Files
astronomy/source/python/astronomy.py

4453 lines
160 KiB
Python

#!/usr/bin/env python3
#
# MIT License
#
# Copyright (c) 2019 Don Cross <cosinekitty@gmail.com>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""Astronomy Engine by Don Cross
See the GitHub project page for full documentation, examples,
and other information:
https://github.com/cosinekitty/astronomy
"""
import math
import datetime
import enum
_PI2 = 2.0 * math.pi
_EPOCH = datetime.datetime(2000, 1, 1, 12)
_T0 = 2451545.0
_MJD_BASIS = 2400000.5
_Y2000_IN_MJD = _T0 - _MJD_BASIS
_ASEC360 = 1296000.0
_ASEC2RAD = 4.848136811095359935899141e-6
_ARC = 3600.0 * 180.0 / math.pi # arcseconds per radian
_C_AUDAY = 173.1446326846693 # speed of light in AU/day
_ERAD = 6378136.6 # mean earth radius in meters
_AU = 1.4959787069098932e+11 # astronomical unit in meters
_KM_PER_AU = 1.4959787069098932e+8
_ANGVEL = 7.2921150e-5
_SECONDS_PER_DAY = 24.0 * 3600.0
_SOLAR_DAYS_PER_SIDEREAL_DAY = 0.9972695717592592
_MEAN_SYNODIC_MONTH = 29.530588
_EARTH_ORBITAL_PERIOD = 365.256
_REFRACTION_NEAR_HORIZON = 34.0 / 60.0
_SUN_RADIUS_AU = 4.6505e-3
_MOON_RADIUS_AU = 1.15717e-5
_ASEC180 = 180.0 * 60.0 * 60.0
_AU_PER_PARSEC = _ASEC180 / math.pi
def _LongitudeOffset(diff):
offset = diff
while offset <= -180.0:
offset += 360.0
while offset > 180.0:
offset -= 360.0
return offset
def _NormalizeLongitude(lon):
while lon < 0.0:
lon += 360.0
while lon >= 360.0:
lon -= 360.0
return lon
class Vector:
"""A Cartesian vector with 3 space coordinates and 1 time coordinate.
The vector's space coordinates are measured in astronomical units (AU).
The coordinate system varies and depends on context.
The vector also includes a time stamp.
Attributes
----------
x : float
The x-coordinate of the vector, measured in AU.
y : float
The y-coordinate of the vector, measured in AU.
z : float
The z-coordinate of the vector, measured in AU.
t : Time
The date and time at which the coordinate is valid.
"""
def __init__(self, x, y, z, t):
self.x = x
self.y = y
self.z = z
self.t = t
def Length(self):
"""Returns the length of the vector in AU."""
return math.sqrt(self.x**2 + self.y**2 + self.z**2)
@enum.unique
class Body(enum.IntEnum):
"""The celestial bodies supported by Astronomy Engine calculations.
Values
------
Invalid: An unknown, invalid, or undefined celestial body.
Mercury: The planet Mercury.
Venus: The planet Venus.
Earth: The planet Earth.
Mars: The planet Mars.
Jupiter: The planet Jupiter.
Saturn: The planet Saturn.
Uranus: The planet Uranus.
Neptune: The planet Neptune.
Pluto: The planet Pluto.
Sun: The Sun.
Moon: The Earth's moon.
"""
Invalid = -1
Mercury = 0
Venus = 1
Earth = 2
Mars = 3
Jupiter = 4
Saturn = 5
Uranus = 6
Neptune = 7
Pluto = 8
Sun = 9
Moon = 10
def BodyCode(name):
"""Finds the Body enumeration value, given the name of a body.
Parameters
----------
name: str
The common English name of a supported celestial body.
Returns
-------
#Body
If `name` is a valid body name, returns the enumeration
value associated with that body.
Otherwise, returns `Body.Invalid`.
Example
-------
>>> astronomy.BodyCode('Mars')
<Body.Mars: 3>
"""
if name not in Body.__members__:
return Body.Invalid
return Body[name]
def _IsSuperiorPlanet(body):
return body in [Body.Mars, Body.Jupiter, Body.Saturn, Body.Uranus, Body.Neptune, Body.Pluto]
_PlanetOrbitalPeriod = [
87.969,
224.701,
_EARTH_ORBITAL_PERIOD,
686.980,
4332.589,
10759.22,
30685.4,
60189.0,
90560.0
]
class Error(Exception):
"""Indicates an error in an astronomical calculation."""
def __init__(self, message):
Exception.__init__(self, message)
class EarthNotAllowedError(Error):
"""The Earth is not allowed as the celestial body in this calculation."""
def __init__(self):
Error.__init__(self, 'The Earth is not allowed as the body.')
class InvalidBodyError(Error):
"""The celestial body is not allowed for this calculation."""
def __init__(self):
Error.__init__(self, 'Invalid astronomical body.')
class BadVectorError(Error):
"""A vector magnitude is too small to have a direction in space."""
def __init__(self):
Error.__init__(self, 'Vector is too small to have a direction.')
class InternalError(Error):
"""An internal error occured that should be reported as a bug.
Indicates an unexpected and unrecoverable condition occurred.
If you encounter this error using Astronomy Engine, it would be very
helpful to report it at the [Issues](https://github.com/cosinekitty/astronomy/issues)
page on GitHub. Please include a copy of the stack trace, along with a description
of how to reproduce the error. This will help improve the quality of
Astronomy Engine for everyone! (Thank you in advance from the author.)
"""
def __init__(self):
Error.__init__(self, 'Internal error - please report issue at https://github.com/cosinekitty/astronomy/issues')
class NoConvergeError(Error):
"""A numeric solver did not converge.
Indicates that there was a failure of a numeric solver to converge.
If you encounter this error using Astronomy Engine, it would be very
helpful to report it at the [Issues](https://github.com/cosinekitty/astronomy/issues)
page on GitHub. Please include a copy of the stack trace, along with a description
of how to reproduce the error. This will help improve the quality of
Astronomy Engine for everyone! (Thank you in advance from the author.)
"""
def __init__(self):
Error.__init__(self, 'Numeric solver did not converge - please report issue at https://github.com/cosinekitty/astronomy/issues')
def _SynodicPeriod(body):
if body == Body.Earth:
raise EarthNotAllowedError()
if body < 0 or body >= len(_PlanetOrbitalPeriod):
raise InvalidBodyError()
if body == Body.Moon:
return _MEAN_SYNODIC_MONTH
return abs(_EARTH_ORBITAL_PERIOD / (_EARTH_ORBITAL_PERIOD/_PlanetOrbitalPeriod[body] - 1.0))
def _AngleBetween(a, b):
r = a.Length() * b.Length()
if r < 1.0e-8:
return BadVectorError()
dot = (a.x*b.x + a.y*b.y + a.z*b.z) / r
if dot <= -1.0:
return 180.0
if dot >= +1.0:
return 0.0
return math.degrees(math.acos(dot))
class _delta_t_entry_t:
def __init__(self, mjd, dt):
self.mjd = mjd
self.dt = dt
_DT = [
_delta_t_entry_t(-72638.0, 38),
_delta_t_entry_t(-65333.0, 26),
_delta_t_entry_t(-58028.0, 21),
_delta_t_entry_t(-50724.0, 21.1),
_delta_t_entry_t(-43419.0, 13.5),
_delta_t_entry_t(-39766.0, 13.7),
_delta_t_entry_t(-36114.0, 14.8),
_delta_t_entry_t(-32461.0, 15.7),
_delta_t_entry_t(-28809.0, 15.6),
_delta_t_entry_t(-25156.0, 13.3),
_delta_t_entry_t(-21504.0, 12.6),
_delta_t_entry_t(-17852.0, 11.2),
_delta_t_entry_t(-14200.0, 11.13),
_delta_t_entry_t(-10547.0, 7.95),
_delta_t_entry_t(-6895.0, 6.22),
_delta_t_entry_t(-3242.0, 6.55),
_delta_t_entry_t(-1416.0, 7.26),
_delta_t_entry_t(410.0, 7.35),
_delta_t_entry_t(2237.0, 5.92),
_delta_t_entry_t(4063.0, 1.04),
_delta_t_entry_t(5889.0, -3.19),
_delta_t_entry_t(7715.0, -5.36),
_delta_t_entry_t(9542.0, -5.74),
_delta_t_entry_t(11368.0, -5.86),
_delta_t_entry_t(13194.0, -6.41),
_delta_t_entry_t(15020.0, -2.70),
_delta_t_entry_t(16846.0, 3.92),
_delta_t_entry_t(18672.0, 10.38),
_delta_t_entry_t(20498.0, 17.19),
_delta_t_entry_t(22324.0, 21.41),
_delta_t_entry_t(24151.0, 23.63),
_delta_t_entry_t(25977.0, 24.02),
_delta_t_entry_t(27803.0, 23.91),
_delta_t_entry_t(29629.0, 24.35),
_delta_t_entry_t(31456.0, 26.76),
_delta_t_entry_t(33282.0, 29.15),
_delta_t_entry_t(35108.0, 31.07),
_delta_t_entry_t(36934.0, 33.150),
_delta_t_entry_t(38761.0, 35.738),
_delta_t_entry_t(40587.0, 40.182),
_delta_t_entry_t(42413.0, 45.477),
_delta_t_entry_t(44239.0, 50.540),
_delta_t_entry_t(44605.0, 51.3808),
_delta_t_entry_t(44970.0, 52.1668),
_delta_t_entry_t(45335.0, 52.9565),
_delta_t_entry_t(45700.0, 53.7882),
_delta_t_entry_t(46066.0, 54.3427),
_delta_t_entry_t(46431.0, 54.8712),
_delta_t_entry_t(46796.0, 55.3222),
_delta_t_entry_t(47161.0, 55.8197),
_delta_t_entry_t(47527.0, 56.3000),
_delta_t_entry_t(47892.0, 56.8553),
_delta_t_entry_t(48257.0, 57.5653),
_delta_t_entry_t(48622.0, 58.3092),
_delta_t_entry_t(48988.0, 59.1218),
_delta_t_entry_t(49353.0, 59.9845),
_delta_t_entry_t(49718.0, 60.7853),
_delta_t_entry_t(50083.0, 61.6287),
_delta_t_entry_t(50449.0, 62.2950),
_delta_t_entry_t(50814.0, 62.9659),
_delta_t_entry_t(51179.0, 63.4673),
_delta_t_entry_t(51544.0, 63.8285),
_delta_t_entry_t(51910.0, 64.0908),
_delta_t_entry_t(52275.0, 64.2998),
_delta_t_entry_t(52640.0, 64.4734),
_delta_t_entry_t(53005.0, 64.5736),
_delta_t_entry_t(53371.0, 64.6876),
_delta_t_entry_t(53736.0, 64.8452),
_delta_t_entry_t(54101.0, 65.1464),
_delta_t_entry_t(54466.0, 65.4573),
_delta_t_entry_t(54832.0, 65.7768),
_delta_t_entry_t(55197.0, 66.0699),
_delta_t_entry_t(55562.0, 66.3246),
_delta_t_entry_t(55927.0, 66.6030),
_delta_t_entry_t(56293.0, 66.9069),
_delta_t_entry_t(56658.0, 67.2810),
_delta_t_entry_t(57023.0, 67.6439),
_delta_t_entry_t(57388.0, 68.1024),
_delta_t_entry_t(57754.0, 68.5927),
_delta_t_entry_t(58119.0, 68.9676),
_delta_t_entry_t(58484.0, 69.2201),
_delta_t_entry_t(58849.0, 69.87),
_delta_t_entry_t(59214.0, 70.39),
_delta_t_entry_t(59580.0, 70.91),
_delta_t_entry_t(59945.0, 71.40),
_delta_t_entry_t(60310.0, 71.88),
_delta_t_entry_t(60675.0, 72.36),
_delta_t_entry_t(61041.0, 72.83),
_delta_t_entry_t(61406.0, 73.32),
_delta_t_entry_t(61680.0, 73.66)
]
def _DeltaT(mjd):
if mjd <= _DT[0].mjd:
return _DT[0].dt
if mjd >= _DT[-1].mjd:
return _DT[-1].dt
# Do a binary search to find the pair of indexes this mjd lies between.
lo = 0
hi = len(_DT) - 2 # Make sure there is always an array element after the one we are looking at.
while True:
if lo > hi:
# This should never happen unless there is a bug in the binary search.
raise Error('Could not find delta-t value.')
c = (lo + hi) // 2
if mjd < _DT[c].mjd:
hi = c-1
elif mjd > _DT[c+1].mjd:
lo = c+1
else:
frac = (mjd - _DT[c].mjd) / (_DT[c+1].mjd - _DT[c].mjd)
return _DT[c].dt + frac*(_DT[c+1].dt - _DT[c].dt)
def _TerrestrialTime(ut):
return ut + _DeltaT(ut + _Y2000_IN_MJD) / 86400.0
class Time:
"""Represents a date and time used for performing astronomy calculations.
All calculations performed by Astronomy Engine are based on
dates and times represented by `Time` objects.
Parameters
----------
ut : float
UT1/UTC number of days since noon on January 1, 2000.
See the `ut` attribute of this class for more details.
Attributes
----------
ut : float
The floating point number of days of Universal Time since noon UTC January 1, 2000.
Astronomy Engine approximates UTC and UT1 as being the same thing, although they are
not exactly equivalent; UTC and UT1 can disagree by up to 0.9 seconds.
This approximation is sufficient for the accuracy requirements of Astronomy Engine.
Universal Time Coordinate (UTC) is the international standard for legal and civil
timekeeping and replaces the older Greenwich Mean Time (GMT) standard.
UTC is kept in sync with unpredictable observed changes in the Earth's rotation
by occasionally adding leap seconds as needed.
UT1 is an idealized time scale based on observed rotation of the Earth, which
gradually slows down in an unpredictable way over time, due to tidal drag by the Moon and Sun,
large scale weather events like hurricanes, and internal seismic and convection effects.
Conceptually, UT1 drifts from atomic time continuously and erratically, whereas UTC
is adjusted by a scheduled whole number of leap seconds as needed.
The value in `ut` is appropriate for any calculation involving the Earth's rotation,
such as calculating rise/set times, culumination, and anything involving apparent
sidereal time.
Before the era of atomic timekeeping, days based on the Earth's rotation
were often known as *mean solar days*.
tt : float
Terrestrial Time days since noon on January 1, 2000.
Terrestrial Time is an atomic time scale defined as a number of days since noon on January 1, 2000.
In this system, days are not based on Earth rotations, but instead by
the number of elapsed [SI seconds](https://physics.nist.gov/cuu/Units/second.html)
divided by 86400. Unlike `ut`, `tt` increases uniformly without adjustments
for changes in the Earth's rotation.
The value in `tt` is used for calculations of movements not involving the Earth's rotation,
such as the orbits of planets around the Sun, or the Moon around the Earth.
Historically, Terrestrial Time has also been known by the term *Ephemeris Time* (ET).
"""
def __init__(self, ut):
self.ut = ut
self.tt = _TerrestrialTime(ut)
self.etilt = None
@staticmethod
def Make(year, month, day, hour, minute, second):
"""Creates a #Time object from a UTC calendar date and time.
Parameters
----------
year : int
The UTC 4-digit year value, e.g. 2019.
month : int
The UTC month in the range 1..12.
day : int
The UTC day of the month, in the range 1..31.
hour : int
The UTC hour, in the range 0..23.
minute : int
The UTC minute, in the range 0..59.
second : float
The real-valued UTC second, in the range [0, 60).
Returns
-------
#Time
"""
micro = round(math.fmod(second, 1.0) * 1000000)
second = math.floor(second - micro/1000000)
d = datetime.datetime(year, month, day, hour, minute, second, micro)
ut = (d - _EPOCH).total_seconds() / 86400
return Time(ut)
@staticmethod
def Now():
ut = (datetime.datetime.utcnow() - _EPOCH).total_seconds() / 86400.0
return Time(ut)
def AddDays(self, days):
return Time(self.ut + days)
def __str__(self):
millis = round(self.ut * 86400000.0)
n = _EPOCH + datetime.timedelta(milliseconds=millis)
return '{:04d}-{:02d}-{:02d}T{:02d}:{:02d}:{:02d}.{:03d}Z'.format(n.year, n.month, n.day, n.hour, n.minute, n.second, math.floor(n.microsecond / 1000))
def Utc(self):
return _EPOCH + datetime.timedelta(days=self.ut)
def _etilt(self):
# Calculates precession and nutation of the Earth's axis.
# The calculations are very expensive, so lazy-evaluate and cache
# the result inside this Time object.
if self.etilt is None:
self.etilt = _e_tilt(self)
return self.etilt
class Observer:
"""Represents the geographic location of an observer on the surface of the Earth.
Parameters
----------
latitude : float
Geographic latitude in degrees north of the equator.
longitude : float
Geographic longitude in degrees east of the prime meridian at Greenwich, England.
height : float
Elevation above sea level in meters.
"""
def __init__(self, latitude, longitude, height=0):
self.latitude = latitude
self.longitude = longitude
self.height = height
class _iau2000b:
def __init__(self, time):
t = time.tt / 36525.0
el = math.fmod((485868.249036 + t*1717915923.2178), _ASEC360) * _ASEC2RAD
elp = math.fmod((1287104.79305 + t*129596581.0481), _ASEC360) * _ASEC2RAD
f = math.fmod((335779.526232 + t*1739527262.8478), _ASEC360) * _ASEC2RAD
d = math.fmod((1072260.70369 + t*1602961601.2090), _ASEC360) * _ASEC2RAD
om = math.fmod((450160.398036 - t*6962890.5431), _ASEC360) * _ASEC2RAD
dp = 0
de = 0
sarg = math.sin(om)
carg = math.cos(om)
dp += (-172064161.0 - 174666.0*t)*sarg + 33386.0*carg
de += (92052331.0 + 9086.0*t)*carg + 15377.0*sarg
arg = 2.0*f - 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-13170906.0 - 1675.0*t)*sarg - 13696.0*carg
de += (5730336.0 - 3015.0*t)*carg - 4587.0*sarg
arg = 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-2276413.0 - 234.0*t)*sarg + 2796.0*carg
de += (978459.0 - 485.0*t)*carg + 1374.0*sarg
arg = 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (2074554.0 + 207.0*t)*sarg - 698.0*carg
de += (-897492.0 + 470.0*t)*carg - 291.0*sarg
sarg = math.sin(elp)
carg = math.cos(elp)
dp += (1475877.0 - 3633.0*t)*sarg + 11817.0*carg
de += (73871.0 - 184.0*t)*carg - 1924.0*sarg
arg = elp + 2.0*f - 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-516821.0 + 1226.0*t)*sarg - 524.0*carg
de += (224386.0 - 677.0*t)*carg - 174.0*sarg
sarg = math.sin(el)
carg = math.cos(el)
dp += (711159.0 + 73.0*t)*sarg - 872.0*carg
de += (-6750.0)*carg + 358.0*sarg
arg = 2.0*f + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-387298.0 - 367.0*t)*sarg + 380.0*carg
de += (200728.0 + 18.0*t)*carg + 318.0*sarg
arg = el + 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-301461.0 - 36.0*t)*sarg + 816.0*carg
de += (129025.0 - 63.0*t)*carg + 367.0*sarg
arg = -elp + 2.0*f - 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (215829.0 - 494.0*t)*sarg + 111.0*carg
de += (-95929.0 + 299.0*t)*carg + 132.0*sarg
arg = 2.0*f - 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (128227.0 + 137.0*t)*sarg + 181.0*carg
de += (-68982.0 - 9.0*t)*carg + 39.0*sarg
arg = -el + 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (123457.0 + 11.0*t)*sarg + 19.0*carg
de += (-53311.0 + 32.0*t)*carg - 4.0*sarg
arg = -el + 2.0*d
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (156994.0 + 10.0*t)*sarg - 168.0*carg
de += (-1235.0)*carg + 82.0*sarg
arg = el + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (63110.0 + 63.0*t)*sarg + 27.0*carg
de += (-33228.0)*carg - 9.0*sarg
arg = -el + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-57976.0 - 63.0*t)*sarg - 189.0*carg
de += (31429.0)*carg - 75.0*sarg
arg = -el + 2.0*f + 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-59641.0 - 11.0*t)*sarg + 149.0*carg
de += (25543.0 - 11.0*t)*carg + 66.0*sarg
arg = el + 2.0*f + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-51613.0 - 42.0*t)*sarg + 129.0*carg
de += (26366.0)*carg + 78.0*sarg
arg = -2.0*el + 2.0*f + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (45893.0 + 50.0*t)*sarg + 31.0*carg
de += (-24236.0 - 10.0*t)*carg + 20.0*sarg
arg = 2.0*d
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (63384.0 + 11.0*t)*sarg - 150.0*carg
de += (-1220.0)*carg + 29.0*sarg
arg = 2.0*f + 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-38571.0 - 1.0*t)*sarg + 158.0*carg
de += (16452.0 - 11.0*t)*carg + 68.0*sarg
arg = -2.0*elp + 2.0*f - 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (32481.0)*sarg
de += (-13870.0)*carg
arg = -2.0*el + 2.0*d
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-47722.0)*sarg - 18.0*carg
de += (477.0)*carg - 25.0*sarg
arg = 2.0*el + 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-31046.0 - 1.0*t)*sarg + 131.0*carg
de += (13238.0 - 11.0*t)*carg + 59.0*sarg
arg = el + 2.0*f - 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (28593.0)*sarg - carg
de += (-12338.0 + 10.0*t)*carg - 3.0*sarg
arg = -el + 2.0*f + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (20441.0 + 21.0*t)*sarg + 10.0*carg
