
[0.00010725067, 3.12939523827, 202.25339517410],
[0.00005863206, 0.23656938524, 529.69096509460],
[0.00005227757, 4.20783365759, 3.18139373770],
[0.00006126317, 1.76328667907, 277.03499374140],
[0.00005019687, 3.17787728405, 433.71173787680],
[0.00004592550, 0.61977744975, 199.07200143640],
[0.00004005867, 2.24479718502, 63.73589830340],
[0.00002953796, 0.98280366998, 95.97922721780],
[0.00003873670, 3.22283226966, 138.51749687070],
[0.00002461186, 2.03163875071, 735.87651353180],
[0.00003269484, 0.77492638211, 949.17560896980],
[0.00001758145, 3.26580109940, 522.57741809380],
[0.00001640172, 5.50504453050, 846.08283475120],
[0.00001391327, 4.02333150505, 323.50541665740],
[0.00001580648, 4.37265307169, 309.27832265580],
[0.00001123498, 2.83726798446, 415.55249061210],
[0.00001017275, 3.71700135395, 227.52618943960],
[0.00000848642, 3.19150170830, 209.36694217490]
],
[
[213.29909521690, 0.00000000000, 0.00000000000],
[0.01297370862, 1.82834923978, 213.29909543800],
[0.00564345393, 2.88499717272, 7.11354700080],
[0.00093734369, 1.06311793502, 426.59819087600],
[0.00107674962, 2.27769131009, 206.18554843720],
[0.00040244455, 2.04108104671, 220.41264243880],
[0.00019941774, 1.27954390470, 103.09277421860],
[0.00010511678, 2.74880342130, 14.22709400160],
[0.00006416106, 0.38238295041, 639.89728631400],
[0.00004848994, 2.43037610229, 419.48464387520],
[0.00004056892, 2.92133209468, 110.20632121940],
[0.00003768635, 3.64965330780, 3.93215326310]
],
[
[0.00116441330, 1.17988132879, 7.11354700080],
[0.00091841837, 0.07325195840, 213.29909543800],
[0.00036661728, 0.00000000000, 0.00000000000],
[0.00015274496, 4.06493179167, 206.18554843720]
]
],
[
[
[0.04330678039, 3.60284428399, 213.29909543800],
[0.00240348302, 2.85238489373, 426.59819087600],
[0.00084745939, 0.00000000000, 0.00000000000],
[0.00030863357, 3.48441504555, 220.41264243880],
[0.00034116062, 0.57297307557, 206.18554843720],
[0.00014734070, 2.11846596715, 639.89728631400],
[0.00009916667, 5.79003188904, 419.48464387520],
[0.00006993564, 4.73604689720, 7.11354700080],
[0.00004807588, 5.43305312061, 316.39186965660]
],
[
[0.00198927992, 4.93901017903, 213.29909543800],
[0.00036947916, 3.14159265359, 0.00000000000],
[0.00017966989, 0.51979431110, 426.59819087600]
]
],
[
[
[9.55758135486, 0.00000000000, 0.00000000000],
[0.52921382865, 2.39226219573, 213.29909543800],
[0.01873679867, 5.23549604660, 206.18554843720],
[0.01464663929, 1.64763042902, 426.59819087600],
[0.00821891141, 5.93520042303, 316.39186965660],
[0.00547506923, 5.01532618980, 103.09277421860],
[0.00371684650, 2.27114821115, 220.41264243880],
[0.00361778765, 3.13904301847, 7.11354700080],
[0.00140617506, 5.70406606781, 632.78373931320],
[0.00108974848, 3.29313390175, 110.20632121940],
[0.00069006962, 5.94099540992, 419.48464387520],
[0.00061053367, 0.94037691801, 639.89728631400],
[0.00048913294, 1.55733638681, 202.25339517410],
[0.00034143772, 0.19519102597, 277.03499374140],
[0.00032401773, 5.47084567016, 949.17560896980],
[0.00020936596, 0.46349251129, 735.87651353180]
],
[
[0.06182981340, 0.25843511480, 213.29909543800],
[0.00506577242, 0.71114625261, 206.18554843720],
[0.00341394029, 5.79635741658, 426.59819087600],
[0.00188491195, 0.47215589652, 220.41264243880],
[0.00186261486, 3.14159265359, 0.00000000000],
[0.00143891146, 1.40744822888, 7.11354700080]
],
[
[0.00436902572, 4.78671677509, 213.29909543800]
]
]
],
Uranus: [
[
[
[5.48129294297, 0.00000000000, 0.00000000000],
[0.09260408234, 0.89106421507, 74.78159856730],
[0.01504247898, 3.62719260920, 1.48447270830],
[0.00365981674, 1.89962179044, 73.29712585900],
[0.00272328168, 3.35823706307, 149.56319713460],
[0.00070328461, 5.39254450063, 63.73589830340],
[0.00068892678, 6.09292483287, 76.26607127560],
[0.00061998615, 2.26952066061, 2.96894541660],
[0.00061950719, 2.85098872691, 11.04570026390],
[0.00026468770, 3.14152083966, 71.81265315070],
[0.00025710476, 6.11379840493, 454.90936652730],
[0.00021078850, 4.36059339067, 148.07872442630],
[0.00017818647, 1.74436930289, 36.64856292950],
[0.00014613507, 4.73732166022, 3.93215326310],
[0.00011162509, 5.82681796350, 224.34479570190],
[0.00010997910, 0.48865004018, 138.51749687070],
[0.00009527478, 2.95516862826, 35.16409022120],
[0.00007545601, 5.23626582400, 109.94568878850],
[0.00004220241, 3.23328220918, 70.84944530420],
[0.00004051900, 2.27755017300, 151.04766984290],
[0.00003354596, 1.06549007380, 4.45341812490],
[0.00002926718, 4.62903718891, 9.56122755560],
[0.00003490340, 5.48306144511, 146.59425171800],
[0.00003144069, 4.75199570434, 77.75054398390],
[0.00002922333, 5.35235361027, 85.82729883120],
[0.00002272788, 4.36600400036, 70.32818044240],
[0.00002051219, 1.51773566586, 0.11187458460],
[0.00002148602, 0.60745949945, 38.13303563780],
[0.00001991643, 4.92437588682, 277.03499374140],
[0.00001376226, 2.04283539351, 65.22037101170],
[0.00001666902, 3.62744066769, 380.12776796000],
[0.00001284107, 3.11347961505, 202.25339517410],
[0.00001150429, 0.93343589092, 3.18139373770],
[0.00001533221, 2.58594681212, 52.69019803950],
[0.00001281604, 0.54271272721, 222.86032299360],
[0.00001372139, 4.19641530878, 111.43016149680],
[0.00001221029, 0.19900650030, 108.46121608020],
[0.00000946181, 1.19253165736, 127.47179660680],
[0.00001150989, 4.17898916639, 33.67961751290]
],
[
[74.78159860910, 0.00000000000, 0.00000000000],
[0.00154332863, 5.24158770553, 74.78159856730],
[0.00024456474, 1.71260334156, 1.48447270830],
[0.00009258442, 0.42829732350, 11.04570026390],
[0.00008265977, 1.50218091379, 63.73589830340],
[0.00009150160, 1.41213765216, 149.56319713460]
]
],
[
[
[0.01346277648, 2.61877810547, 74.78159856730],
[0.00062341400, 5.08111189648, 149.56319713460],
[0.00061601196, 3.14159265359, 0.00000000000],
[0.00009963722, 1.61603805646, 76.26607127560],
[0.00009926160, 0.57630380333, 73.29712585900]
],
[
[0.00034101978, 0.01321929936, 74.78159856730]
]
],
[
[
[19.21264847206, 0.00000000000, 0.00000000000],
[0.88784984413, 5.60377527014, 74.78159856730],
[0.03440836062, 0.32836099706, 73.29712585900],
[0.02055653860, 1.78295159330, 149.56319713460],
[0.00649322410, 4.52247285911, 76.26607127560],
[0.00602247865, 3.86003823674, 63.73589830340],
[0.00496404167, 1.40139935333, 454.90936652730],
[0.00338525369, 1.58002770318, 138.51749687070],
[0.00243509114, 1.57086606044, 71.81265315070],
[0.00190522303, 1.99809394714, 1.48447270830],
[0.00161858838, 2.79137786799, 148.07872442630],
[0.00143706183, 1.38368544947, 11.04570026390],
[0.00093192405, 0.17437220467, 36.64856292950],
[0.00071424548, 4.24509236074, 224.34479570190],
[0.00089806014, 3.66105364565, 109.94568878850],
[0.00039009723, 1.66971401684, 70.84944530420],
[0.00046677296, 1.39976401694, 35.16409022120],
[0.00039025624, 3.36234773834, 277.03499374140],
[0.00036755274, 3.88649278513, 146.59425171800],
[0.00030348723, 0.70100838798, 151.04766984290],
[0.00029156413, 3.18056336700, 77.75054398390]
],
[
[0.01479896629, 3.67205697578, 74.78159856730]
]
]
],
Neptune: [
[
[
[5.31188633046, 0.00000000000, 0.00000000000],
[0.01798475530, 2.90101273890, 38.13303563780],
[0.01019727652, 0.48580922867, 1.48447270830],
[0.00124531845, 4.83008090676, 36.64856292950],
[0.00042064466, 5.41054993053, 2.96894541660],
[0.00037714584, 6.09221808686, 35.16409022120],
[0.00033784738, 1.24488874087, 76.26607127560],
[0.00016482741, 0.00007727998, 491.55792945680],
[0.00009198584, 4.93747051954, 39.61750834610],
[0.00008994250, 0.27462171806, 175.16605980020]
],
[
[38.13303563957, 0.00000000000, 0.00000000000],
[0.00016604172, 4.86323329249, 1.48447270830],
[0.00015744045, 2.27887427527, 38.13303563780]
]
],
[
[
[0.03088622933, 1.44104372644, 38.13303563780],
[0.00027780087, 5.91271884599, 76.26607127560],
[0.00027623609, 0.00000000000, 0.00000000000],
[0.00015355489, 2.52123799551, 36.64856292950],
[0.00015448133, 3.50877079215, 39.61750834610]
]
],
[
[
[30.07013205828, 0.00000000000, 0.00000000000],
[0.27062259632, 1.32999459377, 38.13303563780],
[0.01691764014, 3.25186135653, 36.64856292950],
[0.00807830553, 5.18592878704, 1.48447270830],
[0.00537760510, 4.52113935896, 35.16409022120],
[0.00495725141, 1.57105641650, 491.55792945680],
[0.00274571975, 1.84552258866, 175.16605980020]
]
]
]
};
const cheb = {
Pluto: [
{ 'tt':-109573.500000, 'ndays':26141.000000, 'coeff':[
[-30.303124711144, -18.980368465705, 3.206649343866],
[20.092745278347, -27.533908687219, -14.641121965990],
[9.137264744925, 6.513103657467, -0.720732357468],
[-1.201554708717, 2.149917852301, 1.032022293526],
[-0.566068170022, -0.285737361191, 0.081379987808],
[0.041678527795, -0.143363105040, -0.057534475984],
[0.041087908142, 0.007911321580, -0.010270655537],
[0.001611769878, 0.011409821837, 0.003679980733],
[-0.002536458296, -0.000145632543, 0.000949924030],
[0.001167651969, -0.000049912680, 0.000115867710],
[-0.000196953286, 0.000420406270, 0.000110147171],
[0.001073825784, 0.000442658285, 0.000146985332],
[-0.000906160087, 0.001702360394, 0.000758987924],
[-0.001467464335, -0.000622191266, -0.000231866243],
[-0.000008986691, 0.000004086384, 0.000001442956],
[-0.001099078039, -0.000544633529, -0.000205534708],
[0.001259974751, -0.002178533187, -0.000965315934],
[0.001695288316, 0.000768480768, 0.000287916141],
[-0.001428026702, 0.002707551594, 0.001195955756]]
},
{ 'tt':-83432.500000, 'ndays':26141.000000, 'coeff':[
[67.049456204563, -9.279626603192, -23.091941092128],
[14.860676672314, 26.594121136143, 3.819668867047],
[-6.254409044120, 1.408757903538, 2.323726101433],
[0.114416381092, -0.942273228585, -0.328566335886],
[0.074973631246, 0.106749156044, 0.010806547171],
[-0.018627741964, -0.009983491157, 0.002589955906],
[0.006167206174, -0.001042430439, -0.001521881831],
[-0.000471293617, 0.002337935239, 0.001060879763],
[-0.000240627462, -0.001380351742, -0.000546042590],
[0.001872140444, 0.000679876620, 0.000240384842],
[-0.000334705177, 0.000693528330, 0.000301138309],
[0.000796124758, 0.000653183163, 0.000259527079],
[-0.001276116664, 0.001393959948, 0.000629574865],
[-0.001235158458, -0.000889985319, -0.000351392687],
[-0.000019881944, 0.000048339979, 0.000021342186],
[-0.000987113745, -0.000748420747, -0.000296503569],
[0.001721891782, -0.001893675502, -0.000854270937],
[0.001505145187, 0.001081653337, 0.000426723640],
[-0.002019479384, 0.002375617497, 0.001068258925]]
},
{ 'tt':-57291.500000, 'ndays':26141.000000, 'coeff':[
[46.038290912405, 73.773759757856, 9.148670950706],
[-22.354364534703, 10.217143138926, 9.921247676076],
[-2.696282001399, -4.440843715929, -0.572373037840],
[0.385475818800, -0.287872688575, -0.205914693555],
[0.020994433095, 0.004256602589, -0.004817361041],
[0.003212255378, 0.000574875698, -0.000764464370],
[-0.000158619286, -0.001035559544, -0.000535612316],
[0.000967952107, -0.000653111849, -0.000292019750],
[0.001763494906, -0.000370815938, -0.000224698363],
[0.001157990330, 0.001849810828, 0.000759641577],
[-0.000883535516, 0.000384038162, 0.000191242192],
[0.000709486562, 0.000655810827, 0.000265431131],
[-0.001525810419, 0.001126870468, 0.000520202001],
[-0.000983210860, -0.001116073455, -0.000456026382],
[-0.000015655450, 0.000069184008, 0.000029796623],
[-0.000815102021, -0.000900597010, -0.000365274209],
[0.002090300438, -0.001536778673, -0.000709827438],
[0.001234661297, 0.001342978436, 0.000545313112],
[-0.002517963678, 0.001941826791, 0.000893859860]]
},
{ 'tt':-31150.500000, 'ndays':26141.000000, 'coeff':[
[-39.074661990988, 30.963513412373, 21.431709298065],
[-12.033639281924, -31.693679132310, -6.263961539568],
[7.233936758611, -3.979157072767, -3.421027935569],
[1.383182539917, 1.090729793400, -0.076771771448],
[-0.009894394996, 0.313614402007, 0.101180677344],
[-0.055459383449, 0.031782406403, 0.026374448864],
[-0.011074105991, -0.007176759494, 0.001896208351],
[-0.000263363398, -0.001145329444, 0.000215471838],
[0.000405700185, -0.000839229891, -0.000418571366],
[0.001004921401, 0.001135118493, 0.000406734549],
[-0.000473938695, 0.000282751002, 0.000114911593],
[0.000528685886, 0.000966635293, 0.000401955197],
[-0.001838869845, 0.000806432189, 0.000394594478],
[-0.000713122169, -0.001334810971, -0.000554511235],
[0.000006449359, 0.000060730000, 0.000024513230],
[-0.000596025142, -0.000999492770, -0.000413930406],
[0.002364904429, -0.001099236865, -0.000528480902],
[0.000907458104, 0.001537243912, 0.000637001965],
[-0.002909908764, 0.001413648354, 0.000677030924]]
},
{ 'tt':-5009.500000, 'ndays':26141.000000, 'coeff':[
[23.380075041204, -38.969338804442, -19.204762094135],
[33.437140696536, 8.735194448531, -7.348352917314],
[-3.127251304544, 8.324311848708, 3.540122328502],
[-1.491354030154, -1.350371407475, 0.028214278544],
[0.361398480996, -0.118420687058, -0.145375605480],
[-0.011771350229, 0.085880588309, 0.030665997197],
[-0.015839541688, -0.014165128211, 0.000523465951],
[0.004213218926, -0.001426373728, -0.001906412496],
[0.001465150002, 0.000451513538, 0.000081936194],
[0.000640069511, 0.001886692235, 0.000884675556],
[-0.000883554940, 0.000301907356, 0.000127310183],
[0.000245524038, 0.000910362686, 0.000385555148],
[-0.001942010476, 0.000438682280, 0.000237124027],
[-0.000425455660, -0.001442138768, -0.000607751390],
[0.000004168433, 0.000033856562, 0.000013881811],
[-0.000337920193, -0.001074290356, -0.000452503056],
[0.002544755354, -0.000620356219, -0.000327246228],
[0.000534534110, 0.001670320887, 0.000702775941],
[-0.003169380270, 0.000816186705, 0.000427213817]]
},
{ 'tt':21131.500000, 'ndays':26141.000000, 'coeff':[
[74.130449310804, 43.372111541004, -8.799489207171],
[-8.705941488523, 23.344631690845, 9.908006472122],
[-4.614752911564, -2.587334376729, 0.583321715294],
[0.316219286624, -0.395448970181, -0.219217574801],
[0.004593734664, 0.027528474371, 0.007736197280],
[-0.001192268851, -0.004987723997, -0.001599399192],
[0.003051998429, -0.001287028653, -0.000780744058],
[0.001482572043, 0.001613554244, 0.000635747068],
[0.000581965277, 0.000788286674, 0.000315285159],
[-0.000311830730, 0.001622369930, 0.000714817617],
[-0.000711275723, -0.000160014561, -0.000050445901],
[0.000177159088, 0.001032713853, 0.000435835541],
[-0.002032280820, 0.000144281331, 0.000111910344],
[-0.000148463759, -0.001495212309, -0.000635892081],
[-0.000009629403, -0.000013678407, -0.000006187457],
[-0.000061196084, -0.001119783520, -0.000479221572],
[0.002630993795, -0.000113042927, -0.000112115452],
[0.000132867113, 0.001741417484, 0.000743224630],
[-0.003293498893, 0.000182437998, 0.000158073228]]
},
{ 'tt':47272.500000, 'ndays':26141.000000, 'coeff':[
[-5.727994625506, 71.194823351703, 23.946198176031],
[-26.767323214686, -12.264949302780, 4.238297122007],
[0.890596204250, -5.970227904551, -2.131444078785],
[0.808383708156, -0.143104108476, -0.288102517987],
[0.089303327519, 0.049290470655, -0.010970501667],
[0.010197195705, 0.012879721400, 0.001317586740],
[0.001795282629, 0.004482403780, 0.001563326157],
[-0.001974716105, 0.001278073933, 0.000652735133],
[0.000906544715, -0.000805502229, -0.000336200833],
[0.000283816745, 0.001799099064, 0.000756827653],
[-0.000784971304, 0.000123081220, 0.000068812133],
[-0.000237033406, 0.000980100466, 0.000427758498],
[-0.001976846386, -0.000280421081, -0.000072417045],
[0.000195628511, -0.001446079585, -0.000624011074],
[-0.000044622337, -0.000035865046, -0.000013581236],
[0.000204397832, -0.001127474894, -0.000488668673],
[0.002625373003, 0.000389300123, 0.000102756139],
[-0.000277321614, 0.001732818354, 0.000749576471],
[-0.003280537764, -0.000457571669, -0.000116383655]]
}]
};
const DT = [
{ mjd:-72638.0, dt:38 },
{ mjd:-65333.0, dt:26 },
{ mjd:-58028.0, dt:21 },
{ mjd:-50724.0, dt:21.1 },
{ mjd:-43419.0, dt:13.5 },
{ mjd:-39766.0, dt:13.7 },
{ mjd:-36114.0, dt:14.8 },
{ mjd:-32461.0, dt:15.7 },
{ mjd:-28809.0, dt:15.6 },
{ mjd:-25156.0, dt:13.3 },
{ mjd:-21504.0, dt:12.6 },
{ mjd:-17852.0, dt:11.2 },
{ mjd:-14200.0, dt:11.13 },
{ mjd:-10547.0, dt:7.95 },
{ mjd:-6895.0, dt:6.22 },
{ mjd:-3242.0, dt:6.55 },
{ mjd:-1416.0, dt:7.26 },
{ mjd:410.0, dt:7.35 },
{ mjd:2237.0, dt:5.92 },
{ mjd:4063.0, dt:1.04 },
{ mjd:5889.0, dt:-3.19 },
{ mjd:7715.0, dt:-5.36 },
{ mjd:9542.0, dt:-5.74 },
{ mjd:11368.0, dt:-5.86 },
{ mjd:13194.0, dt:-6.41 },
{ mjd:15020.0, dt:-2.70 },
{ mjd:16846.0, dt:3.92 },
{ mjd:18672.0, dt:10.38 },
{ mjd:20498.0, dt:17.19 },
{ mjd:22324.0, dt:21.41 },
{ mjd:24151.0, dt:23.63 },
{ mjd:25977.0, dt:24.02 },
{ mjd:27803.0, dt:23.91 },
{ mjd:29629.0, dt:24.35 },
{ mjd:31456.0, dt:26.76 },
{ mjd:33282.0, dt:29.15 },
{ mjd:35108.0, dt:31.07 },
{ mjd:36934.0, dt:33.150 },
{ mjd:38761.0, dt:35.738 },
{ mjd:40587.0, dt:40.182 },
{ mjd:42413.0, dt:45.477 },
{ mjd:44239.0, dt:50.540 },
{ mjd:44605.0, dt:51.3808 },
{ mjd:44970.0, dt:52.1668 },
{ mjd:45335.0, dt:52.9565 },
{ mjd:45700.0, dt:53.7882 },
{ mjd:46066.0, dt:54.3427 },
{ mjd:46431.0, dt:54.8712 },
{ mjd:46796.0, dt:55.3222 },
{ mjd:47161.0, dt:55.8197 },
{ mjd:47527.0, dt:56.3000 },
{ mjd:47892.0, dt:56.8553 },
{ mjd:48257.0, dt:57.5653 },
{ mjd:48622.0, dt:58.3092 },
{ mjd:48988.0, dt:59.1218 },
{ mjd:49353.0, dt:59.9845 },
{ mjd:49718.0, dt:60.7853 },
{ mjd:50083.0, dt:61.6287 },
{ mjd:50449.0, dt:62.2950 },
{ mjd:50814.0, dt:62.9659 },
{ mjd:51179.0, dt:63.4673 },
{ mjd:51544.0, dt:63.8285 },
{ mjd:51910.0, dt:64.0908 },
{ mjd:52275.0, dt:64.2998 },
{ mjd:52640.0, dt:64.4734 },
{ mjd:53005.0, dt:64.5736 },
{ mjd:53371.0, dt:64.6876 },
{ mjd:53736.0, dt:64.8452 },
{ mjd:54101.0, dt:65.1464 },
{ mjd:54466.0, dt:65.4573 },
{ mjd:54832.0, dt:65.7768 },
{ mjd:55197.0, dt:66.0699 },
{ mjd:55562.0, dt:66.3246 },
{ mjd:55927.0, dt:66.6030 },
{ mjd:56293.0, dt:66.9069 },
{ mjd:56658.0, dt:67.2810 },
{ mjd:57023.0, dt:67.6439 },
{ mjd:57388.0, dt:68.1024 },
{ mjd:57754.0, dt:68.5927 },
{ mjd:58119.0, dt:68.9676 },
{ mjd:58484.0, dt:69.2201 },
{ mjd:58849.0, dt:69.87 },
{ mjd:59214.0, dt:70.39 },
{ mjd:59580.0, dt:70.91 },
{ mjd:59945.0, dt:71.40 },
{ mjd:60310.0, dt:71.88 },
{ mjd:60675.0, dt:72.36 },
{ mjd:61041.0, dt:72.83 },
{ mjd:61406.0, dt:73.32 },
{ mjd:61680.0, dt:73.66 }
];
/**
* Calculates the difference TT-UT for the given date/time, expressed
* as a Modified Julian Date.