de += (-10758.0)*carg - 3.0*sarg
arg = 2.0*el
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (29243.0)*sarg - 74.0*carg
de += (-609.0)*carg + 13.0*sarg
arg = 2.0*f
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (25887.0)*sarg - 66.0*carg
de += (-550.0)*carg + 11.0*sarg
arg = elp + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-14053.0 - 25.0*t)*sarg + 79.0*carg
de += (8551.0 - 2.0*t)*carg - 45.0*sarg
arg = -el + 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (15164.0 + 10.0*t)*sarg + 11.0*carg
de += (-8001.0)*carg - sarg
arg = 2.0*elp + 2.0*f - 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-15794.0 + 72.0*t)*sarg - 16.0*carg
de += (6850.0 - 42.0*t)*carg - 5.0*sarg
arg = -2.0*f + 2.0*d
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (21783.0)*sarg + 13.0*carg
de += (-167.0)*carg + 13.0*sarg
arg = el - 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-12873.0 - 10.0*t)*sarg - 37.0*carg
de += (6953.0)*carg - 14.0*sarg
arg = -elp + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-12654.0 + 11.0*t)*sarg + 63.0*carg
de += (6415.0)*carg + 26.0*sarg
arg = -el + 2.0*f + 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-10204.0)*sarg + 25.0*carg
de += (5222.0)*carg + 15.0*sarg
arg = 2.0*elp
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (16707.0 - 85.0*t)*sarg - 10.0*carg
de += (168.0 - 1.0*t)*carg + 10.0*sarg
arg = el + 2.0*f + 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-7691.0)*sarg + 44.0*carg
de += (3268.0)*carg + 19.0*sarg
arg = -2.0*el + 2.0*f
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-11024.0)*sarg - 14.0*carg
de += (104.0)*carg + 2.0*sarg
arg = elp + 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (7566.0 - 21.0*t)*sarg - 11.0*carg
de += (-3250.0)*carg - 5.0*sarg
arg = 2.0*f + 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-6637.0 - 11.0*t)*sarg + 25.0*carg
de += (3353.0)*carg + 14.0*sarg
arg = -elp + 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-7141.0 + 21.0*t)*sarg + 8.0*carg
de += (3070.0)*carg + 4.0*sarg
arg = 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-6302.0 - 11.0*t)*sarg + 2.0*carg
de += (3272.0)*carg + 4.0*sarg
arg = el + 2.0*f - 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (5800.0 + 10.0*t)*sarg + 2.0*carg
de += (-3045.0)*carg - sarg
arg = 2.0*el + 2.0*f - 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (6443.0)*sarg - 7.0*carg
de += (-2768.0)*carg - 4.0*sarg
arg = -2.0*el + 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-5774.0 - 11.0*t)*sarg - 15.0*carg
de += (3041.0)*carg - 5.0*sarg
arg = 2.0*el + 2.0*f + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-5350.0)*sarg + 21.0*carg
de += (2695.0)*carg + 12.0*sarg
arg = -elp + 2.0*f - 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-4752.0 - 11.0*t)*sarg - 3.0*carg
de += (2719.0)*carg - 3.0*sarg
arg = -2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-4940.0 - 11.0*t)*sarg - 21.0*carg
de += (2720.0)*carg - 9.0*sarg
arg = -el - elp + 2.0*d
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (7350.0)*sarg - 8.0*carg
de += (-51.0)*carg + 4.0*sarg
arg = 2.0*el - 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (4065.0)*sarg + 6.0*carg
de += (-2206.0)*carg + sarg
arg = el + 2.0*d
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (6579.0)*sarg - 24.0*carg
de += (-199.0)*carg + 2.0*sarg
arg = elp + 2.0*f - 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (3579.0)*sarg + 5.0*carg
de += (-1900.0)*carg + sarg
arg = el - elp
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (4725.0)*sarg - 6.0*carg
de += (-41.0)*carg + 3.0*sarg
arg = -2.0*el + 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-3075.0)*sarg - 2.0*carg
de += (1313.0)*carg - sarg
arg = 3.0*el + 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-2904.0)*sarg + 15.0*carg
de += (1233.0)*carg + 7.0*sarg
arg = -elp + 2.0*d
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (4348.0)*sarg - 10.0*carg
de += (-81.0)*carg + 2.0*sarg
arg = el - elp + 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-2878.0)*sarg + 8.0*carg
de += (1232.0)*carg + 4.0*sarg
sarg = math.sin(d)
carg = math.cos(d)
dp += (-4230.0)*sarg + 5.0*carg
de += (-20.0)*carg - 2.0*sarg
arg = -el - elp + 2.0*f + 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-2819.0)*sarg + 7.0*carg
de += (1207.0)*carg + 3.0*sarg
arg = -el + 2.0*f
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-4056.0)*sarg + 5.0*carg
de += (40.0)*carg - 2.0*sarg
arg = -elp + 2.0*f + 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-2647.0)*sarg + 11.0*carg
de += (1129.0)*carg + 5.0*sarg
arg = -2.0*el + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-2294.0)*sarg - 10.0*carg
de += (1266.0)*carg - 4.0*sarg
arg = el + elp + 2.0*f + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (2481.0)*sarg - 7.0*carg
de += (-1062.0)*carg - 3.0*sarg
arg = 2.0*el + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (2179.0)*sarg - 2.0*carg
de += (-1129.0)*carg - 2.0*sarg
arg = -el + elp + d
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (3276.0)*sarg + carg
de += (-9.0)*carg
arg = el + elp
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-3389.0)*sarg + 5.0*carg
de += (35.0)*carg - 2.0*sarg
arg = el + 2.0*f
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (3339.0)*sarg - 13.0*carg
de += (-107.0)*carg + sarg
arg = -el + 2.0*f - 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-1987.0)*sarg - 6.0*carg
de += (1073.0)*carg - 2.0*sarg
arg = el + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-1981.0)*sarg
de += (854.0)*carg
arg = -el + d
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (4026.0)*sarg - 353.0*carg
de += (-553.0)*carg - 139.0*sarg
arg = 2.0*f + d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (1660.0)*sarg - 5.0*carg
de += (-710.0)*carg - 2.0*sarg
arg = -el + 2.0*f + 4.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-1521.0)*sarg + 9.0*carg
de += (647.0)*carg + 4.0*sarg
arg = -el + elp + d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (1314.0)*sarg
de += (-700.0)*carg
arg = -2.0*elp + 2.0*f - 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-1283.0)*sarg
de += (672.0)*carg
arg = el + 2.0*f + 2.0*d + om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (-1331.0)*sarg + 8.0*carg
de += (663.0)*carg + 4.0*sarg
arg = -2.0*el + 2.0*f + 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (1383.0)*sarg - 2.0*carg
de += (-594.0)*carg - 2.0*sarg
arg = -el + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (1405.0)*sarg + 4.0*carg
de += (-610.0)*carg + 2.0*sarg
arg = el + elp + 2.0*f - 2.0*d + 2.0*om
sarg = math.sin(arg)
carg = math.cos(arg)
dp += (1290.0)*sarg
de += (-556.0)*carg
self.dpsi = -0.000135 + (dp * 1.0e-7)
self.deps = +0.000388 + (de * 1.0e-7)
def _mean_obliq(tt):
t = tt / 36525
asec = (
(((( - 0.0000000434 * t
- 0.000000576 ) * t
+ 0.00200340 ) * t
- 0.0001831 ) * t
- 46.836769 ) * t + 84381.406
)
return asec / 3600.0
class _e_tilt:
def __init__(self, time):
e = _iau2000b(time)
self.dpsi = e.dpsi
self.deps = e.deps
self.mobl = _mean_obliq(time.tt)
self.tobl = self.mobl + (e.deps / 3600.0)
self.tt = time.tt
self.ee = e.dpsi * math.cos(math.radians(self.mobl)) / 15.0
def _ecl2equ_vec(time, ecl):
obl = math.radians(_mean_obliq(time.tt))
cos_obl = math.cos(obl)
sin_obl = math.sin(obl)
return [
ecl[0],
ecl[1]*cos_obl - ecl[2]*sin_obl,
ecl[1]*sin_obl + ecl[2]*cos_obl
]
def _precession(tt1, pos1, tt2):
eps0 = 84381.406
if tt1 != 0 and tt2 != 0:
raise Error('One of (tt1, tt2) must be zero.')
t = (tt2 - tt1) / 36525
if tt2 == 0:
t = -t
psia = (((((- 0.0000000951 * t
+ 0.000132851 ) * t
- 0.00114045 ) * t
- 1.0790069 ) * t
+ 5038.481507 ) * t)
omegaa = (((((+ 0.0000003337 * t
- 0.000000467 ) * t
- 0.00772503 ) * t
+ 0.0512623 ) * t
- 0.025754 ) * t + eps0)
chia = (((((- 0.0000000560 * t
+ 0.000170663 ) * t
- 0.00121197 ) * t
- 2.3814292 ) * t
+ 10.556403 ) * t)
eps0 *= _ASEC2RAD
psia *= _ASEC2RAD
omegaa *= _ASEC2RAD
chia *= _ASEC2RAD
sa = math.sin(eps0)
ca = math.cos(eps0)
sb = math.sin(-psia)
cb = math.cos(-psia)
sc = math.sin(-omegaa)
cc = math.cos(-omegaa)
sd = math.sin(chia)
cd = math.cos(chia)
xx = cd * cb - sb * sd * cc
yx = cd * sb * ca + sd * cc * cb * ca - sa * sd * sc
zx = cd * sb * sa + sd * cc * cb * sa + ca * sd * sc
xy = -sd * cb - sb * cd * cc
yy = -sd * sb * ca + cd * cc * cb * ca - sa * cd * sc
zy = -sd * sb * sa + cd * cc * cb * sa + ca * cd * sc
xz = sb * sc
yz = -sc * cb * ca - sa * cc
zz = -sc * cb * sa + cc * ca
if tt2 == 0.0:
# Perform rotation from other epoch to J2000.0.
return [
xx * pos1[0] + xy * pos1[1] + xz * pos1[2],
yx * pos1[0] + yy * pos1[1] + yz * pos1[2],
zx * pos1[0] + zy * pos1[1] + zz * pos1[2]
]
# Perform rotation from J2000.0 to other epoch.
return [
xx * pos1[0] + yx * pos1[1] + zx * pos1[2],
xy * pos1[0] + yy * pos1[1] + zy * pos1[2],
xz * pos1[0] + yz * pos1[1] + zz * pos1[2]
]
class Equatorial:
"""Equatorial angular coordinates
Coordinates of a celestial body as seen from the Earth.