*
* @param {number} mjd
* A date and time expressed as a
* <a href="http://scienceworld.wolfram.com/astronomy/ModifiedJulianDate.html">Modified Julian Date</a>.
*
* @returns {number}
* The difference TT-UT in seconds for the given date and time.
*/
function DeltaT(mjd) {
// DT[i] = { mjd: 58484.0, dt: 69.34 }
// Check end ranges. If outside the known bounds, clamp to the closest known value.
if (mjd <= DT[0].mjd) {
return DT[0].dt;
}
if (mjd >= DT[DT.length-1].mjd) {
return DT[DT.length-1].dt;
}
// Do a binary search to find the pair of indexes this mjd lies between.
let lo = 0;
let hi = DT.length-2; // make sure there is always an array element after the one we are looking at
while (lo <= hi) {
let c = (lo + hi) >> 1;
if (mjd < DT[c].mjd) {
hi = c-1;
} else if (mjd > DT[c+1].mjd) {
lo = c+1;
} else {
let frac = (mjd - DT[c].mjd) / (DT[c+1].mjd - DT[c].mjd);
return DT[c].dt + frac*(DT[c+1].dt - DT[c].dt);
}
}
// This should never happen if the binary search algorithm is correct.
throw `Could not find Delta-T value for MJD=${mjd}`;
}
/**
* Calculates Terrestrial Time (TT) from Universal Time (UT).
*
* @param {number} ut
* The Universal Time expressed as a floating point number of days since the 2000.0 epoch.
*
* @returns {number}
* A Terrestrial Time expressed as a floating point number of days since the 2000.0 epoch.
*/
function TerrestrialTime(ut) {
return ut + DeltaT(ut + Y2000_IN_MJD)/86400;
}
/**
* The date and time of an astronomical observation.
* Objects of this type are used throughout the internals
* of the Astronomy library, and are included in certain return objects.
* The constructor is not accessible outside the Astronomy library;
* outside users should call the {@link Astronomy.MakeTime} function
* to create an <code>AstroTime</code> object.
*
* @class
* @memberof Astronomy
*
* @property {Date} date
* The JavaScript Date object for the given date and time.
* This Date corresponds to the numeric day value stored in the <code>ut</code> property.
*
* @property {number} ut
* Universal Time (UT1/UTC) in fractional days since the J2000 epoch.
* Universal Time represents time measured with respect to the Earth's rotation,
* tracking mean solar days.
* The Astronomy library approximates UT1 and UTC as being the same thing.
* This gives sufficient accuracy for the precision requirements of this project.
*
* @property {number} tt
* Terrestrial Time in fractional days since the J2000 epoch.
* TT represents a continuously flowing ephemeris timescale independent of
* any variations of the Earth's rotation, and is adjusted from UT
* using historical and predictive models of those variations.
*/
class AstroTime {
/**
* @param {(Date|number)} date
* A JavaScript Date object or a numeric UTC value expressed in J2000 days.
*/
constructor(date) {
const MillisPerDay = 1000 * 3600 * 24;
if (date instanceof Date) {
this.date = date;
this.ut = (date - J2000) / MillisPerDay;
this.tt = TerrestrialTime(this.ut);
return;
}
if (typeof date === 'number') {
this.date = new Date(J2000 - (-date)*MillisPerDay);
this.ut = date;
this.tt = TerrestrialTime(this.ut);
return;
}
throw 'Argument must be a Date object, an AstroTime object, or a numeric UTC Julian date.';
}
/**
* Formats an <code>AstroTime</code> object as an
* <a href="https://en.wikipedia.org/wiki/ISO_8601">ISO 8601</a>
* date/time string in UTC, to millisecond resolution.
* Example:
* <pre>
* <code>2018-08-17T17:22:04.050Z</code>
* </pre>
* @returns {string}
*/
toString() {
return this.date.toISOString();
}
/**
* Returns a new <code>AstroTime</code> object adjusted by the floating point number of days.
* Does NOT modify the original <code>AstroTime</code> object.
*
* @param {number} days
* The floating point number of days by which to adjust the given date and time.
* Positive values adjust the date toward the future, and
* negative values adjust the date toward the past.
*
* @returns {Astronomy.AstroTime}
*/
AddDays(days) {
// This is slightly wrong, but the error is tiny.
// We really should be adding to TT, not to UT.
// But using TT would require creating an inverse function for DeltaT,
// which would be quite a bit of extra calculation.
// I estimate the error is in practice on the order of 10^(-7)
// times the value of 'days'.
// This is based on a typical drift of 1 second per year between UT and TT.
return new AstroTime(this.ut + days);
}
}
function InterpolateTime(time1, time2, fraction) {
return new AstroTime(time1.ut + fraction*(time2.ut - time1.ut));
}
/**
* Given a Date object or a number days since noon (12:00) on January 1, 2000 (UTC),
* this function creates an {@link Astronomy.AstroTime} object.
* Given an {@link Astronomy.AstroTime} object, returns the same object unmodified.
* Use of this function is not required for any of the other exposed functions in this library,
* because they all guarantee converting date/time parameters to Astronomy.AstroTime
* as needed. However, it may be convenient for callers who need to understand
* the difference between UTC and TT (Terrestrial Time). In some use cases,
* converting once to Astronomy.AstroTime format and passing the result into multiple
* function calls may be more efficient than passing in native JavaScript Date objects.
*
* @param {(Date | number | Astronomy.AstroTime)} date
* A Date object, a number of UTC days since the J2000 epoch (noon on January 1, 2000),
* or an Astronomy.AstroTime object. See remarks above.
*
* @returns {Astronomy.AstroTime}
*/
Astronomy.MakeTime = function(date) {
if (date instanceof AstroTime) {
return date;
}
return new AstroTime(date);
}
const iaudata = [
{ nals:[ 0, 0, 0, 0, 1 ], cls:[ -172064161, -174666, 33386, 92052331, 9086, 15377 ] },
{ nals:[ 0, 0, 2, -2, 2 ], cls:[ -13170906, -1675, -13696, 5730336, -3015, -4587 ] },
{ nals:[ 0, 0, 2, 0, 2 ], cls:[ -2276413, -234, 2796, 978459, -485, 1374 ] },
{ nals:[ 0, 0, 0, 0, 2 ], cls:[ 2074554, 207, -698, -897492, 470, -291 ] },
{ nals:[ 0, 1, 0, 0, 0 ], cls:[ 1475877, -3633, 11817, 73871, -184, -1924 ] },
{ nals:[ 0, 1, 2, -2, 2 ], cls:[ -516821, 1226, -524, 224386, -677, -174 ] },
{ nals:[ 1, 0, 0, 0, 0 ], cls:[ 711159, 73, -872, -6750, 0, 358 ] },
{ nals:[ 0, 0, 2, 0, 1 ], cls:[ -387298, -367, 380, 200728, 18, 318 ] },
{ nals:[ 1, 0, 2, 0, 2 ], cls:[ -301461, -36, 816, 129025, -63, 367 ] },
{ nals:[ 0, -1, 2, -2, 2 ], cls:[ 215829, -494, 111, -95929, 299, 132 ] },
{ nals:[ 0, 0, 2, -2, 1 ], cls:[ 128227, 137, 181, -68982, -9, 39 ] },
{ nals:[ -1, 0, 2, 0, 2 ], cls:[ 123457, 11, 19, -53311, 32, -4 ] },
{ nals:[ -1, 0, 0, 2, 0 ], cls:[ 156994, 10, -168, -1235, 0, 82 ] },
{ nals:[ 1, 0, 0, 0, 1 ], cls:[ 63110, 63, 27, -33228, 0, -9 ] },
{ nals:[ -1, 0, 0, 0, 1 ], cls:[ -57976, -63, -189, 31429, 0, -75 ] },
{ nals:[ -1, 0, 2, 2, 2 ], cls:[ -59641, -11, 149, 25543, -11, 66 ] },
{ nals:[ 1, 0, 2, 0, 1 ], cls:[ -51613, -42, 129, 26366, 0, 78 ] },
{ nals:[ -2, 0, 2, 0, 1 ], cls:[ 45893, 50, 31, -24236, -10, 20 ] },
{ nals:[ 0, 0, 0, 2, 0 ], cls:[ 63384, 11, -150, -1220, 0, 29 ] },
{ nals:[ 0, 0, 2, 2, 2 ], cls:[ -38571, -1, 158, 16452, -11, 68 ] },
{ nals:[ 0, -2, 2, -2, 2 ], cls:[ 32481, 0, 0, -13870, 0, 0 ] },
{ nals:[ -2, 0, 0, 2, 0 ], cls:[ -47722, 0, -18, 477, 0, -25 ] },
{ nals:[ 2, 0, 2, 0, 2 ], cls:[ -31046, -1, 131, 13238, -11, 59 ] },
{ nals:[ 1, 0, 2, -2, 2 ], cls:[ 28593, 0, -1, -12338, 10, -3 ] },
{ nals:[ -1, 0, 2, 0, 1 ], cls:[ 20441, 21, 10, -10758, 0, -3 ] },
{ nals:[ 2, 0, 0, 0, 0 ], cls:[ 29243, 0, -74, -609, 0, 13 ] },
{ nals:[ 0, 0, 2, 0, 0 ], cls:[ 25887, 0, -66, -550, 0, 11 ] },
{ nals:[ 0, 1, 0, 0, 1 ], cls:[ -14053, -25, 79, 8551, -2, -45 ] },
{ nals:[ -1, 0, 0, 2, 1 ], cls:[ 15164, 10, 11, -8001, 0, -1 ] },
{ nals:[ 0, 2, 2, -2, 2 ], cls:[ -15794, 72, -16, 6850, -42, -5 ] },
{ nals:[ 0, 0, -2, 2, 0 ], cls:[ 21783, 0, 13, -167, 0, 13 ] },
{ nals:[ 1, 0, 0, -2, 1 ], cls:[ -12873, -10, -37, 6953, 0, -14 ] },
{ nals:[ 0, -1, 0, 0, 1 ], cls:[ -12654, 11, 63, 6415, 0, 26 ] },
{ nals:[ -1, 0, 2, 2, 1 ], cls:[ -10204, 0, 25, 5222, 0, 15 ] },
{ nals:[ 0, 2, 0, 0, 0 ], cls:[ 16707, -85, -10, 168, -1, 10 ] },
{ nals:[ 1, 0, 2, 2, 2 ], cls:[ -7691, 0, 44, 3268, 0, 19 ] },
{ nals:[ -2, 0, 2, 0, 0 ], cls:[ -11024, 0, -14, 104, 0, 2 ] },
{ nals:[ 0, 1, 2, 0, 2 ], cls:[ 7566, -21, -11, -3250, 0, -5 ] },
{ nals:[ 0, 0, 2, 2, 1 ], cls:[ -6637, -11, 25, 3353, 0, 14 ] },
{ nals:[ 0, -1, 2, 0, 2 ], cls:[ -7141, 21, 8, 3070, 0, 4 ] },
{ nals:[ 0, 0, 0, 2, 1 ], cls:[ -6302, -11, 2, 3272, 0, 4 ] },
{ nals:[ 1, 0, 2, -2, 1 ], cls:[ 5800, 10, 2, -3045, 0, -1 ] },
{ nals:[ 2, 0, 2, -2, 2 ], cls:[ 6443, 0, -7, -2768, 0, -4 ] },
{ nals:[ -2, 0, 0, 2, 1 ], cls:[ -5774, -11, -15, 3041, 0, -5 ] },
{ nals:[ 2, 0, 2, 0, 1 ], cls:[ -5350, 0, 21, 2695, 0, 12 ] },
{ nals:[ 0, -1, 2, -2, 1 ], cls:[ -4752, -11, -3, 2719, 0, -3 ] },
{ nals:[ 0, 0, 0, -2, 1 ], cls:[ -4940, -11, -21, 2720, 0, -9 ] },
{ nals:[ -1, -1, 0, 2, 0 ], cls:[ 7350, 0, -8, -51, 0, 4 ] },
{ nals:[ 2, 0, 0, -2, 1 ], cls:[ 4065, 0, 6, -2206, 0, 1 ] },
{ nals:[ 1, 0, 0, 2, 0 ], cls:[ 6579, 0, -24, -199, 0, 2 ] },
{ nals:[ 0, 1, 2, -2, 1 ], cls:[ 3579, 0, 5, -1900, 0, 1 ] },
{ nals:[ 1, -1, 0, 0, 0 ], cls:[ 4725, 0, -6, -41, 0, 3 ] },
{ nals:[ -2, 0, 2, 0, 2 ], cls:[ -3075, 0, -2, 1313, 0, -1 ] },
{ nals:[ 3, 0, 2, 0, 2 ], cls:[ -2904, 0, 15, 1233, 0, 7 ] },
{ nals:[ 0, -1, 0, 2, 0 ], cls:[ 4348, 0, -10, -81, 0, 2 ] },
{ nals:[ 1, -1, 2, 0, 2 ], cls:[ -2878, 0, 8, 1232, 0, 4 ] },
{ nals:[ 0, 0, 0, 1, 0 ], cls:[ -4230, 0, 5, -20, 0, -2 ] },
{ nals:[ -1, -1, 2, 2, 2 ], cls:[ -2819, 0, 7, 1207, 0, 3 ] },
{ nals:[ -1, 0, 2, 0, 0 ], cls:[ -4056, 0, 5, 40, 0, -2 ] },
{ nals:[ 0, -1, 2, 2, 2 ], cls:[ -2647, 0, 11, 1129, 0, 5 ] },
{ nals:[ -2, 0, 0, 0, 1 ], cls:[ -2294, 0, -10, 1266, 0, -4 ] },
{ nals:[ 1, 1, 2, 0, 2 ], cls:[ 2481, 0, -7, -1062, 0, -3 ] },
{ nals:[ 2, 0, 0, 0, 1 ], cls:[ 2179, 0, -2, -1129, 0, -2 ] },
{ nals:[ -1, 1, 0, 1, 0 ], cls:[ 3276, 0, 1, -9, 0, 0 ] },
{ nals:[ 1, 1, 0, 0, 0 ], cls:[ -3389, 0, 5, 35, 0, -2 ] },
{ nals:[ 1, 0, 2, 0, 0 ], cls:[ 3339, 0, -13, -107, 0, 1 ] },
{ nals:[ -1, 0, 2, -2, 1 ], cls:[ -1987, 0, -6, 1073, 0, -2 ] },
{ nals:[ 1, 0, 0, 0, 2 ], cls:[ -1981, 0, 0, 854, 0, 0 ] },
{ nals:[ -1, 0, 0, 1, 0 ], cls:[ 4026, 0, -353, -553, 0, -139 ] },
{ nals:[ 0, 0, 2, 1, 2 ], cls:[ 1660, 0, -5, -710, 0, -2 ] },
{ nals:[ -1, 0, 2, 4, 2 ], cls:[ -1521, 0, 9, 647, 0, 4 ] },
{ nals:[ -1, 1, 0, 1, 1 ], cls:[ 1314, 0, 0, -700, 0, 0 ] },
{ nals:[ 0, -2, 2, -2, 1 ], cls:[ -1283, 0, 0, 672, 0, 0 ] },
{ nals:[ 1, 0, 2, 2, 1 ], cls:[ -1331, 0, 8, 663, 0, 4 ] },
{ nals:[ -2, 0, 2, 2, 2 ], cls:[ 1383, 0, -2, -594, 0, -2 ] },
{ nals:[ -1, 0, 0, 0, 2 ], cls:[ 1405, 0, 4, -610, 0, 2 ] },
{ nals:[ 1, 1, 2, -2, 2 ], cls:[ 1290, 0, 0, -556, 0, 0 ] }
];
function iau2000b(time) {
var i, t, el, elp, f, d, om, arg, dp, de, sarg, carg;
var nals, cls;
function mod(x) {
return (x % ASEC360) * ASEC2RAD;
}
t = time.tt / 36525;
el = mod(485868.249036 + t*1717915923.2178);
elp = mod(1287104.79305 + t*129596581.0481);
f = mod(335779.526232 + t*1739527262.8478);
d = mod(1072260.70369 + t*1602961601.2090);
om = mod(450160.398036 - t*6962890.5431);
dp = 0;
de = 0;
for (i=76; i >= 0; --i) {
nals = iaudata[i].nals;
cls = iaudata[i].cls;
arg = (nals[0]*el + nals[1]*elp + nals[2]*f + nals[3]*d + nals[4]*om) % PI2;
sarg = Math.sin(arg);
carg = Math.cos(arg);
dp += (cls[0] + cls[1]*t) * sarg + cls[2]*carg;
de += (cls[3] + cls[4]*t) * carg + cls[5]*sarg;
}
return {
dpsi: (-0.000135 * ASEC2RAD) + (dp * 1.0e-7 * ASEC2RAD),
deps: (+0.000388 * ASEC2RAD) + (de * 1.0e-7 * ASEC2RAD)
};
}
function nutation_angles(time) {
var nut = iau2000b(time);
return { dpsi: nut.dpsi/ASEC2RAD, deps: nut.deps/ASEC2RAD };
}
function mean_obliq(time) {
var t = time.tt / 36525;
var asec = (
(((( - 0.0000000434 * t
- 0.000000576 ) * t
+ 0.00200340 ) * t
- 0.0001831 ) * t
- 46.836769 ) * t + 84381.406
);
return asec / 3600.0;
}
var cache_e_tilt;
function e_tilt(time) {
if (!cache_e_tilt || Math.abs(cache_e_tilt.tt - time.tt) > 1.0e-6) {
const nut = nutation_angles(time);
const mean_ob = mean_obliq(time);
const true_ob = mean_ob + (nut.deps / 3600);
cache_e_tilt = {
tt: time.tt,
dpsi: nut.dpsi,
deps: nut.deps,
ee: nut.dpsi * Math.cos(mean_ob * DEG2RAD) / 15,
mobl: mean_ob,
tobl: true_ob
};
}
return cache_e_tilt;
}
function ecl2equ_vec(time, pos) {
var obl = mean_obliq(time) * DEG2RAD;
var cos_obl = Math.cos(obl);
var sin_obl = Math.sin(obl);
return [
pos[0],
pos[1]*cos_obl - pos[2]*sin_obl,
pos[1]*sin_obl + pos[2]*cos_obl
];
}
function CalcMoon(time) {
++Perf.calcmoon;
const T = time.tt / 36525;
function DeclareArray1(xmin, xmax) {
var array = [];
var i;
for (i=0; i <= xmax-xmin; ++i) {
array.push(0);
}
return {min:xmin, array:array};
}
function DeclareArray2(xmin, xmax, ymin, ymax) {
var array = [];
var i;
for (i=0; i <= xmax-xmin; ++i) {
array.push(DeclareArray1(ymin, ymax));
}
return {min:xmin, array:array};
}
function ArrayGet2(a, x, y) {
var m = a.array[x - a.min];
return m.array[y - m.min];
}
function ArraySet2(a, x, y, v) {
var m = a.array[x - a.min];
m.array[y - m.min] = v;
}
var S, MAX, ARG, FAC, I, J, T2, DGAM, DLAM, N, GAM1C, SINPI, L0, L, LS, F, D, DL0, DL, DLS, DF, DD, DS;
var coArray = DeclareArray2(-6, 6, 1, 4);
var siArray = DeclareArray2(-6, 6, 1, 4);
function CO(x, y) {
return ArrayGet2(coArray, x, y);
}
function SI(x, y) {
return ArrayGet2(siArray, x, y);
}
function SetCO(x, y, v) {
return ArraySet2(coArray, x, y, v);
}
function SetSI(x, y, v) {
return ArraySet2(siArray, x, y, v);
}
function AddThe(c1, s1, c2, s2, func) {
return func(c1*c2 - s1*s2, s1*c2 + c1*s2);
}
function Sine(phi) {
return Math.sin(PI2 * phi);
}
T2 = T*T;
DLAM = 0;
DS = 0;
GAM1C = 0;
SINPI = 3422.7000;
var S1 = Sine(0.19833+0.05611*T);
var S2 = Sine(0.27869+0.04508*T);
var S3 = Sine(0.16827-0.36903*T);
var S4 = Sine(0.34734-5.37261*T);
var S5 = Sine(0.10498-5.37899*T);
var S6 = Sine(0.42681-0.41855*T);
var S7 = Sine(0.14943-5.37511*T);
DL0 = 0.84*S1+0.31*S2+14.27*S3+ 7.26*S4+ 0.28*S5+0.24*S6;
DL = 2.94*S1+0.31*S2+14.27*S3+ 9.34*S4+ 1.12*S5+0.83*S6;
DLS =-6.40*S1 -1.89*S6;
DF = 0.21*S1+0.31*S2+14.27*S3-88.70*S4-15.30*S5+0.24*S6-1.86*S7;
DD = DL0-DLS;
DGAM = (-3332E-9 * Sine(0.59734-5.37261*T)
-539E-9 * Sine(0.35498-5.37899*T)
-64E-9 * Sine(0.39943-5.37511*T));
L0 = PI2*Frac(0.60643382+1336.85522467*T-0.00000313*T2) + DL0/ARC;
L = PI2*Frac(0.37489701+1325.55240982*T+0.00002565*T2) + DL /ARC;
LS = PI2*Frac(0.99312619+ 99.99735956*T-0.00000044*T2) + DLS/ARC;
F = PI2*Frac(0.25909118+1342.22782980*T-0.00000892*T2) + DF /ARC;
D = PI2*Frac(0.82736186+1236.85308708*T-0.00000397*T2) + DD /ARC;
for (I=1; I<=4; ++I)
{
switch (I)
{
case 1: ARG=L; MAX=4; FAC=1.000002208; break;
case 2: ARG=LS; MAX=3; FAC=0.997504612-0.002495388*T; break;
case 3: ARG=F; MAX=4; FAC=1.000002708+139.978*DGAM; break;
case 4: ARG=D; MAX=6; FAC=1.0; break;
}
SetCO(0, I, 1);
SetCO(1, I, Math.cos(ARG) * FAC);
SetSI(0, I, 0);
SetSI(1, I, Math.sin(ARG) * FAC);
for (J=2; J<=MAX; ++J) {
AddThe(CO(J-1,I), SI(J-1,I), CO(1,I), SI(1,I), (c, s) => (SetCO(J,I,c), SetSI(J,I,s)));
}
for (J=1; J<=MAX; ++J) {
SetCO(-J, I, CO(J, I));
SetSI(-J, I, -SI(J, I));
}
}
function Term(p, q, r, s) {
var result = { x:1, y:0 };
var I = [ null, p, q, r, s ];
for (var k=1; k <= 4; ++k)
if (I[k] !== 0)
AddThe(result.x, result.y, CO(I[k], k), SI(I[k], k), (c, s) => (result.x=c, result.y=s));
return result;
}
function AddSol(coeffl, coeffs, coeffg, coeffp, p, q, r, s) {
var result = Term(p, q, r, s);
DLAM += coeffl * result.y;
DS += coeffs * result.y;
GAM1C += coeffg * result.x;
SINPI += coeffp * result.x;
}
AddSol( 13.9020, 14.0600, -0.0010, 0.2607, 0, 0, 0, 4);
AddSol( 0.4030, -4.0100, 0.3940, 0.0023, 0, 0, 0, 3);
AddSol( 2369.9120, 2373.3600, 0.6010, 28.2333, 0, 0, 0, 2);
AddSol( -125.1540, -112.7900, -0.7250, -0.9781, 0, 0, 0, 1);
AddSol( 1.9790, 6.9800, -0.4450, 0.0433, 1, 0, 0, 4);
AddSol( 191.9530, 192.7200, 0.0290, 3.0861, 1, 0, 0, 2);
AddSol( -8.4660, -13.5100, 0.4550, -0.1093, 1, 0, 0, 1);
AddSol( 22639.5000, 22609.0700, 0.0790, 186.5398, 1, 0, 0, 0);
AddSol( 18.6090, 3.5900, -0.0940, 0.0118, 1, 0, 0,-1);
AddSol( -4586.4650, -4578.1300, -0.0770, 34.3117, 1, 0, 0,-2);
AddSol( 3.2150, 5.4400, 0.1920, -0.0386, 1, 0, 0,-3);
AddSol( -38.4280, -38.6400, 0.0010, 0.6008, 1, 0, 0,-4);
AddSol( -0.3930, -1.4300, -0.0920, 0.0086, 1, 0, 0,-6);
AddSol( -0.2890, -1.5900, 0.1230, -0.0053, 0, 1, 0, 4);
AddSol( -24.4200, -25.1000, 0.0400, -0.3000, 0, 1, 0, 2);
AddSol( 18.0230, 17.9300, 0.0070, 0.1494, 0, 1, 0, 1);
AddSol( -668.1460, -126.9800, -1.3020, -0.3997, 0, 1, 0, 0);
AddSol( 0.5600, 0.3200, -0.0010, -0.0037, 0, 1, 0,-1);
AddSol( -165.1450, -165.0600, 0.0540, 1.9178, 0, 1, 0,-2);
AddSol( -1.8770, -6.4600, -0.4160, 0.0339, 0, 1, 0,-4);
AddSol( 0.2130, 1.0200, -0.0740, 0.0054, 2, 0, 0, 4);
AddSol( 14.3870, 14.7800, -0.0170, 0.2833, 2, 0, 0, 2);
AddSol( -0.5860, -1.2000, 0.0540, -0.0100, 2, 0, 0, 1);
AddSol( 769.0160, 767.9600, 0.1070, 10.1657, 2, 0, 0, 0);
AddSol( 1.7500, 2.0100, -0.0180, 0.0155, 2, 0, 0,-1);
AddSol( -211.6560, -152.5300, 5.6790, -0.3039, 2, 0, 0,-2);
AddSol( 1.2250, 0.9100, -0.0300, -0.0088, 2, 0, 0,-3);
AddSol( -30.7730, -34.0700, -0.3080, 0.3722, 2, 0, 0,-4);
AddSol( -0.5700, -1.4000, -0.0740, 0.0109, 2, 0, 0,-6);
AddSol( -2.9210, -11.7500, 0.7870, -0.0484, 1, 1, 0, 2);
AddSol( 1.2670, 1.5200, -0.0220, 0.0164, 1, 1, 0, 1);
AddSol( -109.6730, -115.1800, 0.4610, -0.9490, 1, 1, 0, 0);
AddSol( -205.9620, -182.3600, 2.0560, 1.4437, 1, 1, 0,-2);
AddSol( 0.2330, 0.3600, 0.0120, -0.0025, 1, 1, 0,-3);
AddSol( -4.3910, -9.6600, -0.4710, 0.0673, 1, 1, 0,-4);
AddSol( 0.2830, 1.5300, -0.1110, 0.0060, 1,-1, 0, 4);
AddSol( 14.5770, 31.7000, -1.5400, 0.2302, 1,-1, 0, 2);
AddSol( 147.6870, 138.7600, 0.6790, 1.1528, 1,-1, 0, 0);
AddSol( -1.0890, 0.5500, 0.0210, 0.0000, 1,-1, 0,-1);
AddSol( 28.4750, 23.5900, -0.4430, -0.2257, 1,-1, 0,-2);
AddSol( -0.2760, -0.3800, -0.0060, -0.0036, 1,-1, 0,-3);
AddSol( 0.6360, 2.2700, 0.1460, -0.0102, 1,-1, 0,-4);
AddSol( -0.1890, -1.6800, 0.1310, -0.0028, 0, 2, 0, 2);
AddSol( -7.4860, -0.6600, -0.0370, -0.0086, 0, 2, 0, 0);
AddSol( -8.0960, -16.3500, -0.7400, 0.0918, 0, 2, 0,-2);
AddSol( -5.7410, -0.0400, 0.0000, -0.0009, 0, 0, 2, 2);
AddSol( 0.2550, 0.0000, 0.0000, 0.0000, 0, 0, 2, 1);
AddSol( -411.6080, -0.2000, 0.0000, -0.0124, 0, 0, 2, 0);
AddSol( 0.5840, 0.8400, 0.0000, 0.0071, 0, 0, 2,-1);
AddSol( -55.1730, -52.1400, 0.0000, -0.1052, 0, 0, 2,-2);
AddSol( 0.2540, 0.2500, 0.0000, -0.0017, 0, 0, 2,-3);
AddSol( 0.0250, -1.6700, 0.0000, 0.0031, 0, 0, 2,-4);
AddSol( 1.0600, 2.9600, -0.1660, 0.0243, 3, 0, 0, 2);
AddSol( 36.1240, 50.6400, -1.3000, 0.6215, 3, 0, 0, 0);
AddSol( -13.1930, -16.4000, 0.2580, -0.1187, 3, 0, 0,-2);
AddSol( -1.1870, -0.7400, 0.0420, 0.0074, 3, 0, 0,-4);
AddSol( -0.2930, -0.3100, -0.0020, 0.0046, 3, 0, 0,-6);
AddSol( -0.2900, -1.4500, 0.1160, -0.0051, 2, 1, 0, 2);
AddSol( -7.6490, -10.5600, 0.2590, -0.1038, 2, 1, 0, 0);
AddSol( -8.6270, -7.5900, 0.0780, -0.0192, 2, 1, 0,-2);
AddSol( -2.7400, -2.5400, 0.0220, 0.0324, 2, 1, 0,-4);
AddSol( 1.1810, 3.3200, -0.2120, 0.0213, 2,-1, 0, 2);
AddSol( 9.7030, 11.6700, -0.1510, 0.1268, 2,-1, 0, 0);
AddSol( -0.3520, -0.3700, 0.0010, -0.0028, 2,-1, 0,-1);
AddSol( -2.4940, -1.1700, -0.0030, -0.0017, 2,-1, 0,-2);
AddSol( 0.3600, 0.2000, -0.0120, -0.0043, 2,-1, 0,-4);
AddSol( -1.1670, -1.2500, 0.0080, -0.0106, 1, 2, 0, 0);
AddSol( -7.4120, -6.1200, 0.1170, 0.0484, 1, 2, 0,-2);
AddSol( -0.3110, -0.6500, -0.0320, 0.0044, 1, 2, 0,-4);
AddSol( 0.7570, 1.8200, -0.1050, 0.0112, 1,-2, 0, 2);
AddSol( 2.5800, 2.3200, 0.0270, 0.0196, 1,-2, 0, 0);
AddSol( 2.5330, 2.4000, -0.0140, -0.0212, 1,-2, 0,-2);
AddSol( -0.3440, -0.5700, -0.0250, 0.0036, 0, 3, 0,-2);
AddSol( -0.9920, -0.0200, 0.0000, 0.0000, 1, 0, 2, 2);
AddSol( -45.0990, -0.0200, 0.0000, -0.0010, 1, 0, 2, 0);
AddSol( -0.1790, -9.5200, 0.0000, -0.0833, 1, 0, 2,-2);
AddSol( -0.3010, -0.3300, 0.0000, 0.0014, 1, 0, 2,-4);
AddSol( -6.3820, -3.3700, 0.0000, -0.0481, 1, 0,-2, 2);
AddSol( 39.5280, 85.1300, 0.0000, -0.7136, 1, 0,-2, 0);
AddSol( 9.3660, 0.7100, 0.0000, -0.0112, 1, 0,-2,-2);
AddSol( 0.2020, 0.0200, 0.0000, 0.0000, 1, 0,-2,-4);
AddSol( 0.4150, 0.1000, 0.0000, 0.0013, 0, 1, 2, 0);
AddSol( -2.1520, -2.2600, 0.0000, -0.0066, 0, 1, 2,-2);
AddSol( -1.4400, -1.3000, 0.0000, 0.0014, 0, 1,-2, 2);
AddSol( 0.3840, -0.0400, 0.0000, 0.0000, 0, 1,-2,-2);
AddSol( 1.9380, 3.6000, -0.1450, 0.0401, 4, 0, 0, 0);
AddSol( -0.9520, -1.5800, 0.0520, -0.0130, 4, 0, 0,-2);
AddSol( -0.5510, -0.9400, 0.0320, -0.0097, 3, 1, 0, 0);
AddSol( -0.4820, -0.5700, 0.0050, -0.0045, 3, 1, 0,-2);
AddSol( 0.6810, 0.9600, -0.0260, 0.0115, 3,-1, 0, 0);
AddSol( -0.2970, -0.2700, 0.0020, -0.0009, 2, 2, 0,-2);
AddSol( 0.2540, 0.2100, -0.0030, 0.0000, 2,-2, 0,-2);
AddSol( -0.2500, -0.2200, 0.0040, 0.0014, 1, 3, 0,-2);
AddSol( -3.9960, 0.0000, 0.0000, 0.0004, 2, 0, 2, 0);
AddSol( 0.5570, -0.7500, 0.0000, -0.0090, 2, 0, 2,-2);
AddSol( -0.4590, -0.3800, 0.0000, -0.0053, 2, 0,-2, 2);
AddSol( -1.2980, 0.7400, 0.0000, 0.0004, 2, 0,-2, 0);
AddSol( 0.5380, 1.1400, 0.0000, -0.0141, 2, 0,-2,-2);
AddSol( 0.2630, 0.0200, 0.0000, 0.0000, 1, 1, 2, 0);
AddSol( 0.4260, 0.0700, 0.0000, -0.0006, 1, 1,-2,-2);
AddSol( -0.3040, 0.0300, 0.0000, 0.0003, 1,-1, 2, 0);
AddSol( -0.3720, -0.1900, 0.0000, -0.0027, 1,-1,-2, 2);
AddSol( 0.4180, 0.0000, 0.0000, 0.0000, 0, 0, 4, 0);
AddSol( -0.3300, -0.0400, 0.0000, 0.0000, 3, 0, 2, 0);
function ADDN(coeffn, p, q, r, s) {
return coeffn * Term(p, q, r, s).y;
}
N = 0;
N += ADDN(-526.069, 0, 0,1,-2);
N += ADDN( -3.352, 0, 0,1,-4);
N += ADDN( +44.297,+1, 0,1,-2);
N += ADDN( -6.000,+1, 0,1,-4);
N += ADDN( +20.599,-1, 0,1, 0);
N += ADDN( -30.598,-1, 0,1,-2);
N += ADDN( -24.649,-2, 0,1, 0);
N += ADDN( -2.000,-2, 0,1,-2);
N += ADDN( -22.571, 0,+1,1,-2);
N += ADDN( +10.985, 0,-1,1,-2);
DLAM += (
+0.82*Sine(0.7736 -62.5512*T)+0.31*Sine(0.0466 -125.1025*T)
+0.35*Sine(0.5785 -25.1042*T)+0.66*Sine(0.4591+1335.8075*T)
+0.64*Sine(0.3130 -91.5680*T)+1.14*Sine(0.1480+1331.2898*T)
+0.21*Sine(0.5918+1056.5859*T)+0.44*Sine(0.5784+1322.8595*T)
+0.24*Sine(0.2275 -5.7374*T)+0.28*Sine(0.2965 +2.6929*T)
+0.33*Sine(0.3132 +6.3368*T)
);
S = F + DS/ARC;
var lat_seconds = (1.000002708 + 139.978*DGAM)*(18518.511+1.189+GAM1C)*Math.sin(S) - 6.24*Math.sin(3*S) + N;
return {
geo_eclip_lon: PI2 * Frac((L0+DLAM/ARC) / PI2),
geo_eclip_lat: (Math.PI / (180 * 3600)) * lat_seconds,
distance_au: (ARC * (ERAD / AU)) / (0.999953253 * SINPI)
};
}
function precession(tt1, pos1, tt2) {
var xx, yx, zx, xy, yy, zy, xz, yz, zz;
var eps0 = 84381.406;
var t, psia, omegaa, chia, sa, ca, sb, cb, sc, cc, sd, cd;
if ((tt1 !== 0) && (tt2 !== 0))
throw 'One of (tt1, tt2) must be 0.';
t = (tt2 - tt1) / 36525;
if (tt2 === 0)
t = -t;
psia = (((((- 0.0000000951 * t
+ 0.000132851 ) * t
- 0.00114045 ) * t
- 1.0790069 ) * t
+ 5038.481507 ) * t);
omegaa = (((((+ 0.0000003337 * t
- 0.000000467 ) * t
- 0.00772503 ) * t
+ 0.0512623 ) * t
- 0.025754 ) * t + eps0);
chia = (((((- 0.0000000560 * t
+ 0.000170663 ) * t
- 0.00121197 ) * t
- 2.3814292 ) * t
+ 10.556403 ) * t);
eps0 = eps0 * ASEC2RAD;
psia = psia * ASEC2RAD;
omegaa = omegaa * ASEC2RAD;
chia = chia * ASEC2RAD;
sa = Math.sin(eps0);
ca = Math.cos(eps0);
sb = Math.sin(-psia);
cb = Math.cos(-psia);
sc = Math.sin(-omegaa);
cc = Math.cos(-omegaa);
sd = Math.sin(chia);
cd = Math.cos(chia);
xx = cd * cb - sb * sd * cc;
yx = cd * sb * ca + sd * cc * cb * ca - sa * sd * sc;
zx = cd * sb * sa + sd * cc * cb * sa + ca * sd * sc;
xy = -sd * cb - sb * cd * cc;
yy = -sd * sb * ca + cd * cc * cb * ca - sa * cd * sc;
zy = -sd * sb * sa + cd * cc * cb * sa + ca * cd * sc;
xz = sb * sc;
yz = -sc * cb * ca - sa * cc;
zz = -sc * cb * sa + cc * ca;
if (tt2 == 0) {
// Perform rotation from epoch to J2000.0.