Can be geocentric or topocentric, depending on context.
The coordinates are oriented with respect to the Earth's
equator projected onto the sky.
Attributes
----------
ra : float
Right ascension in sidereal hours.
dec : float
Declination in degrees.
dist : float
Distance to the celestial body in AU.
"""
def __init__(self, ra, dec, dist):
self.ra = ra
self.dec = dec
self.dist = dist
def _vector2radec(pos):
xyproj = pos[0]*pos[0] + pos[1]*pos[1]
dist = math.sqrt(xyproj + pos[2]*pos[2])
if xyproj == 0.0:
if pos[2] == 0.0:
# Indeterminate coordinates: pos vector has zero length.
raise BadVectorError()
ra = 0.0
if pos[2] < 0.0:
dec = -90.0
else:
dec = +90.0
else:
ra = math.degrees(math.atan2(pos[1], pos[0])) / 15.0
if ra < 0:
ra += 24
dec = math.degrees(math.atan2(pos[2], math.sqrt(xyproj)))
return Equatorial(ra, dec, dist)
def _nutation(time, direction, inpos):
tilt = time._etilt()
oblm = math.radians(tilt.mobl)
oblt = math.radians(tilt.tobl)
psi = tilt.dpsi * _ASEC2RAD
cobm = math.cos(oblm)
sobm = math.sin(oblm)
cobt = math.cos(oblt)
sobt = math.sin(oblt)
cpsi = math.cos(psi)
spsi = math.sin(psi)
xx = cpsi
yx = -spsi * cobm
zx = -spsi * sobm
xy = spsi * cobt
yy = cpsi * cobm * cobt + sobm * sobt
zy = cpsi * sobm * cobt - cobm * sobt
xz = spsi * sobt
yz = cpsi * cobm * sobt - sobm * cobt
zz = cpsi * sobm * sobt + cobm * cobt
if direction == 0:
# forward rotation
return [
xx * inpos[0] + yx * inpos[1] + zx * inpos[2],
xy * inpos[0] + yy * inpos[1] + zy * inpos[2],
xz * inpos[0] + yz * inpos[1] + zz * inpos[2]
]
# inverse rotation
return [
xx * inpos[0] + xy * inpos[1] + xz * inpos[2],
yx * inpos[0] + yy * inpos[1] + yz * inpos[2],
zx * inpos[0] + zy * inpos[1] + zz * inpos[2]
]
def _era(time): # Earth Rotation Angle
thet1 = 0.7790572732640 + 0.00273781191135448 * time.ut
thet3 = math.fmod(time.ut, 1.0)
theta = 360.0 * math.fmod((thet1 + thet3), 1.0)
if theta < 0.0:
theta += 360.0
return theta
def _sidereal_time(time):
t = time.tt / 36525.0
eqeq = 15.0 * time._etilt().ee # Replace with eqeq=0 to get GMST instead of GAST (if we ever need it)
theta = _era(time)
st = (eqeq + 0.014506 +
(((( - 0.0000000368 * t
- 0.000029956 ) * t
- 0.00000044 ) * t
+ 1.3915817 ) * t
+ 4612.156534 ) * t)
gst = math.fmod((st/3600.0 + theta), 360.0) / 15.0
if gst < 0.0:
gst += 24.0
return gst
def _terra(observer, st):
erad_km = _ERAD / 1000.0
df = 1.0 - 0.003352819697896 # flattening of the Earth
df2 = df * df
phi = math.radians(observer.latitude)
sinphi = math.sin(phi)
cosphi = math.cos(phi)
c = 1.0 / math.sqrt(cosphi*cosphi + df2*sinphi*sinphi)
s = df2 * c
ht_km = observer.height / 1000.0
ach = erad_km*c + ht_km
ash = erad_km*s + ht_km
stlocl = math.radians(15.0*st + observer.longitude)
sinst = math.sin(stlocl)
cosst = math.cos(stlocl)
return [
ach * cosphi * cosst / _KM_PER_AU,
ach * cosphi * sinst / _KM_PER_AU,
ash * sinphi / _KM_PER_AU
]
def _geo_pos(time, observer):
gast = _sidereal_time(time)
pos1 = _terra(observer, gast)
pos2 = _nutation(time, -1, pos1)
outpos = _precession(time.tt, pos2, 0.0)
return outpos
def _spin(angle, pos1):
angr = math.radians(angle)
cosang = math.cos(angr)
sinang = math.sin(angr)
return [
+cosang*pos1[0] + sinang*pos1[1],
-sinang*pos1[0] + cosang*pos1[1],
pos1[2]
]
#----------------------------------------------------------------------------
# BEGIN CalcMoon
def _Array1(xmin, xmax):
return dict((key, 0j) for key in range(xmin, 1+xmax))
def _Array2(xmin, xmax, ymin, ymax):
return dict((key, _Array1(ymin, ymax)) for key in range(xmin, 1+xmax))
class _moonpos:
def __init__(self, lon, lat, dist):
self.geo_eclip_lon = lon
self.geo_eclip_lat = lat
self.distance_au = dist
def _CalcMoon(time):
T = time.tt / 36525
ex = _Array2(-6, 6, 1, 4)
def Sine(phi):
return math.sin(_PI2 * phi)
def Frac(x):
return x - math.floor(x)
T2 = T*T
DLAM = 0
DS = 0
GAM1C = 0
SINPI = 3422.7000
S1 = Sine(0.19833+0.05611*T)
S2 = Sine(0.27869+0.04508*T)
S3 = Sine(0.16827-0.36903*T)
S4 = Sine(0.34734-5.37261*T)
S5 = Sine(0.10498-5.37899*T)
S6 = Sine(0.42681-0.41855*T)
S7 = Sine(0.14943-5.37511*T)
DL0 = 0.84*S1+0.31*S2+14.27*S3+ 7.26*S4+ 0.28*S5+0.24*S6
DL = 2.94*S1+0.31*S2+14.27*S3+ 9.34*S4+ 1.12*S5+0.83*S6
DLS =-6.40*S1 -1.89*S6
DF = 0.21*S1+0.31*S2+14.27*S3-88.70*S4-15.30*S5+0.24*S6-1.86*S7
DD = DL0-DLS
DGAM = ((-3332E-9 * Sine(0.59734-5.37261*T)
-539E-9 * Sine(0.35498-5.37899*T)
-64E-9 * Sine(0.39943-5.37511*T)))
L0 = _PI2*Frac(0.60643382+1336.85522467*T-0.00000313*T2) + DL0/_ARC
L = _PI2*Frac(0.37489701+1325.55240982*T+0.00002565*T2) + DL /_ARC
LS = _PI2*Frac(0.99312619+ 99.99735956*T-0.00000044*T2) + DLS/_ARC
F = _PI2*Frac(0.25909118+1342.22782980*T-0.00000892*T2) + DF /_ARC
D = _PI2*Frac(0.82736186+1236.85308708*T-0.00000397*T2) + DD /_ARC
I = 1
while I <= 4:
if I == 1:
ARG=L; MAX=4; FAC=1.000002208
elif I == 2:
ARG=LS; MAX=3; FAC=0.997504612-0.002495388*T
elif I == 3:
ARG=F; MAX=4; FAC=1.000002708+139.978*DGAM
else:
ARG=D; MAX=6; FAC=1.0
ex[0][I] = complex(1, 0)
ex[1][I] = complex(FAC * math.cos(ARG), FAC * math.sin(ARG))
J = 2
while J <= MAX:
ex[J][I] = ex[J-1][I] * ex[1][I]
J += 1
J = 1
while J <= MAX:
ex[-J][I] = ex[J][I].conjugate()
J += 1
I += 1
# AddSol(13.902000, 14.060000, -0.001000, 0.260700, 0.000000, 0.000000, 0.000000, 4.000000)
z = ex[4][4]
DLAM += 13.902 * z.imag
DS += 14.06 * z.imag
GAM1C += -0.001 * z.real
SINPI += 0.2607 * z.real
# AddSol(0.403000, -4.010000, 0.394000, 0.002300, 0.000000, 0.000000, 0.000000, 3.000000)
z = ex[3][4]
DLAM += 0.403 * z.imag
DS += -4.01 * z.imag
GAM1C += 0.394 * z.real
SINPI += 0.0023 * z.real
# AddSol(2369.912000, 2373.360000, 0.601000, 28.233300, 0.000000, 0.000000, 0.000000, 2.000000)
z = ex[2][4]
DLAM += 2369.912 * z.imag
DS += 2373.36 * z.imag
GAM1C += 0.601 * z.real
SINPI += 28.2333 * z.real
# AddSol(-125.154000, -112.790000, -0.725000, -0.978100, 0.000000, 0.000000, 0.000000, 1.000000)
z = ex[1][4]
DLAM += -125.154 * z.imag
DS += -112.79 * z.imag
GAM1C += -0.725 * z.real
SINPI += -0.9781 * z.real
# AddSol(1.979000, 6.980000, -0.445000, 0.043300, 1.000000, 0.000000, 0.000000, 4.000000)
z = ex[1][1] * ex[4][4]
DLAM += 1.979 * z.imag
DS += 6.98 * z.imag
GAM1C += -0.445 * z.real
SINPI += 0.0433 * z.real
# AddSol(191.953000, 192.720000, 0.029000, 3.086100, 1.000000, 0.000000, 0.000000, 2.000000)
z = ex[1][1] * ex[2][4]
DLAM += 191.953 * z.imag
DS += 192.72 * z.imag
GAM1C += 0.029 * z.real
SINPI += 3.0861 * z.real
# AddSol(-8.466000, -13.510000, 0.455000, -0.109300, 1.000000, 0.000000, 0.000000, 1.000000)
z = ex[1][1] * ex[1][4]
DLAM += -8.466 * z.imag
DS += -13.51 * z.imag
GAM1C += 0.455 * z.real
SINPI += -0.1093 * z.real
# AddSol(22639.500000, 22609.070000, 0.079000, 186.539800, 1.000000, 0.000000, 0.000000, 0.000000)
z = ex[1][1]
DLAM += 22639.500 * z.imag
DS += 22609.07 * z.imag
GAM1C += 0.079 * z.real
SINPI += 186.5398 * z.real
# AddSol(18.609000, 3.590000, -0.094000, 0.011800, 1.000000, 0.000000, 0.000000, -1.000000)
z = ex[1][1] * ex[-1][4]