return [
xx * pos1[0] + xy * pos1[1] + xz * pos1[2],
yx * pos1[0] + yy * pos1[1] + yz * pos1[2],
zx * pos1[0] + zy * pos1[1] + zz * pos1[2]
];
}
// Perform rotation from J2000.0 to epoch.
return [
xx * pos1[0] + yx * pos1[1] + zx * pos1[2],
xy * pos1[0] + yy * pos1[1] + zy * pos1[2],
xz * pos1[0] + yz * pos1[1] + zz * pos1[2]
];
}
function era(time) { // Earth Rotation Angle
const thet1 = 0.7790572732640 + 0.00273781191135448 * time.ut;
const thet3 = time.ut % 1;
let theta = 360 * ((thet1 + thet3) % 1);
if (theta < 0) {
theta += 360;
}
return theta;
}
function sidereal_time(time) { // calculates Greenwich Apparent Sidereal Time (GAST)
const t = time.tt / 36525;
let eqeq = 15 * e_tilt(time).ee; // Replace with eqeq=0 to get GMST instead of GAST (if we ever need it)
const theta = era(time);
const st = (eqeq + 0.014506 +
(((( - 0.0000000368 * t
- 0.000029956 ) * t
- 0.00000044 ) * t
+ 1.3915817 ) * t
+ 4612.156534 ) * t);
let gst = ((st/3600 + theta) % 360) / 15;
if (gst < 0) {
gst += 24;
}
return gst;
}
function terra(observer, st) {
const erad_km = ERAD / 1000;
const df = 1 - 0.003352819697896; // flattening of the Earth
const df2 = df * df;
const phi = observer.latitude * DEG2RAD;
const sinphi = Math.sin(phi);
const cosphi = Math.cos(phi);
const c = 1 / Math.sqrt(cosphi*cosphi + df2*sinphi*sinphi);
const s = df2 * c;
const ht_km = observer.height / 1000;
const ach = erad_km*c + ht_km;
const ash = erad_km*s + ht_km;
const stlocl = (15*st + observer.longitude) * DEG2RAD;
const sinst = Math.sin(stlocl);
const cosst = Math.cos(stlocl);
return {
pos: [ach*cosphi*cosst/KM_PER_AU, ach*cosphi*sinst/KM_PER_AU, ash*sinphi/KM_PER_AU],
vel: [-ANGVEL*ach*cosphi*sinst*86400, ANGVEL*ach*cosphi*cosst*86400, 0]
};
}
function nutation(time, direction, pos) {
const tilt = e_tilt(time);
const oblm = tilt.mobl * DEG2RAD;
const oblt = tilt.tobl * DEG2RAD;
const psi = tilt.dpsi * ASEC2RAD;
const cobm = Math.cos(oblm);
const sobm = Math.sin(oblm);
const cobt = Math.cos(oblt);
const sobt = Math.sin(oblt);
const cpsi = Math.cos(psi);
const spsi = Math.sin(psi);
const xx = cpsi;
const yx = -spsi * cobm;
const zx = -spsi * sobm;
const xy = spsi * cobt;
const yy = cpsi * cobm * cobt + sobm * sobt;
const zy = cpsi * sobm * cobt - cobm * sobt;
const xz = spsi * sobt;
const yz = cpsi * cobm * sobt - sobm * cobt;
const zz = cpsi * sobm * sobt + cobm * cobt;
if (direction === 0) {
// forward rotation
return [
xx * pos[0] + yx * pos[1] + zx * pos[2],
xy * pos[0] + yy * pos[1] + zy * pos[2],
xz * pos[0] + yz * pos[1] + zz * pos[2]
];
}
// inverse rotation
return [
xx * pos[0] + xy * pos[1] + xz * pos[2],
yx * pos[0] + yy * pos[1] + yz * pos[2],
zx * pos[0] + zy * pos[1] + zz * pos[2]
];
}
function geo_pos(time, observer) {
const gast = sidereal_time(time);
const pos1 = terra(observer, gast).pos;
const pos2 = nutation(time, -1, pos1);
const pos3 = precession(time.tt, pos2, 0);
return pos3;
}
/**
* Holds the Cartesian coordinates of a vector in 3D space,
* along with the time at which the vector is valid.
*
* @class
* @memberof Astronomy
*
* @property {number} x The x-coordinate expressed in astronomical units (AU).
* @property {number} y The y-coordinate expressed in astronomical units (AU).
* @property {number} z The z-coordinate expressed in astronomical units (AU).
* @property {Astronomy.AstroTime} t The time at which the vector is valid.
*/
class Vector {
constructor(x, y, z, t) {
this.x = x;
this.y = y;
this.z = z;
this.t = t;
}
/**
* Returns the length of the vector in astronomical units (AU).
* @returns {number}
*/
Length() {
return Math.sqrt(this.x*this.x + this.y*this.y + this.z*this.z);
}
}
/**
* Holds right ascension, declination, and distance of a celestial object.
*
* @class
* @memberof Astronomy
*
* @property {number} ra
* Right ascension in sidereal hours: [0, 24).
*
* @property {number} dec
* Declination in degrees: [-90, +90].
*
* @property {number} dist
* Distance to the celestial object expressed in
* <a href="https://en.wikipedia.org/wiki/Astronomical_unit">astronomical units</a> (AU).
*/
class EquatorialCoordinates {
constructor(ra, dec, dist) {
this.ra = ra;
this.dec = dec;
this.dist = dist;
}
}
/**
* Holds azimuth (compass direction) and altitude (angle above/below the horizon)
* of a celestial object as seen by an observer at a particular location on the Earth's surface.
* Also holds right ascension and declination of the same object.
* All of these coordinates are optionally adjusted for atmospheric refraction;
* therefore the right ascension and declination values may not exactly match
* those found inside a corresponding {@link Astronomy.EquatorialCoordinates} object.
*
* @class
* @memberof Astronomy
*
* @property {number} azimuth
* A horizontal compass direction angle in degrees measured starting at north
* and increasing positively toward the east.
* The value is in the range [0, 360).
* North = 0, east = 90, south = 180, west = 270.
*
* @property {number} altitude
* A vertical angle in degrees above (positive) or below (negative) the horizon.
* The value is in the range [-90, +90].
* The altitude angle is optionally adjusted upward due to atmospheric refraction.
*
* @property {number} ra
* The right ascension of the celestial body in sidereal hours.
* The value is in the reange [0, 24).
* If <code>altitude</code> was adjusted for atmospheric reaction, <code>ra</code>
* is likewise adjusted.
*
* @property {number} dec
* The declination of of the celestial body in degrees.
* The value in the range [-90, +90].
* If <code>altitude</code> was adjusted for atmospheric reaction, <code>dec</code>
* is likewise adjusted.
*/
class HorizontalCoordinates {
constructor(azimuth, altitude, ra, dec) {
this.azimuth = azimuth;
this.altitude = altitude;
this.ra = ra;
this.dec = dec;
}
}
/**
* Holds ecliptic coordinates of a celestial body.
* The origin and date of the coordinate system may vary depending on the caller's usage.
* In general, ecliptic coordinates are measured with respect to the mean plane of the Earth's
* orbit around the Sun.
* Includes Cartesian coordinates <code>(ex, ey, ez)</code> measured in
* <a href="https://en.wikipedia.org/wiki/Astronomical_unit">astronomical units</a> (AU)
* and spherical coordinates <code>(elon, elat)</code> measured in degrees.
*
* @class
* @memberof Astronomy
*
* @property {number} ex
* The Cartesian x-coordinate of the body in astronomical units (AU).
* The x-axis is within the ecliptic plane and is oriented in the direction of the
* <a href="https://en.wikipedia.org/wiki/Equinox_(celestial_coordinates)">equinox</a>.
*
* @property {number} ey
* The Cartesian y-coordinate of the body in astronomical units (AU).
* The y-axis is within the ecliptic plane and is oriented 90 degrees
* counterclockwise from the equinox, as seen from above the Sun's north pole.
*
* @property {number} ez
* The Cartesian z-coordinate of the body in astronomical units (AU).
* The z-axis is oriented perpendicular to the ecliptic plane,
* along the direction of the Sun's north pole.
*
* @property {number} elat
* The ecliptic latitude of the body in degrees.
* This is the angle north or south of the ecliptic plane.
* The value is in the range [-90, +90].
* Positive values are north and negative values are south.
*
* @property {number} elon
* The ecliptic longitude of the body in degrees.
* This is the angle measured counterclockwise around the ecliptic plane,
* as seen from above the Sun's north pole.
* This is the same direction that the Earth orbits around the Sun.
* The angle is measured starting at 0 from the equinox and increases
* up to 360 degrees.
*/
class EclipticCoordinates {
constructor(ex, ey, ez, elat, elon) {
this.ex = ex;
this.ey = ey;
this.ez = ez;
this.elat = elat;
this.elon = elon;
}
}
function vector2radec(pos)
{
const xyproj = pos[0]*pos[0] + pos[1]*pos[1];
const dist = Math.sqrt(xyproj + pos[2]*pos[2]);
if (xyproj === 0)
{
if (pos[2] === 0)
throw 'Indeterminate sky coordinates';
if (pos[2] < 0)
return { ra:0, dec:-90, dist:dist };
return { ra:0, dec:+90, dist:dist };
}
let ra = Math.atan2(pos[1], pos[0]) / (DEG2RAD * 15);
if (ra < 0) {
ra += 24;
}
let dec = Math.atan2(pos[2], Math.sqrt(xyproj)) / DEG2RAD;
return new EquatorialCoordinates(ra, dec, dist);
}
function spin(angle, pos1) {
const angr = angle * DEG2RAD;
const cosang = Math.cos(angr);
const sinang = Math.sin(angr);
const xx = cosang;
const yx = sinang;
const zx = 0;
const xy = -sinang;
const yy = cosang;
const zy = 0;
const xz = 0;
const yz = 0;
const zz = 1;
let pos2 = [
xx*pos1[0] + yx*pos1[1] + zx*pos1[2],
xy*pos1[0] + yy*pos1[1] + zy*pos1[2],
xz*pos1[0] + yz*pos1[1] + zz*pos1[2]
];
return pos2;
}
/**
* Given a date and time, a geographic location of an observer on the Earth, and
* equatorial coordinates (right ascension and declination) of a celestial body,
* returns horizontal coordinates (azimuth and altitude angles) for that body
* as seen by that observer. Allows optional correction for atmospheric refraction.
*
* @param {(Date|number|Astronomy.AstroTime)} date
* The date and time for which to find horizontal coordinates.
*
* @param {Astronomy.Observer} observer
* The location of the observer for which to find horizontal coordinates.
*
* @param {number} ra
* Right ascension in sidereal hours of the celestial object,
* referred to the mean equinox of date for the J2000 epoch.
*
* @param {number} dec
* Declination in degrees of the celestial object,
* referred to the mean equator of date for the J2000 epoch.
* Positive values are north of the celestial equator and negative values are south.
*
* @param {string} refraction
* If omitted or has a false-like value (false, null, undefined, etc.)
* the calculations are performed without any correction for atmospheric
* refraction. If the value is the string <code>"normal"</code>,
* uses the recommended refraction correction based on Meeus "Astronomical Algorithms"
* with a linear taper more than 1 degree below the horizon. The linear
* taper causes the refraction to linearly approach 0 as the altitude of the
* body approaches the nadir (-90 degrees).
* If the value is the string <code>"jplhor"</code>, uses a JPL Horizons
* compatible formula. This is the same algorithm as <code>"normal"</code>,
* only without linear tapering; this can result in physically impossible
* altitudes of less than -90 degrees, which may cause problems for some applications.
* (The <code>"jplhor"</code> option was created for unit testing against data
* generated by JPL Horizons, and is otherwise not recommended for use.)
*
* @returns {Astronomy.HorizontalCoordinates}
*/
Astronomy.Horizon = function(date, observer, ra, dec, refraction) { // based on NOVAS equ2hor()
let time = Astronomy.MakeTime(date);
const sinlat = Math.sin(observer.latitude * DEG2RAD);
const coslat = Math.cos(observer.latitude * DEG2RAD);
const sinlon = Math.sin(observer.longitude * DEG2RAD);
const coslon = Math.cos(observer.longitude * DEG2RAD);
const sindc = Math.sin(dec * DEG2RAD);
const cosdc = Math.cos(dec * DEG2RAD);
const sinra = Math.sin(ra * 15 * DEG2RAD);
const cosra = Math.cos(ra * 15 * DEG2RAD);
let uze = [coslat*coslon, coslat*sinlon, sinlat];
let une = [-sinlat*coslon, -sinlat*sinlon, coslat];
let uwe = [sinlon, -coslon, 0];
const spin_angle = -15 * sidereal_time(time);
let uz = spin(spin_angle, uze);
let un = spin(spin_angle, une);
let uw = spin(spin_angle, uwe);
let p = [cosdc*cosra, cosdc*sinra, sindc];
const pz = p[0]*uz[0] + p[1]*uz[1] + p[2]*uz[2];
const pn = p[0]*un[0] + p[1]*un[1] + p[2]*un[2];
const pw = p[0]*uw[0] + p[1]*uw[1] + p[2]*uw[2];
let proj = Math.sqrt(pn*pn + pw*pw);
let az = 0;
if (proj > 0) {
az = -Math.atan2(pw, pn) * RAD2DEG;
if (az < 0) az += 360;
if (az >= 360) az -= 360;
}
let zd = Math.atan2(proj, pz) * RAD2DEG;
let out_ra = ra;
let out_dec = dec;
if (refraction) {
let refr, j;
let zd0 = zd;
if (refraction === 'normal' || refraction === 'jplhor') {
// http://extras.springer.com/1999/978-1-4471-0555-8/chap4/horizons/horizons.pdf
// JPL Horizons says it uses refraction algorithm from
// Meeus "Astronomical Algorithms", 1991, p. 101-102.