DLAM += 18.609 * z.imag
DS += 3.59 * z.imag
GAM1C += -0.094 * z.real
SINPI += 0.0118 * z.real
# AddSol(-4586.465000, -4578.130000, -0.077000, 34.311700, 1.000000, 0.000000, 0.000000, -2.000000)
z = ex[1][1] * ex[-2][4]
DLAM += -4586.465 * z.imag
DS += -4578.13 * z.imag
GAM1C += -0.077 * z.real
SINPI += 34.3117 * z.real
# AddSol(3.215000, 5.440000, 0.192000, -0.038600, 1.000000, 0.000000, 0.000000, -3.000000)
z = ex[1][1] * ex[-3][4]
DLAM += 3.215 * z.imag
DS += 5.44 * z.imag
GAM1C += 0.192 * z.real
SINPI += -0.0386 * z.real
# AddSol(-38.428000, -38.640000, 0.001000, 0.600800, 1.000000, 0.000000, 0.000000, -4.000000)
z = ex[1][1] * ex[-4][4]
DLAM += -38.428 * z.imag
DS += -38.64 * z.imag
GAM1C += 0.001 * z.real
SINPI += 0.6008 * z.real
# AddSol(-0.393000, -1.430000, -0.092000, 0.008600, 1.000000, 0.000000, 0.000000, -6.000000)
z = ex[1][1] * ex[-6][4]
DLAM += -0.393 * z.imag
DS += -1.43 * z.imag
GAM1C += -0.092 * z.real
SINPI += 0.0086 * z.real
# AddSol(-0.289000, -1.590000, 0.123000, -0.005300, 0.000000, 1.000000, 0.000000, 4.000000)
z = ex[1][2] * ex[4][4]
DLAM += -0.289 * z.imag
DS += -1.59 * z.imag
GAM1C += 0.123 * z.real
SINPI += -0.0053 * z.real
# AddSol(-24.420000, -25.100000, 0.040000, -0.300000, 0.000000, 1.000000, 0.000000, 2.000000)
z = ex[1][2] * ex[2][4]
DLAM += -24.420 * z.imag
DS += -25.10 * z.imag
GAM1C += 0.040 * z.real
SINPI += -0.3000 * z.real
# AddSol(18.023000, 17.930000, 0.007000, 0.149400, 0.000000, 1.000000, 0.000000, 1.000000)
z = ex[1][2] * ex[1][4]
DLAM += 18.023 * z.imag
DS += 17.93 * z.imag
GAM1C += 0.007 * z.real
SINPI += 0.1494 * z.real
# AddSol(-668.146000, -126.980000, -1.302000, -0.399700, 0.000000, 1.000000, 0.000000, 0.000000)
z = ex[1][2]
DLAM += -668.146 * z.imag
DS += -126.98 * z.imag
GAM1C += -1.302 * z.real
SINPI += -0.3997 * z.real
# AddSol(0.560000, 0.320000, -0.001000, -0.003700, 0.000000, 1.000000, 0.000000, -1.000000)
z = ex[1][2] * ex[-1][4]
DLAM += 0.560 * z.imag
DS += 0.32 * z.imag
GAM1C += -0.001 * z.real
SINPI += -0.0037 * z.real
# AddSol(-165.145000, -165.060000, 0.054000, 1.917800, 0.000000, 1.000000, 0.000000, -2.000000)
z = ex[1][2] * ex[-2][4]
DLAM += -165.145 * z.imag
DS += -165.06 * z.imag
GAM1C += 0.054 * z.real
SINPI += 1.9178 * z.real
# AddSol(-1.877000, -6.460000, -0.416000, 0.033900, 0.000000, 1.000000, 0.000000, -4.000000)
z = ex[1][2] * ex[-4][4]
DLAM += -1.877 * z.imag
DS += -6.46 * z.imag
GAM1C += -0.416 * z.real
SINPI += 0.0339 * z.real
# AddSol(0.213000, 1.020000, -0.074000, 0.005400, 2.000000, 0.000000, 0.000000, 4.000000)
z = ex[2][1] * ex[4][4]
DLAM += 0.213 * z.imag
DS += 1.02 * z.imag
GAM1C += -0.074 * z.real
SINPI += 0.0054 * z.real
# AddSol(14.387000, 14.780000, -0.017000, 0.283300, 2.000000, 0.000000, 0.000000, 2.000000)
z = ex[2][1] * ex[2][4]
DLAM += 14.387 * z.imag
DS += 14.78 * z.imag
GAM1C += -0.017 * z.real
SINPI += 0.2833 * z.real
# AddSol(-0.586000, -1.200000, 0.054000, -0.010000, 2.000000, 0.000000, 0.000000, 1.000000)
z = ex[2][1] * ex[1][4]
DLAM += -0.586 * z.imag
DS += -1.20 * z.imag
GAM1C += 0.054 * z.real
SINPI += -0.0100 * z.real
# AddSol(769.016000, 767.960000, 0.107000, 10.165700, 2.000000, 0.000000, 0.000000, 0.000000)
z = ex[2][1]
DLAM += 769.016 * z.imag
DS += 767.96 * z.imag
GAM1C += 0.107 * z.real
SINPI += 10.1657 * z.real
# AddSol(1.750000, 2.010000, -0.018000, 0.015500, 2.000000, 0.000000, 0.000000, -1.000000)
z = ex[2][1] * ex[-1][4]
DLAM += 1.750 * z.imag
DS += 2.01 * z.imag
GAM1C += -0.018 * z.real
SINPI += 0.0155 * z.real
# AddSol(-211.656000, -152.530000, 5.679000, -0.303900, 2.000000, 0.000000, 0.000000, -2.000000)
z = ex[2][1] * ex[-2][4]
DLAM += -211.656 * z.imag
DS += -152.53 * z.imag
GAM1C += 5.679 * z.real
SINPI += -0.3039 * z.real
# AddSol(1.225000, 0.910000, -0.030000, -0.008800, 2.000000, 0.000000, 0.000000, -3.000000)
z = ex[2][1] * ex[-3][4]
DLAM += 1.225 * z.imag
DS += 0.91 * z.imag
GAM1C += -0.030 * z.real
SINPI += -0.0088 * z.real
# AddSol(-30.773000, -34.070000, -0.308000, 0.372200, 2.000000, 0.000000, 0.000000, -4.000000)
z = ex[2][1] * ex[-4][4]
DLAM += -30.773 * z.imag
DS += -34.07 * z.imag
GAM1C += -0.308 * z.real
SINPI += 0.3722 * z.real
# AddSol(-0.570000, -1.400000, -0.074000, 0.010900, 2.000000, 0.000000, 0.000000, -6.000000)
z = ex[2][1] * ex[-6][4]
DLAM += -0.570 * z.imag
DS += -1.40 * z.imag
GAM1C += -0.074 * z.real
SINPI += 0.0109 * z.real
# AddSol(-2.921000, -11.750000, 0.787000, -0.048400, 1.000000, 1.000000, 0.000000, 2.000000)
z = ex[1][1] * ex[1][2] * ex[2][4]
DLAM += -2.921 * z.imag
DS += -11.75 * z.imag
GAM1C += 0.787 * z.real
SINPI += -0.0484 * z.real
# AddSol(1.267000, 1.520000, -0.022000, 0.016400, 1.000000, 1.000000, 0.000000, 1.000000)
z = ex[1][1] * ex[1][2] * ex[1][4]
DLAM += 1.267 * z.imag
DS += 1.52 * z.imag
GAM1C += -0.022 * z.real
SINPI += 0.0164 * z.real
# AddSol(-109.673000, -115.180000, 0.461000, -0.949000, 1.000000, 1.000000, 0.000000, 0.000000)
z = ex[1][1] * ex[1][2]
DLAM += -109.673 * z.imag
DS += -115.18 * z.imag
GAM1C += 0.461 * z.real
SINPI += -0.9490 * z.real
# AddSol(-205.962000, -182.360000, 2.056000, 1.443700, 1.000000, 1.000000, 0.000000, -2.000000)
z = ex[1][1] * ex[1][2] * ex[-2][4]
DLAM += -205.962 * z.imag
DS += -182.36 * z.imag
GAM1C += 2.056 * z.real
SINPI += 1.4437 * z.real
# AddSol(0.233000, 0.360000, 0.012000, -0.002500, 1.000000, 1.000000, 0.000000, -3.000000)
z = ex[1][1] * ex[1][2] * ex[-3][4]
DLAM += 0.233 * z.imag
DS += 0.36 * z.imag
GAM1C += 0.012 * z.real
SINPI += -0.0025 * z.real
# AddSol(-4.391000, -9.660000, -0.471000, 0.067300, 1.000000, 1.000000, 0.000000, -4.000000)
z = ex[1][1] * ex[1][2] * ex[-4][4]
DLAM += -4.391 * z.imag
DS += -9.66 * z.imag
GAM1C += -0.471 * z.real
SINPI += 0.0673 * z.real
# AddSol(0.283000, 1.530000, -0.111000, 0.006000, 1.000000, -1.000000, 0.000000, 4.000000)
z = ex[1][1] * ex[-1][2] * ex[4][4]
DLAM += 0.283 * z.imag
DS += 1.53 * z.imag
GAM1C += -0.111 * z.real
SINPI += 0.0060 * z.real
# AddSol(14.577000, 31.700000, -1.540000, 0.230200, 1.000000, -1.000000, 0.000000, 2.000000)
z = ex[1][1] * ex[-1][2] * ex[2][4]
DLAM += 14.577 * z.imag
DS += 31.70 * z.imag
GAM1C += -1.540 * z.real
SINPI += 0.2302 * z.real
# AddSol(147.687000, 138.760000, 0.679000, 1.152800, 1.000000, -1.000000, 0.000000, 0.000000)
z = ex[1][1] * ex[-1][2]
DLAM += 147.687 * z.imag
DS += 138.76 * z.imag
GAM1C += 0.679 * z.real
SINPI += 1.1528 * z.real
# AddSol(-1.089000, 0.550000, 0.021000, 0.000000, 1.000000, -1.000000, 0.000000, -1.000000)
z = ex[1][1] * ex[-1][2] * ex[-1][4]
DLAM += -1.089 * z.imag
DS += 0.55 * z.imag
GAM1C += 0.021 * z.real
# AddSol(28.475000, 23.590000, -0.443000, -0.225700, 1.000000, -1.000000, 0.000000, -2.000000)
z = ex[1][1] * ex[-1][2] * ex[-2][4]
DLAM += 28.475 * z.imag
DS += 23.59 * z.imag
GAM1C += -0.443 * z.real
SINPI += -0.2257 * z.real
# AddSol(-0.276000, -0.380000, -0.006000, -0.003600, 1.000000, -1.000000, 0.000000, -3.000000)
z = ex[1][1] * ex[-1][2] * ex[-3][4]
DLAM += -0.276 * z.imag