// I found the following Go implementation:
// https://github.com/soniakeys/meeus/blob/master/v3/refraction/refract.go
// This is a translation from the function "Saemundsson" there.
// I found experimentally that JPL Horizons clamps the angle to 1 degree below the horizon.
// This is important because the 'refr' formula below goes crazy near hd = -5.11.
let hd = Math.max(-1, 90 - zd);
refr = (1.02 / Math.tan((hd+10.3/(hd+5.11))*DEG2RAD)) / 60;
if (refraction === 'normal' && zd > 91) {
// In "normal" mode we gradually reduce refraction toward the nadir
// so that we never get an altitude angle less than -90 degrees.
// When horizon angle is -1 degrees, zd = 91, and the factor is exactly 1.
// As zd approaches 180 (the nadir), the fraction approaches 0 linearly.
refr *= (180 - zd) / 89;
}
zd -= refr;
} else {
throw 'If specified, refraction must be one of: "normal", "jplhor".';
}
if (refr > 0.0 && zd > 3.0e-4) {
const sinzd = Math.sin(zd * DEG2RAD);
const coszd = Math.cos(zd * DEG2RAD);
const sinzd0 = Math.sin(zd0 * DEG2RAD);
const coszd0 = Math.cos(zd0 * DEG2RAD);
var pr = [];
for (j=0; j<3; ++j) {
pr.push(((p[j] - coszd0 * uz[j]) / sinzd0)*sinzd + uz[j]*coszd);
}
proj = Math.sqrt(pr[0]*pr[0] + pr[1]*pr[1]);
if (proj > 0) {
out_ra = Math.atan2(pr[1], pr[0]) * RAD2DEG / 15;
if (out_ra < 0) {
out_ra += 24;
}
if (out_ra >= 24) {
out_ra -= 24;
}
} else {
out_ra = 0;
}
out_dec = Math.atan2(pr[2], proj) * RAD2DEG;
}
}
return new HorizontalCoordinates(az, 90-zd, out_ra, out_dec);
}
/**
* Represents the geographic location of an observer on the surface of the Earth.
*
* @class
* @memberof Astronomy
*
* @property {number} latitude_degrees
* The observer's geographic latitude in degrees north of the Earth's equator.
* The value is negative for observers south of the equator.
* Must be in the range -90 to +90.
*
* @property {number} longitude_degrees
* The observer's geographic longitude in degrees east of the prime meridian
* passing through Greenwich, England.
* The value is negative for observers west of the prime meridian.
* The value should be kept in the range -180 to +180 to minimize floating point errors.
*
* @property {number} height_in_meters
* The observer's elevation above mean sea level, expressed in meters.
*/
class Observer {
constructor(latitude_degrees, longitude_degrees, height_in_meters) {
this.latitude = latitude_degrees;
this.longitude = longitude_degrees;
this.height = height_in_meters;
}
}
/**
* Creates an {@link Astronomy.Observer} object that represents a location
* on the surface of the Earth from which observations are made.
*
* @param {number} latitude_degrees
* The observer's geographic latitude in degrees north of the Earth's equator.
* The value is negative for observers south of the equator.
* Must be in the range -90 to +90.
*
* @param {number} longitude_degrees
* The observer's geographic longitude in degrees east of the prime meridian
* passing through Greenwich, England.
* The value is negative for observers west of the prime meridian.
* The value should be kept in the range -180 to +180 to minimize floating point errors.
*
* @param {number} height_in_meters
* The observer's elevation above mean sea level, expressed in meters.
* If omitted, the elevation is assumed to be 0 meters.
*/
Astronomy.MakeObserver = function(latitude_degrees, longitude_degrees, height_in_meters) {
return new Observer(latitude_degrees, longitude_degrees, height_in_meters || 0);
}
/**
* Returns apparent geocentric true ecliptic coordinates of date for the Sun.
* <i>Geocentric</i> means coordinates as the Sun would appear to a hypothetical observer
* at the center of the Earth.
* <i>Ecliptic coordinates of date</i> are measured along the plane of the Earth's mean
* orbit around the Sun, using the
* <a href="https://en.wikipedia.org/wiki/Equinox_(celestial_coordinates)">equinox</a>
* of the Earth as adjusted for precession and nutation of the Earth's
* axis of rotation on the given date.
*
* @param {(Date | number | Astronomy.AstroTime)} date
* The date and time at which to calculate the Sun's apparent location as seen from
* the center of the Earth.
*
* @returns {Astronomy.EclipticCoordinates}
*/
Astronomy.SunPosition = function(date) {
// Correct for light travel time from the Sun.
// This is really the same as correcting for aberration.
// Otherwise season calculations (equinox, solstice) will all be early by about 8 minutes!
const time = Astronomy.MakeTime(date).AddDays(-1 / C_AUDAY);
// Get heliocentric cartesian coordinates of Earth in J2000.
const earth2000 = CalcVsop(vsop.Earth, time);
// Convert to geocentric location of the Sun.
const sun2000 = [-earth2000.x, -earth2000.y, -earth2000.z];
// Convert to equator-of-date equatorial cartesian coordinates.
const stemp = precession(0, sun2000, time.tt);
const sun_ofdate = nutation(time, 0, stemp);
// Convert to ecliptic coordinates of date.
const true_obliq = DEG2RAD * e_tilt(time).tobl;
const cos_ob = Math.cos(true_obliq);
const sin_ob = Math.sin(true_obliq);
const gx = sun_ofdate[0];
const gy = sun_ofdate[1];
const gz = sun_ofdate[2];
const sun_ecliptic = RotateEquatorialToEcliptic(gx, gy, gz, cos_ob, sin_ob);
return sun_ecliptic;
}
/**
* Returns topocentric equatorial coordinates (right ascension and declination)
* in one of two different systems: J2000 or true-equator-of-date.
* Allows optional correction for aberration.
* Always corrects for light travel time (represents the object as seen by the observer
* with light traveling to the Earth at finite speed, not where the object is right now).
* <i>Topocentric</i> refers to a position as seen by an observer on the surface of the Earth.
* This function corrects for
* <a href="https://en.wikipedia.org/wiki/Parallax">parallax</a>
* of the object between a geocentric observer and a topocentric observer.
* This is most significant for the Moon, because it is so close to the Earth.
* However, it can have a small effect on the apparent positions of other bodies.
*
* @param {string} body
* The name of the body for which to find equatorial coordinates.
* Not allowed to be <code>"Earth"</code>.
*
* @param {(Date | number | Astronomy.Time)} date
* Specifies the date and time at which the body is to be observed.
*
* @param {Astronomy.Observer} observer
* The location on the Earth of the observer.
* Call {@link Astronomy.MakeObserver} to create an observer object.
*
* @param {bool} ofdate
* Pass <code>true</code> to return equatorial coordinates of date,
* i.e. corrected for precession and nutation at the given date.
* This is needed to get correct horizontal coordinates when you call
* {@link Astronomy.Horizon}.
* Pass <code>false</code> to return equatorial coordinates in the J2000 system.
*
* @param {bool} aberration
* Pass <code>true</code> to correct for
* <a href="https://en.wikipedia.org/wiki/Aberration_of_light">aberration</a>,
* or <code>false</code> to leave uncorrected.
*
* @returns {Astronomy.EquatorialCoordinates}
* The topocentric coordinates of the body as adjusted for the given observer.
*/
Astronomy.Equator = function(body, date, observer, ofdate, aberration) {
const time = Astronomy.MakeTime(date);
const gc_observer = geo_pos(time, observer);
const gc = Astronomy.GeoVector(body, time, aberration);
const j2000 = [
gc.x - gc_observer[0],
gc.y - gc_observer[1],
gc.z - gc_observer[2]
];
if (!ofdate)
return vector2radec(j2000);
const temp = precession(0, j2000, time.tt);
const datevect = nutation(time, 0, temp);
return vector2radec(datevect);
}
function RotateEquatorialToEcliptic(gx, gy, gz, cos_ob, sin_ob) {
// Rotate equatorial vector to obtain ecliptic vector.
const ex = gx;
const ey = gy*cos_ob + gz*sin_ob;
const ez = -gy*sin_ob + gz*cos_ob;
const xyproj = Math.sqrt(ex*ex + ey*ey);
let elon = 0;
if (xyproj > 0) {
elon = RAD2DEG * Math.atan2(ey, ex);
if (elon < 0) elon += 360;
}
let elat = RAD2DEG * Math.atan2(ez, xyproj);
return new EclipticCoordinates(ex, ey, ez, elat, elon);
}
/**
* Given J2000 equatorial Cartesian coordinates,
* returns J2000 ecliptic latitude, longitude, and cartesian coordinates.
* You can call {@link Astronomy.GeoVector} and use its (x, y, z) return values
* to pass into this function.
*
* @param {number} gx
* The x-coordinate of a 3D vector in the J2000 equatorial coordinate system.
*
* @param {number} gy
* The y-coordinate of a 3D vector in the J2000 equatorial coordinate system.
*
* @param {number} gz
* The z-coordinate of a 3D vector in the J2000 equatorial coordinate system.
*
* @returns {Astronomy.EclipticCoordinates}
*/
Astronomy.Ecliptic = function(gx, gy, gz) {
// Based on NOVAS functions equ2ecl() and equ2ecl_vec().
if (ob2000 === undefined) {
// Lazy-evaluate and keep the mean obliquity of the ecliptic at J2000.
// This way we don't need to crunch the numbers more than once.
ob2000 = DEG2RAD * e_tilt(Astronomy.MakeTime(J2000)).mobl;
cos_ob2000 = Math.cos(ob2000);
sin_ob2000 = Math.sin(ob2000);
}
return RotateEquatorialToEcliptic(gx, gy, gz, cos_ob2000, sin_ob2000);
}
/**
* Calculates the geocentric Cartesian coordinates for the Moon in the J2000 equatorial system.
* Based on the Nautical Almanac Office's <i>Improved Lunar Ephemeris</i> of 1954,
* which in turn derives from E. W. Brown's lunar theories.
* Adapted from Turbo Pascal code from the book
* <a href="https://www.springer.com/us/book/9783540672210">Astronomy on the Personal Computer</a>
* by Montenbruck and Pfleger.
*
* @param {(Date|number|Astronomy.AstroTime)} date
* The date and time for which to calculate the Moon's geocentric position.
*
* @returns {Astronomy.Vector}
*/
Astronomy.GeoMoon = function(date) {
var time = Astronomy.MakeTime(date);
var moon = CalcMoon(time);
// Convert geocentric ecliptic spherical coords to cartesian coords.
var dist_cos_lat = moon.distance_au * Math.cos(moon.geo_eclip_lat);
var gepos = [
dist_cos_lat * Math.cos(moon.geo_eclip_lon),
dist_cos_lat * Math.sin(moon.geo_eclip_lon),
moon.distance_au * Math.sin(moon.geo_eclip_lat)
];
// Convert ecliptic coordinates to equatorial coordinates, both in mean equinox of date.
var mpos1 = ecl2equ_vec(time, gepos);
// Convert from mean equinox of date to J2000...
var mpos2 = precession(time.tt, mpos1, 0);
return new Vector(mpos2[0], mpos2[1], mpos2[2], time);
}
function CalcVsop(model, time) {
var spher = [], eclip, r_coslat;
var t = time.tt / 365250; // millennia since 2000
var formula, series, term, tpower, sum, coord;
for (formula of model) {
tpower = 1;
coord = 0;
for (series of formula) {
sum = 0;
for (term of series) {
sum += term[0] * Math.cos(term[1] + (t * term[2]));
}
coord += tpower * sum;
tpower *= t;
}
spher.push(coord);
}
// Convert spherical coordinates to ecliptic cartesian coordinates.
r_coslat = spher[2] * Math.cos(spher[1]);
eclip = [
r_coslat * Math.cos(spher[0]),
r_coslat * Math.sin(spher[0]),
spher[2] * Math.sin(spher[1])
];
// Convert ecliptic cartesian coordinates to equatorial cartesian coordinates.
return new Vector(
eclip[0] + 0.000000440360*eclip[1] - 0.000000190919*eclip[2],
-0.000000479966*eclip[0] + 0.917482137087*eclip[1] - 0.397776982902*eclip[2],
0.397776982902*eclip[1] + 0.917482137087*eclip[2],
time
);
}
function ChebScale(t_min, t_max, t) {
return (2*t - (t_max + t_min)) / (t_max - t_min);
}
function CalcChebyshev(model, time) {
var record, x, k, d, sum, p0, p1, p2, pos;
// Search for a record that overlaps the given time value.
for (record of model) {
x = ChebScale(record.tt, record.tt + record.ndays, time.tt);
if (-1 <= x && x <= +1) {
pos = [];
for (d=0; d < 3; ++d) {
p0 = 1;
sum = record.coeff[0][d];
p1 = x;
sum += record.coeff[1][d] * p1;
for (k=2; k < record.coeff.length; ++k) {
p2 = (2 * x * p1) - p0;
sum += record.coeff[k][d] * p2;
p0 = p1;
p1 = p2;
}
pos.push(sum - record.coeff[0][d]/2);
}
return new Vector(pos[0], pos[1], pos[2], time);
}
}
throw `Cannot extrapolate Chebyshev model for given Terrestrial Time: ${time.tt}`;
}
/**
* Calculates heliocentric (i.e., with respect to the center of the Sun)
* Cartesian coordinates in the J2000 equatorial system of a celestial
* body at a specified time. The position is not corrected for light travel time or aberration.
*
* @param {string} body
* One of the strings
* <code>"Sun"</code>, <code>"Moon"</code>, <code>"Mercury"</code>, <code>"Venus"</code>,
* <code>"Earth"</code>, <code>"Mars"</code>, <code>"Jupiter"</code>, <code>"Saturn"</code>,
* <code>"Uranus"</code>, <code>"Neptune"</code>, or <code>"Pluto"</code>.
*
* @param {(Date | number | Astronomy.AstroTime)} date
* The date and time for which the body's position is to be calculated.
*
* @returns {Astronomy.Vector}
*/
Astronomy.HelioVector = function(body, date) {
var time = Astronomy.MakeTime(date);
if (body in vsop) {
return CalcVsop(vsop[body], time);
}
if (body in cheb) {
return CalcChebyshev(cheb[body], time);
}
if (body === 'Sun') {
return new Vector(0, 0, 0, time);
}
if (body === 'Moon') {
var e = CalcVsop(vsop.Earth, time);
var m = Astronomy.GeoMoon(time);
return new Vector(e.x+m.x, e.y+m.y, e.z+m.z, time);
}
throw `Astronomy.HelioVector: Unknown body "${body}"`;
};
/**
* Calculates geocentric (i.e., with respect to the center of the Earth)
* Cartesian coordinates in the J2000 equatorial system of a celestial
* body at a specified time. The position is always corrected for light travel time:
* this means the position of the body is "back-dated" based on how long it
* takes light to travel from the body to an observer on the Earth.
* Also, the position can optionally be corrected for aberration, an effect
* causing the apparent direction of the body to be shifted based on
* transverse movement of the Earth with respect to the rays of light
* coming from that body.
*
* @param {string} body
* One of the strings
* <code>"Sun"</code>, <code>"Moon"</code>, <code>"Mercury"</code>, <code>"Venus"</code>,
* <code>"Earth"</code>, <code>"Mars"</code>, <code>"Jupiter"</code>, <code>"Saturn"</code>,
* <code>"Uranus"</code>, <code>"Neptune"</code>, or <code>"Pluto"</code>.
*
* @param {(Date | number | Astronomy.AstroTime)} date
* The date and time for which the body's position is to be calculated.
*
* @param {bool} aberration
* Pass <code>true</code> to correct for
* <a href="https://en.wikipedia.org/wiki/Aberration_of_light">aberration</a>,
* or <code>false</code> to leave uncorrected.
*
* @returns {Astronomy.Vector}
*/
Astronomy.GeoVector = function(body, date, aberration) {
const time = Astronomy.MakeTime(date);
if (body === 'Moon') {
return Astronomy.GeoMoon(time);
}
if (body === 'Earth') {
return new Vector(0, 0, 0, time);
}
let earth;
if (!aberration) {
// No aberration, so calculate Earth's position once, at the time of observation.
earth = CalcVsop(vsop.Earth, time);
}
// Correct for light-travel time, to get position of body as seen from Earth's center.
let h, geo, dt;
let ltime = time;
for (let iter=0; iter < 10; ++iter) {
h = Astronomy.HelioVector(body, ltime);
if (aberration) {
/*
Include aberration, so make a good first-order approximation
by backdating the Earth's position also.
This is confusing, but it works for objects within the Solar System
because the distance the Earth moves in that small amount of light
travel time (a few minutes to a few hours) is well approximated
by a line segment that substends the angle seen from the remote
body viewing Earth. That angle is pretty close to the aberration
angle of the moving Earth viewing the remote body.
In other words, both of the following approximate the aberration angle:
(transverse distance Earth moves) / (distance to body)
(transverse speed of Earth) / (speed of light).
*/
earth = CalcVsop(vsop.Earth, ltime);
}
geo = new Vector(h.x-earth.x, h.y-earth.y, h.z-earth.z, time);
if (body === 'Sun') {
return geo; // The Sun's heliocentric coordinates are always (0,0,0). No need to correct.
}
let ltime2 = time.AddDays(-geo.Length() / C_AUDAY);
dt = Math.abs(ltime2.tt - ltime.tt);
if (dt < 1.0e-9) {
return geo;
}
ltime = ltime2;
}
throw `Light-travel time solver did not converge: dt=${dt}`;
}
function QuadInterp(tm, dt, fa, fm, fb) {
let Q = (fb + fa)/2 - fm;
let R = (fb - fa)/2;
let S = fm;
let x;
if (Q == 0) {
// This is a line, not a parabola.
if (R == 0) {
// This is a HORIZONTAL line... can't make progress!
return null;
}
x = -S / R;
if (x < -1 || x > +1) return null; // out of bounds
} else {
// It really is a parabola. Find roots x1, x2.
let u = R*R - 4*Q*S;
if (u <= 0) return null;
let ru = Math.sqrt(u);
let x1 = (-R + ru) / (2 * Q);
let x2 = (-R - ru) / (2 * Q);
if (-1 <= x1 && x1 <= +1) {
if (-1 <= x2 && x2 <= +1) return null;
x = x1;
} else if (-1 <= x2 && x2 <= +1) {
x = x2;
} else {
return null;
}
}
let t = tm + x*dt;
let df_dt = (2*Q*x + R) / dt;
return { x:x, t:t, df_dt:df_dt };
}
/**
* A continuous function of time used in a call to the <code>Search</code> function.
*
* @callback ContinuousFunction
* @memberof Astronomy
* @param {Astronomy.AstroTime} t The time at which to evaluate the function.
* @returns {number}
*/
/**
* Options for the {@link Astronomy.Search} function.