DS += -0.38 * z.imag
GAM1C += -0.006 * z.real
SINPI += -0.0036 * z.real
# AddSol(0.636000, 2.270000, 0.146000, -0.010200, 1.000000, -1.000000, 0.000000, -4.000000)
z = ex[1][1] * ex[-1][2] * ex[-4][4]
DLAM += 0.636 * z.imag
DS += 2.27 * z.imag
GAM1C += 0.146 * z.real
SINPI += -0.0102 * z.real
# AddSol(-0.189000, -1.680000, 0.131000, -0.002800, 0.000000, 2.000000, 0.000000, 2.000000)
z = ex[2][2] * ex[2][4]
DLAM += -0.189 * z.imag
DS += -1.68 * z.imag
GAM1C += 0.131 * z.real
SINPI += -0.0028 * z.real
# AddSol(-7.486000, -0.660000, -0.037000, -0.008600, 0.000000, 2.000000, 0.000000, 0.000000)
z = ex[2][2]
DLAM += -7.486 * z.imag
DS += -0.66 * z.imag
GAM1C += -0.037 * z.real
SINPI += -0.0086 * z.real
# AddSol(-8.096000, -16.350000, -0.740000, 0.091800, 0.000000, 2.000000, 0.000000, -2.000000)
z = ex[2][2] * ex[-2][4]
DLAM += -8.096 * z.imag
DS += -16.35 * z.imag
GAM1C += -0.740 * z.real
SINPI += 0.0918 * z.real
# AddSol(-5.741000, -0.040000, 0.000000, -0.000900, 0.000000, 0.000000, 2.000000, 2.000000)
z = ex[2][3] * ex[2][4]
DLAM += -5.741 * z.imag
DS += -0.04 * z.imag
SINPI += -0.0009 * z.real
# AddSol(0.255000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 2.000000, 1.000000)
z = ex[2][3] * ex[1][4]
DLAM += 0.255 * z.imag
# AddSol(-411.608000, -0.200000, 0.000000, -0.012400, 0.000000, 0.000000, 2.000000, 0.000000)
z = ex[2][3]
DLAM += -411.608 * z.imag
DS += -0.20 * z.imag
SINPI += -0.0124 * z.real
# AddSol(0.584000, 0.840000, 0.000000, 0.007100, 0.000000, 0.000000, 2.000000, -1.000000)
z = ex[2][3] * ex[-1][4]
DLAM += 0.584 * z.imag
DS += 0.84 * z.imag
SINPI += 0.0071 * z.real
# AddSol(-55.173000, -52.140000, 0.000000, -0.105200, 0.000000, 0.000000, 2.000000, -2.000000)
z = ex[2][3] * ex[-2][4]
DLAM += -55.173 * z.imag
DS += -52.14 * z.imag
SINPI += -0.1052 * z.real
# AddSol(0.254000, 0.250000, 0.000000, -0.001700, 0.000000, 0.000000, 2.000000, -3.000000)
z = ex[2][3] * ex[-3][4]
DLAM += 0.254 * z.imag
DS += 0.25 * z.imag
SINPI += -0.0017 * z.real
# AddSol(0.025000, -1.670000, 0.000000, 0.003100, 0.000000, 0.000000, 2.000000, -4.000000)
z = ex[2][3] * ex[-4][4]
DLAM += 0.025 * z.imag
DS += -1.67 * z.imag
SINPI += 0.0031 * z.real
# AddSol(1.060000, 2.960000, -0.166000, 0.024300, 3.000000, 0.000000, 0.000000, 2.000000)
z = ex[3][1] * ex[2][4]
DLAM += 1.060 * z.imag
DS += 2.96 * z.imag
GAM1C += -0.166 * z.real
SINPI += 0.0243 * z.real
# AddSol(36.124000, 50.640000, -1.300000, 0.621500, 3.000000, 0.000000, 0.000000, 0.000000)
z = ex[3][1]
DLAM += 36.124 * z.imag
DS += 50.64 * z.imag
GAM1C += -1.300 * z.real
SINPI += 0.6215 * z.real
# AddSol(-13.193000, -16.400000, 0.258000, -0.118700, 3.000000, 0.000000, 0.000000, -2.000000)
z = ex[3][1] * ex[-2][4]
DLAM += -13.193 * z.imag
DS += -16.40 * z.imag
GAM1C += 0.258 * z.real
SINPI += -0.1187 * z.real
# AddSol(-1.187000, -0.740000, 0.042000, 0.007400, 3.000000, 0.000000, 0.000000, -4.000000)
z = ex[3][1] * ex[-4][4]
DLAM += -1.187 * z.imag
DS += -0.74 * z.imag
GAM1C += 0.042 * z.real
SINPI += 0.0074 * z.real
# AddSol(-0.293000, -0.310000, -0.002000, 0.004600, 3.000000, 0.000000, 0.000000, -6.000000)
z = ex[3][1] * ex[-6][4]
DLAM += -0.293 * z.imag
DS += -0.31 * z.imag
GAM1C += -0.002 * z.real
SINPI += 0.0046 * z.real
# AddSol(-0.290000, -1.450000, 0.116000, -0.005100, 2.000000, 1.000000, 0.000000, 2.000000)
z = ex[2][1] * ex[1][2] * ex[2][4]
DLAM += -0.290 * z.imag
DS += -1.45 * z.imag
GAM1C += 0.116 * z.real
SINPI += -0.0051 * z.real
# AddSol(-7.649000, -10.560000, 0.259000, -0.103800, 2.000000, 1.000000, 0.000000, 0.000000)
z = ex[2][1] * ex[1][2]
DLAM += -7.649 * z.imag
DS += -10.56 * z.imag
GAM1C += 0.259 * z.real
SINPI += -0.1038 * z.real
# AddSol(-8.627000, -7.590000, 0.078000, -0.019200, 2.000000, 1.000000, 0.000000, -2.000000)
z = ex[2][1] * ex[1][2] * ex[-2][4]
DLAM += -8.627 * z.imag
DS += -7.59 * z.imag
GAM1C += 0.078 * z.real
SINPI += -0.0192 * z.real
# AddSol(-2.740000, -2.540000, 0.022000, 0.032400, 2.000000, 1.000000, 0.000000, -4.000000)
z = ex[2][1] * ex[1][2] * ex[-4][4]
DLAM += -2.740 * z.imag
DS += -2.54 * z.imag
GAM1C += 0.022 * z.real
SINPI += 0.0324 * z.real
# AddSol(1.181000, 3.320000, -0.212000, 0.021300, 2.000000, -1.000000, 0.000000, 2.000000)
z = ex[2][1] * ex[-1][2] * ex[2][4]
DLAM += 1.181 * z.imag
DS += 3.32 * z.imag
GAM1C += -0.212 * z.real
SINPI += 0.0213 * z.real
# AddSol(9.703000, 11.670000, -0.151000, 0.126800, 2.000000, -1.000000, 0.000000, 0.000000)
z = ex[2][1] * ex[-1][2]
DLAM += 9.703 * z.imag
DS += 11.67 * z.imag
GAM1C += -0.151 * z.real
SINPI += 0.1268 * z.real
# AddSol(-0.352000, -0.370000, 0.001000, -0.002800, 2.000000, -1.000000, 0.000000, -1.000000)
z = ex[2][1] * ex[-1][2] * ex[-1][4]
DLAM += -0.352 * z.imag
DS += -0.37 * z.imag
GAM1C += 0.001 * z.real
SINPI += -0.0028 * z.real
# AddSol(-2.494000, -1.170000, -0.003000, -0.001700, 2.000000, -1.000000, 0.000000, -2.000000)
z = ex[2][1] * ex[-1][2] * ex[-2][4]
DLAM += -2.494 * z.imag
DS += -1.17 * z.imag
GAM1C += -0.003 * z.real
SINPI += -0.0017 * z.real
# AddSol(0.360000, 0.200000, -0.012000, -0.004300, 2.000000, -1.000000, 0.000000, -4.000000)
z = ex[2][1] * ex[-1][2] * ex[-4][4]
DLAM += 0.360 * z.imag
DS += 0.20 * z.imag
GAM1C += -0.012 * z.real
SINPI += -0.0043 * z.real
# AddSol(-1.167000, -1.250000, 0.008000, -0.010600, 1.000000, 2.000000, 0.000000, 0.000000)
z = ex[1][1] * ex[2][2]
DLAM += -1.167 * z.imag
DS += -1.25 * z.imag
GAM1C += 0.008 * z.real
SINPI += -0.0106 * z.real
# AddSol(-7.412000, -6.120000, 0.117000, 0.048400, 1.000000, 2.000000, 0.000000, -2.000000)
z = ex[1][1] * ex[2][2] * ex[-2][4]
DLAM += -7.412 * z.imag
DS += -6.12 * z.imag
GAM1C += 0.117 * z.real
SINPI += 0.0484 * z.real
# AddSol(-0.311000, -0.650000, -0.032000, 0.004400, 1.000000, 2.000000, 0.000000, -4.000000)
z = ex[1][1] * ex[2][2] * ex[-4][4]
DLAM += -0.311 * z.imag
DS += -0.65 * z.imag
GAM1C += -0.032 * z.real
SINPI += 0.0044 * z.real
# AddSol(0.757000, 1.820000, -0.105000, 0.011200, 1.000000, -2.000000, 0.000000, 2.000000)
z = ex[1][1] * ex[-2][2] * ex[2][4]
DLAM += 0.757 * z.imag
DS += 1.82 * z.imag
GAM1C += -0.105 * z.real
SINPI += 0.0112 * z.real
# AddSol(2.580000, 2.320000, 0.027000, 0.019600, 1.000000, -2.000000, 0.000000, 0.000000)
z = ex[1][1] * ex[-2][2]
DLAM += 2.580 * z.imag
DS += 2.32 * z.imag
GAM1C += 0.027 * z.real
SINPI += 0.0196 * z.real
# AddSol(2.533000, 2.400000, -0.014000, -0.021200, 1.000000, -2.000000, 0.000000, -2.000000)
z = ex[1][1] * ex[-2][2] * ex[-2][4]
DLAM += 2.533 * z.imag
DS += 2.40 * z.imag
GAM1C += -0.014 * z.real
SINPI += -0.0212 * z.real
# AddSol(-0.344000, -0.570000, -0.025000, 0.003600, 0.000000, 3.000000, 0.000000, -2.000000)
z = ex[3][2] * ex[-2][4]
DLAM += -0.344 * z.imag
DS += -0.57 * z.imag
GAM1C += -0.025 * z.real
SINPI += 0.0036 * z.real
# AddSol(-0.992000, -0.020000, 0.000000, 0.000000, 1.000000, 0.000000, 2.000000, 2.000000)
z = ex[1][1] * ex[2][3] * ex[2][4]
DLAM += -0.992 * z.imag
DS += -0.02 * z.imag
# AddSol(-45.099000, -0.020000, 0.000000, -0.001000, 1.000000, 0.000000, 2.000000, 0.000000)
z = ex[1][1] * ex[2][3]
DLAM += -45.099 * z.imag
DS += -0.02 * z.imag
SINPI += -0.0010 * z.real
# AddSol(-0.179000, -9.520000, 0.000000, -0.083300, 1.000000, 0.000000, 2.000000, -2.000000)
z = ex[1][1] * ex[2][3] * ex[-2][4]
DLAM += -0.179 * z.imag
DS += -9.52 * z.imag
SINPI += -0.0833 * z.real
# AddSol(-0.301000, -0.330000, 0.000000, 0.001400, 1.000000, 0.000000, 2.000000, -4.000000)
z = ex[1][1] * ex[2][3] * ex[-4][4]
DLAM += -0.301 * z.imag
DS += -0.33 * z.imag
SINPI += 0.0014 * z.real
# AddSol(-6.382000, -3.370000, 0.000000, -0.048100, 1.000000, 0.000000, -2.000000, 2.000000)
z = ex[1][1] * ex[-2][3] * ex[2][4]
DLAM += -6.382 * z.imag
DS += -3.37 * z.imag
SINPI += -0.0481 * z.real
# AddSol(39.528000, 85.130000, 0.000000, -0.713600, 1.000000, 0.000000, -2.000000, 0.000000)
z = ex[1][1] * ex[-2][3]
DLAM += 39.528 * z.imag
DS += 85.13 * z.imag
SINPI += -0.7136 * z.real
# AddSol(9.366000, 0.710000, 0.000000, -0.011200, 1.000000, 0.000000, -2.000000, -2.000000)
z = ex[1][1] * ex[-2][3] * ex[-2][4]
DLAM += 9.366 * z.imag
DS += 0.71 * z.imag
SINPI += -0.0112 * z.real
# AddSol(0.202000, 0.020000, 0.000000, 0.000000, 1.000000, 0.000000, -2.000000, -4.000000)
z = ex[1][1] * ex[-2][3] * ex[-4][4]
DLAM += 0.202 * z.imag
DS += 0.02 * z.imag
# AddSol(0.415000, 0.100000, 0.000000, 0.001300, 0.000000, 1.000000, 2.000000, 0.000000)
z = ex[1][2] * ex[2][3]
DLAM += 0.415 * z.imag
DS += 0.10 * z.imag
SINPI += 0.0013 * z.real
# AddSol(-2.152000, -2.260000, 0.000000, -0.006600, 0.000000, 1.000000, 2.000000, -2.000000)
z = ex[1][2] * ex[2][3] * ex[-2][4]
DLAM += -2.152 * z.imag
DS += -2.26 * z.imag
SINPI += -0.0066 * z.real
# AddSol(-1.440000, -1.300000, 0.000000, 0.001400, 0.000000, 1.000000, -2.000000, 2.000000)
z = ex[1][2] * ex[-2][3] * ex[2][4]
DLAM += -1.440 * z.imag
DS += -1.30 * z.imag
SINPI += 0.0014 * z.real
# AddSol(0.384000, -0.040000, 0.000000, 0.000000, 0.000000, 1.000000, -2.000000, -2.000000)
z = ex[1][2] * ex[-2][3] * ex[-2][4]
DLAM += 0.384 * z.imag
DS += -0.04 * z.imag
# AddSol(1.938000, 3.600000, -0.145000, 0.040100, 4.000000, 0.000000, 0.000000, 0.000000)
z = ex[4][1]
DLAM += 1.938 * z.imag
DS += 3.60 * z.imag
GAM1C += -0.145 * z.real
SINPI += 0.0401 * z.real
# AddSol(-0.952000, -1.580000, 0.052000, -0.013000, 4.000000, 0.000000, 0.000000, -2.000000)
z = ex[4][1] * ex[-2][4]
DLAM += -0.952 * z.imag
DS += -1.58 * z.imag
GAM1C += 0.052 * z.real
SINPI += -0.0130 * z.real
# AddSol(-0.551000, -0.940000, 0.032000, -0.009700, 3.000000, 1.000000, 0.000000, 0.000000)
z = ex[3][1] * ex[1][2]
DLAM += -0.551 * z.imag
DS += -0.94 * z.imag
GAM1C += 0.032 * z.real
SINPI += -0.0097 * z.real
# AddSol(-0.482000, -0.570000, 0.005000, -0.004500, 3.000000, 1.000000, 0.000000, -2.000000)
z = ex[3][1] * ex[1][2] * ex[-2][4]
DLAM += -0.482 * z.imag
DS += -0.57 * z.imag
GAM1C += 0.005 * z.real
SINPI += -0.0045 * z.real
# AddSol(0.681000, 0.960000, -0.026000, 0.011500, 3.000000, -1.000000, 0.000000, 0.000000)
z = ex[3][1] * ex[-1][2]
DLAM += 0.681 * z.imag
DS += 0.96 * z.imag
GAM1C += -0.026 * z.real
SINPI += 0.0115 * z.real
# AddSol(-0.297000, -0.270000, 0.002000, -0.000900, 2.000000, 2.000000, 0.000000, -2.000000)
z = ex[2][1] * ex[2][2] * ex[-2][4]
DLAM += -0.297 * z.imag
DS += -0.27 * z.imag
GAM1C += 0.002 * z.real
SINPI += -0.0009 * z.real
# AddSol(0.254000, 0.210000, -0.003000, 0.000000, 2.000000, -2.000000, 0.000000, -2.000000)
z = ex[2][1] * ex[-2][2] * ex[-2][4]
DLAM += 0.254 * z.imag
DS += 0.21 * z.imag
GAM1C += -0.003 * z.real
# AddSol(-0.250000, -0.220000, 0.004000, 0.001400, 1.000000, 3.000000, 0.000000, -2.000000)
z = ex[1][1] * ex[3][2] * ex[-2][4]
DLAM += -0.250 * z.imag
DS += -0.22 * z.imag
GAM1C += 0.004 * z.real
SINPI += 0.0014 * z.real
# AddSol(-3.996000, 0.000000, 0.000000, 0.000400, 2.000000, 0.000000, 2.000000, 0.000000)
z = ex[2][1] * ex[2][3]
DLAM += -3.996 * z.imag
SINPI += 0.0004 * z.real
# AddSol(0.557000, -0.750000, 0.000000, -0.009000, 2.000000, 0.000000, 2.000000, -2.000000)
z = ex[2][1] * ex[2][3] * ex[-2][4]
DLAM += 0.557 * z.imag
DS += -0.75 * z.imag
SINPI += -0.0090 * z.real
# AddSol(-0.459000, -0.380000, 0.000000, -0.005300, 2.000000, 0.000000, -2.000000, 2.000000)
z = ex[2][1] * ex[-2][3] * ex[2][4]
DLAM += -0.459 * z.imag
DS += -0.38 * z.imag
SINPI += -0.0053 * z.real
# AddSol(-1.298000, 0.740000, 0.000000, 0.000400, 2.000000, 0.000000, -2.000000, 0.000000)
z = ex[2][1] * ex[-2][3]
DLAM += -1.298 * z.imag
DS += 0.74 * z.imag
SINPI += 0.0004 * z.real
# AddSol(0.538000, 1.140000, 0.000000, -0.014100, 2.000000, 0.000000, -2.000000, -2.000000)
z = ex[2][1] * ex[-2][3] * ex[-2][4]
DLAM += 0.538 * z.imag
DS += 1.14 * z.imag
SINPI += -0.0141 * z.real
# AddSol(0.263000, 0.020000, 0.000000, 0.000000, 1.000000, 1.000000, 2.000000, 0.000000)
z = ex[1][1] * ex[1][2] * ex[2][3]
DLAM += 0.263 * z.imag
DS += 0.02 * z.imag
# AddSol(0.426000, 0.070000, 0.000000, -0.000600, 1.000000, 1.000000, -2.000000, -2.000000)
z = ex[1][1] * ex[1][2] * ex[-2][3] * ex[-2][4]
DLAM += 0.426 * z.imag
DS += 0.07 * z.imag
SINPI += -0.0006 * z.real
# AddSol(-0.304000, 0.030000, 0.000000, 0.000300, 1.000000, -1.000000, 2.000000, 0.000000)
z = ex[1][1] * ex[-1][2] * ex[2][3]
DLAM += -0.304 * z.imag
DS += 0.03 * z.imag
SINPI += 0.0003 * z.real
# AddSol(-0.372000, -0.190000, 0.000000, -0.002700, 1.000000, -1.000000, -2.000000, 2.000000)
z = ex[1][1] * ex[-1][2] * ex[-2][3] * ex[2][4]
DLAM += -0.372 * z.imag
DS += -0.19 * z.imag
SINPI += -0.0027 * z.real
# AddSol(0.418000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 4.000000, 0.000000)
z = ex[4][3]
DLAM += 0.418 * z.imag
# AddSol(-0.330000, -0.040000, 0.000000, 0.000000, 3.000000, 0.000000, 2.000000, 0.000000)
z = ex[3][1] * ex[2][3]
DLAM += -0.330 * z.imag
DS += -0.04 * z.imag
def ADDN(coeffn, p, q, r, s):
return coeffn * (ex[p][1] * ex[q][2] * ex[r][3] * ex[s][4]).imag
N = 0
N += ADDN(-526.069, 0, 0,1,-2)
N += ADDN( -3.352, 0, 0,1,-4)
N += ADDN( +44.297,+1, 0,1,-2)
N += ADDN( -6.000,+1, 0,1,-4)
N += ADDN( +20.599,-1, 0,1, 0)
N += ADDN( -30.598,-1, 0,1,-2)
N += ADDN( -24.649,-2, 0,1, 0)
N += ADDN( -2.000,-2, 0,1,-2)
N += ADDN( -22.571, 0,+1,1,-2)
N += ADDN( +10.985, 0,-1,1,-2)
DLAM += (
+0.82*Sine(0.7736 -62.5512*T)+0.31*Sine(0.0466 -125.1025*T)
+0.35*Sine(0.5785 -25.1042*T)+0.66*Sine(0.4591+1335.8075*T)
+0.64*Sine(0.3130 -91.5680*T)+1.14*Sine(0.1480+1331.2898*T)
+0.21*Sine(0.5918+1056.5859*T)+0.44*Sine(0.5784+1322.8595*T)
+0.24*Sine(0.2275 -5.7374*T)+0.28*Sine(0.2965 +2.6929*T)
+0.33*Sine(0.3132 +6.3368*T)
)
S = F + DS/_ARC
lat_seconds = (1.000002708 + 139.978*DGAM)*(18518.511+1.189+GAM1C)*math.sin(S) - 6.24*math.sin(3*S) + N
return _moonpos(
_PI2 * Frac((L0+DLAM/_ARC) / _PI2),
(math.pi / (180 * 3600)) * lat_seconds,
(_ARC * (_ERAD / _AU)) / (0.999953253 * SINPI)
)
def GeoMoon(time):
"""Calculates the geocentric position of the Moon at a given time.