* @typedef {Object} SearchOptions
* @memberof Astronomy
*
* @property {(number|null)} dt_tolerance_seconds
* The number of seconds for a time window smaller than which the search
* is considered successful. Using too large a tolerance can result in
* an inaccurate time estimate. Using too small a tolerance can cause
* excessive computation, or can even cause the search to fail because of
* limited floating-point resolution. Defaults to 1 second.
*
* @property {(number|null)} init_f1
* As an optimization, if the caller of {@link Astronomy.Search}
* has already calculated the value of the function being searched (the parameter <code>func</code>)
* at the time coordinate <code>t1</code>, it can pass in that value as <code>init_f1</code>.
* For very expensive calculations, this can measurably improve performance.
*
* @property {(number|null)} init_f2
* The same as <code>init_f1</code>, except this is the optional initial value of <code>func(t2)</code>
* instead of <code>func(t1)</code>.
*/
/**
* Search for next time <i>t</i> (such that <i>t</i> is between <code>t1</code> and <code>t2</code>)
* that <code>func(t)</code> crosses from a negative value to a non-negative value.
* The given function must have "smooth" behavior over the entire inclusive range [<code>t1</code>, <code>t2</code>],
* meaning that it behaves like a continuous differentiable function.
* It is not required that <code>t1</code> &lt; <code>t2</code>; <code>t1</code> &gt; <code>t2</code>
* allows searching backward in time.
* Note: <code>t1</code> and <code>t2</code> must be chosen such that there is no possibility
* of more than one zero-crossing (ascending or descending), or it is possible
* that the "wrong" event will be found (i.e. not the first event after t1)
* or even that the function will return null, indicating that no event was found.
*
* @param {Astronomy.ContinuousFunction} func
* The function to find an ascending zero crossing for.
* The function must accept a single parameter of type {@link Astronomy.AstroTime}
* and return a numeric value.
*
* @param {Astronomy.AstroTime} t1
* The lower time bound of a search window.
*
* @param {Astronomy.AstroTime} t2
* The upper time bound of a search window.
*
* @param {(null | Astronomy.SearchOptions)} options
* Options that can tune the behavior of the search.
* Most callers can omit this argument or pass in <code>null</code>.
*
* @returns {(null | Astronomy.AstroTime)}
* If the search is successful, returns the date and time of the solution.
* If the search fails, returns null.
*/
Astronomy.Search = function(func, t1, t2, options) {
const dt_tolerance_seconds = (options && options.dt_tolerance_seconds) || 1;
function f(t) {
++Perf.search_func;
return func(t);
}
const dt_days = Math.abs(dt_tolerance_seconds / SECONDS_PER_DAY);
++Perf.search;
let f1 = (options && options.init_f1) || f(t1);
let f2 = (options && options.init_f2) || f(t2);
let fmid;
let iter = 0;
let iter_limit = (options && options.iter_limit) || 20;
let calc_fmid = true;
while (true) {
if (++iter > iter_limit)
throw `Excessive iteration in Search()`;
let tmid = InterpolateTime(t1, t2, 0.5);
let dt = tmid.ut - t1.ut;
if (Math.abs(dt) < dt_days) {
// We are close enough to the event to stop the search.
return tmid;
}
if (calc_fmid)
fmid = f(tmid);
else
calc_fmid = true; // we already have the correct value of fmid from the previous loop
// Quadratic interpolation:
// Try to find a parabola that passes through the 3 points we have sampled:
// (t1,f1), (tmid,fmid), (t2,f2).
let q = QuadInterp(tmid.ut, t2.ut - tmid.ut, f1, fmid, f2);
// Did we find an approximate root-crossing?
if (q) {
// Evaluate the function at our candidate solution.
let tq = Astronomy.MakeTime(q.t);
let fq = f(tq);
if (q.df_dt !== 0) {
if (Math.abs(fq / q.df_dt) < dt_days) {
// The estimated time error is small enough that we can quit now.
return tq;
}
// Try guessing a tighter boundary with the interpolated root at the center.
let dt_guess = 1.2 * Math.abs(fq / q.df_dt);
if (dt_guess < dt/10) {
let tleft = tq.AddDays(-dt_guess);
let tright = tq.AddDays(+dt_guess);
if ((tleft.ut - t1.ut)*(tleft.ut - t2.ut) < 0) {
if ((tright.ut - t1.ut)*(tright.ut - t2.ut) < 0) {
let fleft = f(tleft);
let fright = f(tright);
if (fleft<0 && fright>=0) {
f1 = fleft;
f2 = fright;
t1 = tleft;
t2 = tright;
fmid = fq;
calc_fmid = false;
continue;
}
}
}
}
}
}
if (f1<0 && fmid>=0) {
t2 = tmid;
f2 = fmid;
continue;
}
if (fmid<0 && f2>=0) {
t1 = tmid;
f1 = fmid;
continue;
}
// Either there is no ascending zero-crossing in this range
// or the search window is too wide.
return null;
}
}
function LongitudeOffset(diff) {
let offset = diff;
while (offset <= -180) offset += 360;
while (offset > 180) offset -= 360;
return offset;
}
function NormalizeLongitude(lon) {
while (lon < 0) lon += 360;
while (lon >= 360) lon -= 360;
return lon;
}
/**
* Searches for the moment in time when the center of the Sun reaches a given apparent
* ecliptic longitude, as seen from the center of the Earth, within a given range of dates.
* This function can be used to determine equinoxes and solstices.
* However, it is usually more convenient and efficient to call {@link Astronomy.Seasons}
* to calculate equinoxes and solstices for a given calendar year.
* <code>SearchSunLongitude</code> is more general in that it allows searching for arbitrary longitude values.
*
* @param {number} targetLon
* The desired ecliptic longitude of date in degrees.
* This may be any value in the range [0, 360), although certain
* values have conventional meanings:
*
* When <code>targetLon</code> is 0, finds the March equinox,
* which is the moment spring begins in the northern hemisphere
* and the beginning of autumn in the southern hemisphere.
*
* When <code>targetLon</code> is 180, finds the September equinox,
* which is the moment autumn begins in the northern hemisphere and
* spring begins in the southern hemisphere.
*
* When <code>targetLon</code> is 90, finds the northern solstice, which is the
* moment summer begins in the northern hemisphere and winter
* begins in the southern hemisphere.
*
* When <code>targetLon</code> is 270, finds the southern solstice, which is the
* moment winter begins in the northern hemisphere and summer
* begins in the southern hemisphere.
*
* @param {(Date | number | Astronomy.AstroTime)} dateStart
* A date and time known to be earlier than the desired longitude event.
*
* @param {number} limitDays
* A floating point number of days, which when added to <code>dateStart</code>,
* yields a date and time known to be after the desired longitude event.
*
* @returns {Astronomy.AstroTime | null}
* The date and time when the Sun reaches the apparent ecliptic longitude <code>targetLon</code>
* within the range of times specified by <code>dateStart</code> and <code>limitDays</code>.
* If the Sun does not reach the target longitude within the specified time range, or the
* time range is excessively wide, the return value is <code>null</code>.
* To avoid a <code>null</code> return value, the caller must pick a time window around
* the event that is within a few days but not so small that the event might fall outside the window.
*/
Astronomy.SearchSunLongitude = function(targetLon, dateStart, limitDays) {
function sun_offset(t) {
let pos = Astronomy.SunPosition(t);
return LongitudeOffset(pos.elon - targetLon);
}
let t1 = Astronomy.MakeTime(dateStart);
let t2 = t1.AddDays(limitDays);
return Astronomy.Search(sun_offset, t1, t2);
}
/**
* Calculates the ecliptic longitude difference
* between the given body and the Sun as seen from
* the Earth at a given moment in time.
* The returned value ranges [0, 360) degrees.
* By definition, the Earth and the Sun are both in the plane of the ecliptic.
* Ignores the height of the <code>body</code> above or below the ecliptic plane;
* the resulting angle is measured around the ecliptic plane for the "shadow"
* of the body onto that plane.
*
* @param {string} body
* The name of a supported celestial body other than the Earth.
*
* @param {(Date|number|Astronomy.AstroTime)} date
* The time at which the relative longitude is to be found.
*
* @returns {number}
* An angle in degrees in the range [0, 360).
* Values less than 180 indicate that the body is to the east
* of the Sun as seen from the Earth; that is, the body sets after
* the Sun does and is visible in the evening sky.
* Values greater than 180 indicate that the body is to the west of
* the Sun and is visible in the morning sky.
*/
Astronomy.LongitudeFromSun = function(body, date) {
if (body === 'Earth')
throw 'The Earth does not have a longitude as seen from itself.';
const t = Astronomy.MakeTime(date);
let gb = Astronomy.GeoVector(body, t, true);
const eb = Astronomy.Ecliptic(gb.x, gb.y, gb.z);
let gs = Astronomy.GeoVector('Sun', t, true);
const es = Astronomy.Ecliptic(gs.x, gs.y, gs.z);
return NormalizeLongitude(eb.elon - es.elon);
}
/**
* Returns the full angle seen from
* the Earth, between the given body and the Sun.
* Unlike {@link Astronomy.LongitudeFromSun}, this function does not
* project the body's "shadow" onto the ecliptic;
* the angle is measured in 3D space around the plane that
* contains the centers of the Earth, the Sun, and <code>body</code>.
*
* @param {string} body
* The name of a supported celestial body other than the Earth.
*
* @param {(Date|number|Astronomy.AstroTime)} date
* The time at which the angle from the Sun is to be found.
*
* @returns {number}
* An angle in degrees in the range [0, 180].
*/
Astronomy.AngleFromSun = function(body, date) {
if (body == 'Earth')
throw 'The Earth does not have an angle as seen from itself.';
let sv = Astronomy.GeoVector('Sun', date, true);
let bv = Astronomy.GeoVector(body, date, true);
let angle = AngleBetween(sv, bv);
return angle;
}
/**
* Calculates heliocentric ecliptic longitude based on the J2000 equinox.
*
* @param {string} body
* The name of a celestial body other than the Sun.
*
* @param {(Date | number | Astronomy.AstroTime)} date
* The date and time for which to calculate the ecliptic longitude.
*
* @returns {number}
* The ecliptic longitude angle of the body in degrees measured counterclockwise around the mean
* plane of the Earth's orbit, as seen from above the Sun's north pole.
* Ecliptic longitude starts at 0 at the J2000
* <a href="https://en.wikipedia.org/wiki/Equinox_(celestial_coordinates)">equinox</a> and
* increases in the same direction the Earth orbits the Sun.
* The returned value is always in the range [0, 360).
*/
Astronomy.EclipticLongitude = function(body, date) {
if (body === 'Sun')
throw 'Cannot calculate heliocentric longitude of the Sun.';
let hv = Astronomy.HelioVector(body, date);
let eclip = Astronomy.Ecliptic(hv.x, hv.y, hv.z);
return eclip.elon;
}
function VisualMagnitude(body, phase, helio_dist, geo_dist) {
// For Mercury and Venus, see: https://iopscience.iop.org/article/10.1086/430212
let c0, c1=0, c2=0, c3=0;
switch (body) {
case 'Mercury': c0 = -0.60; c1 = +4.98; c2 = -4.88; c3 = +3.02; break;
case 'Venus':
if (phase < 163.6) {
c0 = -4.47; c1 = +1.03; c2 = +0.57; c3 = +0.13;
} else {
c0 = 0.98; c1 = -1.02;
}
break;
case 'Mars': c0 = -1.52; c1 = +1.60; break;
case 'Jupiter': c0 = -9.40; c1 = +0.50; break;
case 'Uranus': c0 = -7.19; c1 = +0.25; break;
case 'Neptune': c0 = -6.87; break;
case 'Pluto': c0 = -1.00; c1 = +4.00; break;
default: throw `VisualMagnitude: unsupported body ${body}`;
}
const x = phase / 100;
let mag = c0 + x*(c1 + x*(c2 + x*c3));
mag += 5*Math.log10(helio_dist * geo_dist);
return mag;
}
function SaturnMagnitude(phase, helio_dist, geo_dist, gc, time) {
// Based on formulas by Paul Schlyter found here:
// http://www.stjarnhimlen.se/comp/ppcomp.html#15
// We must handle Saturn's rings as a major component of its visual magnitude.
// Find geocentric ecliptic coordinates of Saturn.
const eclip = Astronomy.Ecliptic(gc.x, gc.y, gc.z);
const ir = DEG2RAD * 28.06; // tilt of Saturn's rings to the ecliptic, in radians
const Nr = DEG2RAD * (169.51 + (3.82e-5 * time.tt)); // ascending node of Saturn's rings, in radians
// Find tilt of Saturn's rings, as seen from Earth.
const lat = DEG2RAD * eclip.elat;
const lon = DEG2RAD * eclip.elon;
const tilt = Math.asin(Math.sin(lat)*Math.cos(ir) - Math.cos(lat)*Math.sin(ir)*Math.sin(lon-Nr));
const sin_tilt = Math.sin(Math.abs(tilt));
let mag = -9.0 + 0.044*phase;
mag += sin_tilt*(-2.6 + 1.2*sin_tilt);
mag += 5*Math.log10(helio_dist * geo_dist);
return { mag:mag, ring_tilt:RAD2DEG*tilt };
}
function MoonMagnitude(phase, helio_dist, geo_dist) {
// https://astronomy.stackexchange.com/questions/10246/is-there-a-simple-analytical-formula-for-the-lunar-phase-brightness-curve
let rad = phase * DEG2RAD;
let rad2 = rad * rad;
let rad4 = rad2 * rad2;
let mag = -12.717 + 1.49*Math.abs(rad) + 0.0431*rad4;
const moon_mean_distance_au = 385000.6 / KM_PER_AU;
let geo_au = geo_dist / moon_mean_distance_au;
mag += 5*Math.log10(helio_dist * geo_au);
return mag;
}
/**
* Contains information about the apparent brightness and sunlit phase of a celestial object.
*
* @class
* @memberof Astronomy
*
* @property {Astronomy.AstroTime} time
* The date and time pertaining to the other calculated values in this object.
*
* @property {number} mag
* The <a href="https://en.wikipedia.org/wiki/Apparent_magnitude">apparent visual magnitude</a> of the celestial body.
*
* @property {number} phase_angle
* The angle in degrees as seen from the center of the celestial body between the Sun and the Earth.
* The value is always in the range 0 to 180.
* The phase angle provides a measure of what fraction of the body's face appears
* illuminated by the Sun as seen from the Earth.
* When the observed body is the Sun, the <code>phase</code> property is set to 0,
* although this has no physical meaning because the Sun emits, rather than reflects, light.
* When the phase is near 0 degrees, the body appears "full".
* When it is 90 degrees, the body appears "half full".
* And when it is 180 degrees, the body appears "new" and is very difficult to see
* because it is both dim and lost in the Sun's glare as seen from the Earth.
*
* @property {number} phase_fraction
* The fraction of the body's face that is illuminated by the Sun, as seen from the Earth.
* Calculated from <code>phase_angle</code> for convenience.
* This value ranges from 0 to 1.
*
* @property {number} helio_dist
* The distance between the center of the Sun and the center of the body in
* <a href="https://en.wikipedia.org/wiki/Astronomical_unit">astronomical units</a> (AU).
*
* @property {number} geo_dist
* The distance between the center of the Earth and the center of the body in AU.
*
* @property {Astronomy.Vector} gc
* Geocentric coordinates: the 3D vector from the center of the Earth to the center of the body.
* The components are in expressed in AU and are oriented with respect to the J2000 equatorial plane.
*
* @property {Astronomy.Vector} hc
* Heliocentric coordinates: The 3D vector from the center of the Sun to the center of the body.
* Like <code>gc</code>, <code>hc</code> is expressed in AU and oriented with respect
* to the J2000 equatorial plane.
*
* @property {number | null} ring_tilt
* For Saturn, this is the angular tilt of the planet's rings in degrees away
* from the line of sight from the Earth. When the value is near 0, the rings
* appear edge-on from the Earth and are therefore difficult to see.
* When <code>ring_tilt</code> approaches its maximum value (about 27 degrees),
* the rings appear widest and brightest from the Earth.
* Unlike the <a href="https://ssd.jpl.nasa.gov/horizons.cgi">JPL Horizons</a> online tool,
* this library includes the effect of the ring tilt angle in the calculated value
* for Saturn's visual magnitude.
* For all bodies other than Saturn, the value of <code>ring_tilt</code> is <code>null</code>.
*/
class IlluminationInfo {
constructor(time, mag, phase, helio_dist, geo_dist, gc, hc, ring_tilt) {
this.time = time;
this.mag = mag;
this.phase_angle = phase;
this.phase_fraction = (1 + Math.cos(DEG2RAD * phase)) / 2;
this.helio_dist = helio_dist;
this.geo_dist = geo_dist;
this.gc = gc;
this.hc = hc;
this.ring_tilt = ring_tilt;
}
}
/**
* Calculates the phase angle, visual maginitude,
* and other values relating to the body's illumination
* at the given date and time, as seen from the Earth.
*
* @param {string} body
* The name of the celestial body being observed.
* Not allowed to be <code>"Earth"</code>.
*
* @param {Date | number | Astronomy.AstroTime} date
* The date and time for which to calculate the illumination data for the given body.
*
* @returns {Astronomy.IlluminationInfo}
*/
Astronomy.Illumination = function(body, date) {
if (body === 'Earth')
throw `The illumination of the Earth is not defined.`;
const time = Astronomy.MakeTime(date);
const earth = CalcVsop(vsop.Earth, time);
let phase; // phase angle in degrees between Earth and Sun as seen from body
let hc; // vector from Sun to body
let gc; // vector from Earth to body
let mag; // visual magnitude
if (body === 'Sun') {
gc = new Vector(-earth.x, -earth.y, -earth.z, time);
hc = new Vector(0, 0, 0, time);
phase = 0; // a placeholder value; the Sun does not have an illumination phase because it emits, rather than reflects, light.
} else {
if (body === 'Moon') {
// For extra numeric precision, use geocentric moon formula directly.
gc = Astronomy.GeoMoon(time);
hc = new Vector(earth.x + gc.x, earth.y + gc.y, earth.z + gc.z, time);
} else {
// For planets, heliocentric vector is most direct to calculate.
hc = Astronomy.HelioVector(body, date);
gc = new Vector(hc.x - earth.x, hc.y - earth.y, hc.z - earth.z, time);
}
phase = AngleBetween(gc, hc);
}
let geo_dist = gc.Length(); // distance from body to center of Earth
let helio_dist = hc.Length(); // distance from body to center of Sun
let ring_tilt = null; // only reported for Saturn
if (body === 'Sun') {
mag = SUN_MAG_1AU + 5*Math.log10(geo_dist);
} else if (body === 'Moon') {
mag = MoonMagnitude(phase, helio_dist, geo_dist);
} else if (body === 'Saturn') {
const saturn = SaturnMagnitude(phase, helio_dist, geo_dist, gc, time);
mag = saturn.mag;
ring_tilt = saturn.ring_tilt;
} else {
mag = VisualMagnitude(body, phase, helio_dist, geo_dist);
}
return new IlluminationInfo(time, mag, phase, helio_dist, geo_dist, gc, hc, ring_tilt);
}
function SynodicPeriod(body) {
if (body === 'Earth')
throw 'The Earth does not have a synodic period as seen from itself.';
if (body === 'Moon')
return MEAN_SYNODIC_MONTH;
// Calculate the synodic period of the planet from its and the Earth's sidereal periods.
// The sidereal period of a planet is how long it takes to go around the Sun in days, on average.
// The synodic period of a planet is how long it takes between consecutive oppositions
// or conjunctions, on average.
let planet = Planet[body];
if (!planet)
throw `Not a valid planet name: ${body}`;
// See here for explanation of the formula:
// https://en.wikipedia.org/wiki/Elongation_(astronomy)#Elongation_period
const Te = Planet.Earth.OrbitalPeriod;
const Tp = planet.OrbitalPeriod;
const synodicPeriod = Math.abs(Te / (Te/Tp - 1));
return synodicPeriod;
}
/**
* Searches for the date and time the relative ecliptic longitudes of
* the specified body and the Earth, as seen from the Sun, reach a certain
* difference. This function is useful for finding conjunctions and oppositions
* of the planets. For the opposition of a superior planet (Mars, Jupiter, ..., Pluto),
* or the inferior conjunction of an inferior planet (Mercury, Venus),
* call with <code>targetRelLon</code> = 0. The 0 value indicates that both
* planets are on the same ecliptic longitude line, ignoring the other planet's
* distance above or below the plane of the Earth's orbit.
* For superior conjunctions, call with <code>targetRelLon</code> = 180.
* This means the Earth and the other planet are on opposite sides of the Sun.
*
* @param {string} body
* The name of a planet other than the Earth.
*
* @param {number} targetRelLon
* The desired angular difference in degrees between the ecliptic longitudes
* of <code>body</code> and the Earth. Must be in the range (-180, +180].
*
* @param {(Date | number | Astronomy.AstroTime)} startDate
* The date and time after which to find the next occurrence of the
* body and the Earth reaching the desired relative longitude.
*
* @returns {Astronomy.AstroTime}
* The time when the Earth and the body next reach the specified relative longitudes.
*/
Astronomy.SearchRelativeLongitude = function(body, targetRelLon, startDate) {
const planet = Planet[body];
if (!planet)
throw `Cannot search relative longitude because body is not a planet: ${body}`;
if (body === 'Earth')
throw 'Cannot search relative longitude for the Earth (it is always 0)';
// Determine whether the Earth "gains" (+1) on the planet or "loses" (-1)
// as both race around the Sun.
const direction = (planet.OrbitalPeriod > Planet.Earth.OrbitalPeriod) ? +1 : -1;
function offset(t) {
const plon = Astronomy.EclipticLongitude(body, t);
const elon = Astronomy.EclipticLongitude('Earth', t);
const diff = direction * (elon - plon);
return LongitudeOffset(diff - targetRelLon);
}
let syn = SynodicPeriod(body);
let time = Astronomy.MakeTime(startDate);
// Iterate until we converge on the desired event.
// Calculate the error angle, which will be a negative number of degrees,
// meaning we are "behind" the target relative longitude.
let error_angle = offset(time);
if (error_angle > 0) error_angle -= 360; // force searching forward in time
++Perf.longitude_search;
for (let iter=0; iter < 100; ++iter) {
++Perf.longitude_iter;
// Estimate how many days in the future (positive) or past (negative)
// we have to go to get closer to the target relative longitude.
let day_adjust = (-error_angle/360) * syn;
time = time.AddDays(day_adjust);
if (Math.abs(day_adjust) * SECONDS_PER_DAY < 1)
return time;
let prev_angle = error_angle;
error_angle = offset(time);
if (Math.abs(prev_angle) < 30) {
// Improve convergence for Mercury/Mars (eccentric orbits)
// by adjusting the synodic period to more closely match the
// variable speed of both planets in this part of their respective orbits.
if (prev_angle !== error_angle) {
let ratio = prev_angle / (prev_angle - error_angle);
if (ratio > 0.5 && ratio < 2.0)
syn *= ratio;
}
}
}
throw `Relative longitude search failed to converge for ${body} near ${time.toString()} (error_angle = ${error_angle}).`;
}
/**
* Determines the moon's phase expressed as an ecliptic longitude.
*
* @param {Date | number | Astronomy.AstroTime} date
* The date and time for which to calculate the moon's phase.
*
* @returns {number}
* A value in the range [0, 360) indicating the difference
* in ecliptic longitude between the center of the Sun and the
* center of the Moon, as seen from the center of the Earth.
* Certain longitude values have conventional meanings:
*
* * 0 = new moon
* * 90 = first quarter
* * 180 = full moon
* * 270 = third quarter
*/
Astronomy.MoonPhase = function(date) {
return Astronomy.LongitudeFromSun('Moon', date);
}
/**
* Searches for the date and time that the Moon reaches a specified phase.
* Lunar phases are defined in terms of geocentric ecliptic longitudes
* with respect to the Sun. When the Moon and the Sun have the same ecliptic
* longitude, that is defined as a new moon. When the two ecliptic longitudes
* are 180 degrees apart, that is defined as a full moon.
* To enumerate quarter lunar phases, it is simpler to call
* {@link Astronomy.SearchMoonQuarter} once, followed by repeatedly calling
* {@link Astronomy.NextMoonQuarter}. <code>SearchMoonPhase</code> is only
* necessary for finding other lunar phases than the usual quarter phases.
*
* @param {number} targetLon
* The difference in geocentric ecliptic longitude between the Sun and Moon
* that specifies the lunar phase being sought. This can be any value
* in the range [0, 360). Here are some helpful examples:
* 0 = new moon,
* 90 = first quarter,
* 180 = full moon,
* 270 = third quarter.
*
* @param {(Date|number|Astronomy.AstroTime)} dateStart
* The beginning of the window of time in which to search.
*
* @param {number} limitDays
* The floating point number of days after <code>dateStart</code>
* that limits the window of time in which to search.
*
* @returns {(Astronomy.AstroTime|null)}
* If the specified lunar phase occurs after <code>dateStart</code>
* and before <code>limitDays</code> days after <code>dateStart</code>,
* this function returns the date and time of the first such occurrence.
* Otherwise, it returns <code>null</code>.
*/
Astronomy.SearchMoonPhase = function(targetLon, dateStart, limitDays) {
function moon_offset(t) {
let mlon = Astronomy.MoonPhase(t);
return LongitudeOffset(mlon - targetLon);
}
// To avoid discontinuities in the moon_offset function causing problems,
// we need to approximate when that function will next return 0.
// We probe it with the start time and take advantage of the fact
// that every lunar phase repeats roughly every 29.5 days.
// There is a surprising uncertainty in the quarter timing,
// due to the eccentricity of the moon's orbit.
// I have seen up to 0.826 days away from the simple prediction.
// To be safe, we take the predicted time of the event and search
// +/-0.9 days around it (a 1.8-day wide window).
// But we must return null if the final result goes beyond limitDays after dateStart.
const uncertainty = 0.9;
let ta = Astronomy.MakeTime(dateStart);
let ya = moon_offset(ta);
if (ya > 0) ya -= 360; // force searching forward in time, not backward
let est_dt = -(MEAN_SYNODIC_MONTH*ya)/360;
let dt1 = est_dt - uncertainty;
if (dt1 > limitDays) return null; // not possible for moon phase to occur within the specified window
let dt2 = Math.min(limitDays, est_dt + uncertainty);
let t1 = ta.AddDays(dt1);
let t2 = ta.AddDays(dt2);
return Astronomy.Search(moon_offset, t1, t2);
}
/**
* Represents a quarter lunar phase, along with when it occurs.
*
* @class
* @memberof Astronomy
*
* @property {number} quarter
* An integer as follows:
* 0 = new moon,
* 1 = first quarter,
* 2 = full moon,
* 3 = third quarter.
*
* @property {Astronomy.AstroTime} time
* The date and time of the quarter lunar phase.
*/
class MoonQuarter {
constructor(quarter, time) {
this.quarter = quarter;
this.time = time;
}
}
/**
* Finds the first quarter lunar phase after the specified date and time.
* The quarter lunar phases are: new moon, first quarter, full moon, and third quarter.
* To enumerate quarter lunar phases, call <code>SearchMoonQuarter</code> once,
* then pass its return value to {@link Astronomy.NextMoonQuarter} to find the next
* <code>MoonQuarter</code>. Keep calling <code>NextMoonQuarter</code> in a loop,
* passing the previous return value as the argument to the next call.
*
* @param {(Date|number|Astronomy.AstroTime)} dateStart
* The date and time after which to find the first quarter lunar phase.
*
* @returns {Astronomy.MoonQuarter}
*/
Astronomy.SearchMoonQuarter = function(dateStart) {
// Determine what the next quarter phase will be.
let phaseStart = Astronomy.MoonPhase(dateStart);
let quarterStart = Math.floor(phaseStart / 90);
let quarter = (quarterStart + 1) % 4;
let time = Astronomy.SearchMoonPhase(90 * quarter, dateStart, 10);
return time && new MoonQuarter(quarter, time);
}
/**
* Given a {@link Astronomy.MoonQuarter} object, finds the next consecutive
* quarter lunar phase. See remarks in {@link Astronomy.SearchMoonQuarter}
* for explanation of usage.
*
* @param {Astronomy.MoonQuarter} mq
* The return value of a prior call to {@link Astronomy.MoonQuarter} or <code>NextMoonQuarter</code>.
*/
Astronomy.NextMoonQuarter = function(mq) {
// Skip 6 days past the previous found moon quarter to find the next one.
// This is less than the minimum possible increment.
// So far I have seen the interval well contained by the range (6.5, 8.3) days.
let date = new Date(mq.time.date.getTime() + 6*MILLIS_PER_DAY);
return Astronomy.SearchMoonQuarter(date);
}
/**
* Finds a rise or set time for the given body as
* seen by an observer at the specified location on the Earth.
* Rise time is defined as the moment when the top of the body
* is observed to first appear above the horizon in the east.
* Set time is defined as the moment the top of the body
* is observed to sink below the horizon in the west.
* The times are adjusted for typical atmospheric refraction conditions.
*
* @param {string} body
* The name of the body to find the rise or set time for.
*
* @param {Astronomy.Observer} observer
* Specifies the geographic coordinates and elevation above sea level of the observer.
* Call {@link Astronomy.MakeObserver} to create an observer object.
*
* @param {number} direction
* Either +1 to find rise time or -1 to find set time.
* Any other value will cause an exception to be thrown.
*
* @param {(Date|number|Astronomy.AstroTime)} dateStart
* The date and time after which the specified rise or set time is to be found.
*
* @param {number} limitDays
* The fractional number of days after <code>dateStart</code> that limits
* when the rise or set time is to be found.
*
* @returns {(Astronomy.AstroTime|null)}
* The date and time of the rise or set event, or null if no such event
* occurs within the specified time window.
*/
Astronomy.SearchRiseSet = function(body, observer, direction, dateStart, limitDays) {
// We calculate the apparent angular radius of the Sun and Moon,
// but treat all other bodies as points.
let body_radius_au = { Sun:SUN_RADIUS_AU, Moon:MOON_RADIUS_AU }[body] || 0;
function peak_altitude(t) {
// Return the angular altitude above or below the horizon
// of the highest part (the peak) of the given object.
// This is defined as the apparent altitude of the center of the body plus
// the body's angular radius.
// The 'direction' variable in the enclosing function controls
// whether the angle is measured positive above the horizon or
// positive below the horizon, depending on whether the caller
// wants rise times or set times, respectively.
const ofdate = Astronomy.Equator(body, t, observer, true, true);
const hor = Astronomy.Horizon(t, observer, ofdate.ra, ofdate.dec);
const alt = hor.altitude + RAD2DEG*(body_radius_au / ofdate.dist) + REFRACTION_NEAR_HORIZON;
return direction * alt;
}
if (body === 'Earth')
throw 'Cannot find rise or set time of the Earth.';
// See if the body is currently above/below the horizon.
// If we are looking for next rise time and the body is below the horizon,
// we use the current time as the lower time bound and the next culmination
// as the upper bound.
// If the body is above the horizon, we search for the next bottom and use it
// as the lower bound and the next culmination after that bottom as the upper bound.
// The same logic applies for finding set times, only we swap the hour angles.
// The peak_altitude() function already considers the 'direction' parameter.
let ha_before, ha_after;
if (direction === +1) {
ha_before = 12; // minimum altitude (bottom) happens BEFORE the body rises.
ha_after = 0; // maximum altitude (culmination) happens AFTER the body rises.
} else if (direction === -1) {
ha_before = 0; // culmination happens BEFORE the body sets.
ha_after = 12; // bottom happens AFTER the body sets.
} else {
throw `Astronomy.SearchRiseSet: Invalid direction parameter ${direction} -- must be +1 or -1`;
}
let time_start = Astronomy.MakeTime(dateStart);
let time_before;
let evt_before, evt_after;
let alt_before = peak_altitude(time_start);
let alt_after;
if (alt_before > 0) {
// We are past the sought event, so we have to wait for the next "before" event (culm/bottom).
evt_before = Astronomy.SearchHourAngle(body, observer, ha_before, time_start);
time_before = evt_before.time;
alt_before = peak_altitude(time_before);
} else {
// We are before or at the sought event, so we find the next "after" event (bottom/culm),
// and use the current time as the "before" event.
time_before = time_start;
}
evt_after = Astronomy.SearchHourAngle(body, observer, ha_after, time_before);
alt_after = peak_altitude(evt_after.time);
while (true) {
if (alt_before <= 0 && alt_after > 0) {
// Search between evt_before and evt_after for the desired event.
let tx = Astronomy.Search(peak_altitude, time_before, evt_after.time, {init_f1:alt_before, init_f2:alt_after});
if (tx)
return tx;
}
// If we didn't find the desired event, use time_after to find the next before-event.
evt_before = Astronomy.SearchHourAngle(body, observer, ha_before, evt_after.time);
evt_after = Astronomy.SearchHourAngle(body, observer, ha_after, evt_before.time);
if (evt_before.time.ut >= time_start.ut + limitDays)
return null;
time_before = evt_before.time;
alt_before = peak_altitude(evt_before.time);
alt_after = peak_altitude(evt_after.time);
}
}
/**
* Returns information about an occurrence of a celestial body
* reaching a given hour angle as seen by an observer at a given
* location on the surface of the Earth.
*
* @class
* @memberof Astronomy
*
* @property {Astronomy.AstroTime} time
* The date and time of the celestial body reaching the hour angle.
*
* @property {Astronomy.HorizontalCoordinates} hor
* Topocentric horizontal coordinates for the body
* at the time indicated by the <code>time</code> property.
*/
class HourAngleEvent {
constructor(time, hor) {
this.time = time;
this.hor = hor;
}
}
/**
* Finds the next time the given body is seen to reach the specified
* <a href="https://en.wikipedia.org/wiki/Hour_angle">hour angle</a>
* by the given observer.
* Providing <code>hourAngle</code> = 0 finds the next maximum altitude event (culmination).
* Providing <code>hourAngle</code> = 12 finds the next minimum altitude event.
* Note that, especially close to the Earth's poles, a body as seen on a given day
* may always be above the horizon or always below the horizon, so the caller cannot
* assume that a culminating object is visible nor that an object is below the horizon
* at its minimum altitude.
*
* @param {string} body
* The name of a celestial body other than the Earth.
*
* @param {Astronomy.Observer} observer
* Specifies the geographic coordinates and elevation above sea level of the observer.
* Call {@link Astronomy.MakeObserver} to create an observer object.
*
* @param {number} hourAngle
* The hour angle expressed in
* <a href="https://en.wikipedia.org/wiki/Sidereal_time">sidereal</a>
* hours for which the caller seeks to find the body attain.
* The value must be in the range [0, 24).
* The hour angle represents the number of sidereal hours that have
* elapsed since the most recent time the body crossed the observer's local
* <a href="https://en.wikipedia.org/wiki/Meridian_(astronomy)">meridian</a>.
* This specifying <code>hourAngle</code> = 0 finds the moment in time
* the body reaches the highest angular altitude in a given sidereal day.
*
* @param {(Date|number|Astronomy.AstroTime)} dateStart
* The date and time after which the desired hour angle crossing event
* is to be found.
*
* @returns {Astronomy.HourAngleEvent}
*/
Astronomy.SearchHourAngle = function(body, observer, hourAngle, dateStart) {
let time = Astronomy.MakeTime(dateStart);
let iter = 0;
if (body === 'Earth')
throw 'Cannot search for hour angle of the Earth.';
if (hourAngle < 0.0 || hourAngle >= 24.0)
throw `Invalid hour angle ${hourAngle}`;
while (true) {
++iter;
// Calculate Greenwich Apparent Sidereal Time (GAST) at the given time.
let gast = sidereal_time(time);
let ofdate = Astronomy.Equator(body, time, observer, true, true);
// Calculate the adjustment needed in sidereal time to bring
// the hour angle to the desired value.
let delta_sidereal_hours = ((hourAngle + ofdate.ra - observer.longitude/15) - gast) % 24;
if (iter === 1) {
// On the first iteration, always search forward in time.
if (delta_sidereal_hours < 0)
delta_sidereal_hours += 24;
} else {
// On subsequent iterations, we make the smallest possible adjustment,
// either forward or backward in time.
if (delta_sidereal_hours < -12)
delta_sidereal_hours += 24;
else if (delta_sidereal_hours > +12)
delta_sidereal_hours -= 24;
}
// If the error is tolerable (less than 0.1 seconds), stop searching.
if (Math.abs(delta_sidereal_hours) * 3600 < 0.1) {
const hor = Astronomy.Horizon(time, observer, ofdate.ra, ofdate.dec, 'normal');
return new HourAngleEvent(time, hor);
}
// We need to loop another time to get more accuracy.
// Update the terrestrial time adjusting by sidereal time.
let delta_days = (delta_sidereal_hours / 24) * SOLAR_DAYS_PER_SIDEREAL_DAY;
time = time.AddDays(delta_days);
}
}
/**
* Represents the dates and times of the two solstices
* and the two equinoxes in a given calendar year.
* These four events define the changing of the seasons on the Earth.
*
* @class
* @memberof Astronomy
*
* @property {Astronomy.AstroTime} mar_equinox
* The date and time of the March equinox in the given calendar year.
* This is the moment in March that the plane of the Earth's equator passes
* through the center of the Sun; thus the Sun's declination
* changes from a negative number to a positive number.
* The March equinox defines
* the beginning of spring in the northern hemisphere and
* the beginning of autumn in the southern hemisphere.
*
* @property {Astronomy.AstroTime} jun_solstice
* The date and time of the June solstice in the given calendar year.
* This is the moment in June that the Sun reaches its most positive
* declination value.
* At this moment the Earth's north pole is most tilted most toward the Sun.
* The June solstice defines
* the beginning of summer in the northern hemisphere and
* the beginning of winter in the southern hemisphere.
*
* @property {Astronomy.AstroTime} sep_equinox
* The date and time of the September equinox in the given calendar year.
* This is the moment in September that the plane of the Earth's equator passes
* through the center of the Sun; thus the Sun's declination
* changes from a positive number to a negative number.
* The September equinox defines
* the beginning of autumn in the northern hemisphere and
* the beginning of spring in the southern hemisphere.
*
* @property {Astronomy.AstroTime} dec_solstice
* The date and time of the December solstice in the given calendar year.
* This is the moment in December that the Sun reaches its most negative
* declination value.
* At this moment the Earth's south pole is tilted most toward the Sun.
* The December solstice defines
* the beginning of winter in the northern hemisphere and
* the beginning of summer in the southern hemisphere.
*/
class SeasonInfo {
constructor(mar_equinox, jun_solstice, sep_equinox, dec_solstice) {
this.mar_equinox = mar_equinox;
this.jun_solstice = jun_solstice;
this.sep_equinox = sep_equinox;
this.dec_solstice = dec_solstice;
}
}
/**
* Finds the equinoxes and solstices for a given calendar year.
*
* @param {(number | Astronomy.AstroTime)} year
* The integer value or <code>AstroTime</code> object that specifies
* the UTC calendar year for which to find equinoxes and solstices.
*
* @returns {Astronomy.SeasonInfo}
*/
Astronomy.Seasons = function(year) {
function find(targetLon, month, day) {
let startDate = new Date(Date.UTC(year, month-1, day));
let time = Astronomy.SearchSunLongitude(targetLon, startDate, 4);
if (!time)
throw `Cannot find season change near ${startDate.toISOString()}`;
return time;
}
if (year instanceof Date) {
year = year.getUTCFullYear();
}
let mar_equinox = find( 0, 3, 19);
let jun_solstice = find( 90, 6, 19);
let sep_equinox = find(180, 9, 21);
let dec_solstice = find(270, 12, 20);
return new SeasonInfo(mar_equinox, jun_solstice, sep_equinox, dec_solstice);
}
/**
* Represents the angular separation of a body from the Sun as seen from the Earth
* and the relative ecliptic longitudes between that body and the Earth as seen from the Sun.
*
* @class
* @memberof Astronomy
*
* @property {Astronomy.AstroTime} time
* The date and time of the observation.
*
* @property {string} visibility
* Either <code>"morning"</code> or <code>"evening"</code>,
* indicating when the body is most easily seen.
*
* @property {number} elongation
* The angle in degrees, as seen from the center of the Earth,
* of the apparent separation between the body and the Sun.
* This angle is measured in 3D space and is not projected onto the ecliptic plane.
* When <code>elongation</code> is less than a few degrees, the body is very
* difficult to see from the Earth because it is lost in the Sun's glare.
* The elongation is always in the range [0, 180].
*
* @property {number} ecliptic_separation
* The absolute value of the difference between the body's ecliptic longitude
* and the Sun's ecliptic longitude, both as seen from the center of the Earth.
* This angle measures around the plane of the Earth's orbit (the ecliptic),
* and ignores how far above or below that plane the body is.
* The ecliptic separation is measured in degrees and is always in the range [0, 180].
*
* @see {@link Astronomy.Elongation}
*/
class ElongationEvent {
constructor(time, visibility, elongation, ecliptic_separation) {
this.time = time;
this.visibility = visibility;
this.elongation = elongation;
this.ecliptic_separation = ecliptic_separation;
}
}
/**
* Calculates angular separation of a body from the Sun as seen from the Earth
* and the relative ecliptic longitudes between that body and the Earth as seen from the Sun.
* See the return type {@link Astronomy.ElongationEvent} for details.
*
* This function is helpful for determining how easy
* it is to view a planet away from the Sun's glare on a given date.
* It also determines whether the object is visible in the morning or evening;
* this is more important the smaller the elongation is.
* It is also used to determine how far a planet is from opposition, conjunction, or quadrature.
*
* @param {string} body
* The name of the observed body. Not allowed to be <code>"Earth"</code>.
*
* @returns {Astronomy.ElongationEvent}
*/
Astronomy.Elongation = function(body, date) {
let time = Astronomy.MakeTime(date);
let lon = Astronomy.LongitudeFromSun(body, time);
let vis;
if (lon > 180) {
vis = 'morning';
lon = 360 - lon;
} else {
vis = 'evening';
}
let angle = Astronomy.AngleFromSun(body, time);
return new ElongationEvent(time, vis, angle, lon);
}
/**
* Searches for the next maximum elongation event for Mercury or Venus
* that occurs after the given start date. Calling with other values
* of <code>body</code> will result in an exception.
* Maximum elongation occurs when the body has the greatest
* angular separation from the Sun, as seen from the Earth.
* Returns an <code>ElongationEvent</code> object containing the date and time of the next
* maximum elongation, the elongation in degrees, and whether
* the body is visible in the morning or evening.
*
* @param {string} body Either <code>"Mercury"</code> or <code>"Venus"</code>.
* @param {Date} startDate The date and time after which to search for the next maximum elongation event.
*
* @returns {Astronomy.ElongationEvent}
*/
Astronomy.SearchMaxElongation = function(body, startDate) {
const dt = 0.01;
function neg_slope(t) {
// The slope de/dt goes from positive to negative at the maximum elongation event.
// But Search() is designed for functions that ascend through zero.
// So this function returns the negative slope.
const t1 = t.AddDays(-dt/2);
const t2 = t.AddDays(+dt/2);
let e1 = Astronomy.AngleFromSun(body, t1);
let e2 = Astronomy.AngleFromSun(body, t2);
let m = (e1-e2)/dt;
return m;
}
let startTime = Astronomy.MakeTime(startDate);
const table = {
Mercury : { s1:50.0, s2:85.0 },
Venus : { s1:40.0, s2:50.0 }
};
const planet = table[body];
if (!planet)
throw 'SearchMaxElongation works for Mercury and Venus only.';
let iter = 0;
while (++iter <= 2) {
// Find current heliocentric relative longitude between the
// inferior planet and the Earth.
let plon = Astronomy.EclipticLongitude(body, startTime);
let elon = Astronomy.EclipticLongitude('Earth', startTime);
let rlon = LongitudeOffset(plon - elon); // clamp to (-180, +180]
// The slope function is not well-behaved when rlon is near 0 degrees or 180 degrees
// because there is a cusp there that causes a discontinuity in the derivative.
// So we need to guard against searching near such times.
let t1, t2;
let rlon_lo, rlon_hi, adjust_days;
if (rlon >= -planet.s1 && rlon < +planet.s1 ) {
// Seek to the window [+s1, +s2].
adjust_days = 0;
// Search forward for the time t1 when rel lon = +s1.
rlon_lo = +planet.s1;
// Search forward for the time t2 when rel lon = +s2.
rlon_hi = +planet.s2;
} else if (rlon >= +planet.s2 || rlon < -planet.s2 ) {
// Seek to the next search window at [-s2, -s1].
adjust_days = 0;
// Search forward for the time t1 when rel lon = -s2.
rlon_lo = -planet.s2;
// Search forward for the time t2 when rel lon = -s1.
rlon_hi = -planet.s1;
} else if (rlon >= 0) {
// rlon must be in the middle of the window [+s1, +s2].
// Search BACKWARD for the time t1 when rel lon = +s1.
adjust_days = -SynodicPeriod(body) / 4;
rlon_lo = +planet.s1;
rlon_hi = +planet.s2;
// Search forward from t1 to find t2 such that rel lon = +s2.
} else {
// rlon must be in the middle of the window [-s2, -s1].
// Search BACKWARD for the time t1 when rel lon = -s2.
adjust_days = -SynodicPeriod(body) / 4;
rlon_lo = -planet.s2;
// Search forward from t1 to find t2 such that rel lon = -s1.
rlon_hi = -planet.s1;
}
let t_start = startTime.AddDays(adjust_days);
t1 = Astronomy.SearchRelativeLongitude(body, rlon_lo, t_start);
t2 = Astronomy.SearchRelativeLongitude(body, rlon_hi, t1);
// Now we have a time range [t1,t2] that brackets a maximum elongation event.
// Confirm the bracketing.
let m1 = neg_slope(t1);
if (m1 >= 0)
throw `SearchMaxElongation: internal error: m1 = ${m1}`;
let m2 = neg_slope(t2);
if (m2 <= 0)
throw `SearchMaxElongation: internal error: m2 = ${m2}`;
// Use the generic search algorithm to home in on where the slope crosses from negative to positive.
let tx = Astronomy.Search(neg_slope, t1, t2, {init_f1:m1, init_f2:m2, dt_tolerance_seconds:10});
if (!tx)
throw `SearchMaxElongation: failed search iter ${iter} (t1=${t1.toString()}, t2=${t2.toString()})`;
if (tx.tt >= startTime.tt)
return Astronomy.Elongation(body, tx);
// This event is in the past (earlier than startDate).
// We need to search forward from t2 to find the next possible window.
// We never need to search more than twice.
startTime = t2.AddDays(1);
}
throw `SearchMaxElongation: failed to find event after 2 tries.`;
}
/**
* Searches for the date and time Venus will next appear brightest as seen from the Earth.
*
* @param {string} body
* Currently only <code>"Venus"</code> is supported.
* Mercury's peak magnitude occurs at superior conjunction, when it is virtually impossible to see from Earth,
* so peak magnitude events have little practical value for that planet.
* The Moon reaches peak magnitude very close to full moon, which can be found using
* {@link Astronomy.SearchMoonQuarter} or {@link Astronomy.SearchMoonPhase}.
* The other planets reach peak magnitude very close to opposition,
* which can be found using {@link Astronomy.SearchRelativeLongitude}.
*
* @param {(Date | number | Astronomy.AstroTime)} startDate
* The date and time after which to find the next peak magnitude event.
*
* @returns {Astronomy.IlluminationInfo}
*/
Astronomy.SearchPeakMagnitude = function(body, startDate) {
if (body !== 'Venus')
throw 'SearchPeakMagnitude currently works for Venus only.';
const dt = 0.01;
function slope(t) {
// The Search() function finds a transition from negative to positive values.
// The derivative of magnitude y with respect to time t (dy/dt)
// is negative as an object gets brighter, because the magnitude numbers
// get smaller. At peak magnitude dy/dt = 0, then as the object gets dimmer,
// dy/dt > 0.
const t1 = t.AddDays(-dt/2);
const t2 = t.AddDays(+dt/2);
const y1 = Astronomy.Illumination(body, t1).mag;
const y2 = Astronomy.Illumination(body, t2).mag;
const m = (y2-y1) / dt;
return m;
}
let startTime = Astronomy.MakeTime(startDate);
// s1 and s2 are relative longitudes within which peak magnitude of Venus can occur.
const s1 = 10.0;
const s2 = 30.0;
let iter = 0;
while (++iter <= 2) {
// Find current heliocentric relative longitude between the
// inferior planet and the Earth.
let plon = Astronomy.EclipticLongitude(body, startTime);
let elon = Astronomy.EclipticLongitude('Earth', startTime);
let rlon = LongitudeOffset(plon - elon); // clamp to (-180, +180]
// The slope function is not well-behaved when rlon is near 0 degrees or 180 degrees
// because there is a cusp there that causes a discontinuity in the derivative.
// So we need to guard against searching near such times.
let t1, t2;
let rlon_lo, rlon_hi, adjust_days;
if (rlon >= -s1 && rlon < +s1) {
// Seek to the window [+s1, +s2].
adjust_days = 0;
// Search forward for the time t1 when rel lon = +s1.
rlon_lo = +s1;
// Search forward for the time t2 when rel lon = +s2.
rlon_hi = +s2;
} else if (rlon >= +s2 || rlon < -s2 ) {
// Seek to the next search window at [-s2, -s1].
adjust_days = 0;
// Search forward for the time t1 when rel lon = -s2.
rlon_lo = -s2;
// Search forward for the time t2 when rel lon = -s1.
rlon_hi = -s1;
} else if (rlon >= 0) {
// rlon must be in the middle of the window [+s1, +s2].
// Search BACKWARD for the time t1 when rel lon = +s1.
adjust_days = -SynodicPeriod(body) / 4;
rlon_lo = +s1;
// Search forward from t1 to find t2 such that rel lon = +s2.
rlon_hi = +s2;
} else {
// rlon must be in the middle of the window [-s2, -s1].
// Search BACKWARD for the time t1 when rel lon = -s2.
adjust_days = -SynodicPeriod(body) / 4;
rlon_lo = -s2;
// Search forward from t1 to find t2 such that rel lon = -s1.
rlon_hi = -s1;
}
let t_start = startTime.AddDays(adjust_days);
t1 = Astronomy.SearchRelativeLongitude(body, rlon_lo, t_start);
t2 = Astronomy.SearchRelativeLongitude(body, rlon_hi, t1);
// Now we have a time range [t1,t2] that brackets a maximum magnitude event.
// Confirm the bracketing.
let m1 = slope(t1);
if (m1 >= 0)
throw `SearchPeakMagnitude: internal error: m1 = ${m1}`;
let m2 = slope(t2);
if (m2 <= 0)
throw `SearchPeakMagnitude: internal error: m2 = ${m2}`;
// Use the generic search algorithm to home in on where the slope crosses from negative to positive.
let tx = Astronomy.Search(slope, t1, t2, {init_f1:m1, init_f2:m2, dt_tolerance_seconds:10});
if (!tx)
throw `SearchPeakMagnitude: failed search iter ${iter} (t1=${t1.toString()}, t2=${t2.toString()})`;
if (tx.tt >= startTime.tt)
return Astronomy.Illumination(body, tx);
// This event is in the past (earlier than startDate).
// We need to search forward from t2 to find the next possible window.
// We never need to search more than twice.
startTime = t2.AddDays(1);
}
throw `SearchPeakMagnitude: failed to find event after 2 tries.`;
}
/**
* Represents a closest or farthest point in a body's orbit around its primary.
* For a planet orbiting the Sun, this is a perihelion or aphelion, respectively.
* For the Moon orbiting the Earth, this is a perigee or apogee, respectively.
*
* @class
* @memberof Astronomy
*
* @property {Astronomy.AstroTime} time
* The date and time of the apsis.
*
* @property {number} kind
* For a closest approach (perigee or perihelion), <code>kind</code> is 0.
* For a farthest distance event (apogee or aphelion), <code>kind</code> is 1.
*
* @property {number} dist_au
* The distance between the centers of the two bodies in astronomical units (AU).
*
* @property {number} dist_km
* The distance between the centers of the two bodies in kilometers.
*
* @see {@link Astronomy.SearchLunarApsis}
* @see {@link Astronomy.NextLunarApsis}
*/
class Apsis {
constructor(time, kind, dist_au) {
this.time = time;
this.kind = kind;
this.dist_au = dist_au;
this.dist_km = dist_au * KM_PER_AU;
}
}
/**
* Finds the next perigee (closest approach) or apogee (farthest remove) of the Moon
* that occurs after the specified date and time.
*
* @param {(Date | number | Astronomy.AstroTime)} startDate
* The date and time after which to find the next perigee or apogee.
*
* @returns {Astronomy.Apsis}
*/
Astronomy.SearchLunarApsis = function(startDate) {
const dt = 0.001;
function distance_slope(t) {
let t1 = t.AddDays(-dt/2);
let t2 = t.AddDays(+dt/2);
let r1 = CalcMoon(t1).distance_au;
let r2 = CalcMoon(t2).distance_au;
let m = (r2-r1) / dt;
return m;
}
function negative_distance_slope(t) {
return -distance_slope(t);
}
// Check the rate of change of the distance dr/dt at the start time.
// If it is positive, the Moon is currently getting farther away,
// so start looking for apogee.
// Conversely, if dr/dt < 0, start looking for perigee.
// Either way, the polarity of the slope will change, so the product will be negative.
// Handle the crazy corner case of exactly touching zero by checking for m1*m2 <= 0.
let t1 = Astronomy.MakeTime(startDate);
let m1 = distance_slope(t1);
const increment = 5; // number of days to skip in each iteration
++Perf.lunar_apsis_calls;
for (var iter = 0; iter * increment < 2 * MEAN_SYNODIC_MONTH; ++iter) {
++Perf.lunar_apsis_iter;
let t2 = t1.AddDays(increment);
let m2 = distance_slope(t2);
if (m1 * m2 <= 0) {
// The time range [t1, t2] contains an apsis.
// Figure out whether it is perigee or apogee.
if (m1 < 0 || m2 > 0) {
// We found a minimum distance event: perigee.
// Search the time range [t1, t2] for the time when the slope goes
// from negative to positive.
let tx = Astronomy.Search(distance_slope, t1, t2, {init_f1:m1, init_f2:m2});
if (tx == null)
throw 'SearchLunarApsis INTERNAL ERROR: perigee search failed!';
let dist = CalcMoon(tx).distance_au;
return new Apsis(tx, 0, dist);
}
if (m1 > 0 || m2 < 0) {
// We found a maximum distance event: apogee.
// Search the time range [t1, t2] for the time when the slope goes
// from positive to negative.
let tx = Astronomy.Search(negative_distance_slope, t1, t2, {init_f1:-m1, init_f2:-m2});
if (tx == null)
throw 'SearchLunarApsis INTERNAL ERROR: apogee search failed!';
let dist = CalcMoon(tx).distance_au;
return new Apsis(tx, 1, dist);
}
// This should never happen; it should not be possible for consecutive
// times t1 and t2 to both have zero slope.
throw 'SearchLunarApsis INTERNAL ERROR: cannot classify apsis event!';
}
t1 = t2;
m1 = m2;
}
// It should not be possible to fail to find an apsis within 2 synodic months.
throw 'SearchLunarApsis INTERNAL ERROR: could not find apsis within 2 synodic months of start date.';
}
/**
* Given a lunar apsis returned by an initial call to {@link SearchLunarApsis},
* or a previous call to <code>NextLunarApsis</code>, finds the next lunar apsis.
* If the given apsis is a perigee, this function finds the next apogee, and vice versa.
*
* @param {Astronomy.Apsis} apsis
* A lunar perigee or apogee event.
*
* @returns {Astronomy.Apsis}
* The successor apogee for the given perigee, or the successor perigee for the given apogee.
*/
Astronomy.NextLunarApsis = function(apsis) {
const skip = 11; // number of days to skip to start looking for next apsis event
let next = Astronomy.SearchLunarApsis(apsis.time.AddDays(skip));
if (next.kind + apsis.kind !== 1) {
throw `NextLunarApsis INTERNAL ERROR: did not find alternating apogee/perigee: prev=${apsis.kind} @ ${apsis.time.toString()}, next=${next.kind} @ ${next.time.toString()}`;
}
return next;
}
})(typeof exports==='undefined' ? (this.Astronomy={}) : exports);