Given a time of observation, calculates the Moon's position as a vector.
The vector gives the location of the Moon's center relative to the Earth's center
with x-, y-, and z-components measured in astronomical units.
This algorithm is based on Nautical Almanac Office's *Improved Lunar Ephemeris* of 1954,
which in turn derives from E. W. Brown's lunar theories from the early twentieth century.
It is adapted from Turbo Pascal code from the book
[Astronomy on the Personal Computer](https://www.springer.com/us/book/9783540672210)
by Montenbruck and Pfleger.
Parameters
----------
time : Time
The date and time for which to calculate the Moon's position.
Returns
-------
#Vector
The Moon's position as a vector in J2000 Cartesian equatorial coordinates.
"""
m = _CalcMoon(time)
# Convert geocentric ecliptic spherical coordinates to Cartesian coordinates.
dist_cos_lat = m.distance_au * math.cos(m.geo_eclip_lat)
gepos = [
dist_cos_lat * math.cos(m.geo_eclip_lon),
dist_cos_lat * math.sin(m.geo_eclip_lon),
m.distance_au * math.sin(m.geo_eclip_lat)
]
# Convert ecliptic coordinates to equatorial coordinates, both in mean equinox of date.
mpos1 = _ecl2equ_vec(time, gepos)
# Convert from mean equinox of date to J2000.
mpos2 = _precession(time.tt, mpos1, 0)
return Vector(mpos2[0], mpos2[1], mpos2[2], time)
# END CalcMoon
#----------------------------------------------------------------------------
# BEGIN VSOP
_vsop = [
# Mercury
[
[
[
[4.40250710144, 0.00000000000, 0.00000000000],
[0.40989414977, 1.48302034195, 26087.90314157420],
[0.05046294200, 4.47785489551, 52175.80628314840],
[0.00855346844, 1.16520322459, 78263.70942472259],
[0.00165590362, 4.11969163423, 104351.61256629678],
[0.00034561897, 0.77930768443, 130439.51570787099],
[0.00007583476, 3.71348404924, 156527.41884944518]
],
[
[26087.90313685529, 0.00000000000, 0.00000000000],
[0.01131199811, 6.21874197797, 26087.90314157420],
[0.00292242298, 3.04449355541, 52175.80628314840],
[0.00075775081, 6.08568821653, 78263.70942472259],
[0.00019676525, 2.80965111777, 104351.61256629678]
]
],
[
[
[0.11737528961, 1.98357498767, 26087.90314157420],
[0.02388076996, 5.03738959686, 52175.80628314840],
[0.01222839532, 3.14159265359, 0.00000000000],
[0.00543251810, 1.79644363964, 78263.70942472259],
[0.00129778770, 4.83232503958, 104351.61256629678],
[0.00031866927, 1.58088495658, 130439.51570787099],
[0.00007963301, 4.60972126127, 156527.41884944518]
],
[
[0.00274646065, 3.95008450011, 26087.90314157420],
[0.00099737713, 3.14159265359, 0.00000000000]
]
],
[
[
[0.39528271651, 0.00000000000, 0.00000000000],
[0.07834131818, 6.19233722598, 26087.90314157420],
[0.00795525558, 2.95989690104, 52175.80628314840],
[0.00121281764, 6.01064153797, 78263.70942472259],
[0.00021921969, 2.77820093972, 104351.61256629678],
[0.00004354065, 5.82894543774, 130439.51570787099]
],
[
[0.00217347740, 4.65617158665, 26087.90314157420],
[0.00044141826, 1.42385544001, 52175.80628314840]
]
]
],
# Venus
[
[
[
[3.17614666774, 0.00000000000, 0.00000000000],
[0.01353968419, 5.59313319619, 10213.28554621100],
[0.00089891645, 5.30650047764, 20426.57109242200],
[0.00005477194, 4.41630661466, 7860.41939243920],
[0.00003455741, 2.69964447820, 11790.62908865880],
[0.00002372061, 2.99377542079, 3930.20969621960],
[0.00001317168, 5.18668228402, 26.29831979980],
[0.00001664146, 4.25018630147, 1577.34354244780],
[0.00001438387, 4.15745084182, 9683.59458111640],
[0.00001200521, 6.15357116043, 30639.85663863300]
],
[
[10213.28554621638, 0.00000000000, 0.00000000000],
[0.00095617813, 2.46406511110, 10213.28554621100],
[0.00007787201, 0.62478482220, 20426.57109242200]
]
],
[
[
[0.05923638472, 0.26702775812, 10213.28554621100],
[0.00040107978, 1.14737178112, 20426.57109242200],
[0.00032814918, 3.14159265359, 0.00000000000]
],
[
[0.00287821243, 1.88964962838, 10213.28554621100]
]
],
[
[
[0.72334820891, 0.00000000000, 0.00000000000],
[0.00489824182, 4.02151831717, 10213.28554621100],
[0.00001658058, 4.90206728031, 20426.57109242200]
],
[
[0.00034551041, 0.89198706276, 10213.28554621100]
]
]
],
# Earth
[
[
[
[1.75347045673, 0.00000000000, 0.00000000000],
[0.03341656453, 4.66925680415, 6283.07584999140],
[0.00034894275, 4.62610242189, 12566.15169998280],
[0.00003417572, 2.82886579754, 3.52311834900],
[0.00003497056, 2.74411783405, 5753.38488489680],
[0.00003135899, 3.62767041756, 77713.77146812050],
[0.00002676218, 4.41808345438, 7860.41939243920],
[0.00002342691, 6.13516214446, 3930.20969621960],
[0.00001273165, 2.03709657878, 529.69096509460],
[0.00001324294, 0.74246341673, 11506.76976979360],
[0.00000901854, 2.04505446477, 26.29831979980],
[0.00001199167, 1.10962946234, 1577.34354244780],
[0.00000857223, 3.50849152283, 398.14900340820],
[0.00000779786, 1.17882681962, 5223.69391980220],
[0.00000990250, 5.23268072088, 5884.92684658320],
[0.00000753141, 2.53339052847, 5507.55323866740],
[0.00000505267, 4.58292599973, 18849.22754997420],
[0.00000492392, 4.20505711826, 775.52261132400],
[0.00000356672, 2.91954114478, 0.06731030280],
[0.00000284125, 1.89869240932, 796.29800681640],
[0.00000242879, 0.34481445893, 5486.77784317500],
[0.00000317087, 5.84901948512, 11790.62908865880],
[0.00000271112, 0.31486255375, 10977.07880469900],
[0.00000206217, 4.80646631478, 2544.31441988340],
[0.00000205478, 1.86953770281, 5573.14280143310],
[0.00000202318, 2.45767790232, 6069.77675455340],
[0.00000126225, 1.08295459501, 20.77539549240],
[0.00000155516, 0.83306084617, 213.29909543800]
],
[
[6283.07584999140, 0.00000000000, 0.00000000000],
[0.00206058863, 2.67823455808, 6283.07584999140],
[0.00004303419, 2.63512233481, 12566.15169998280]
],
[
[0.00008721859, 1.07253635559, 6283.07584999140]
]
],
[
[
],
[
[0.00227777722, 3.41376620530, 6283.07584999140],
[0.00003805678, 3.37063423795, 12566.15169998280]
]
],
[
[
[1.00013988784, 0.00000000000, 0.00000000000],
[0.01670699632, 3.09846350258, 6283.07584999140],
[0.00013956024, 3.05524609456, 12566.15169998280],
[0.00003083720, 5.19846674381, 77713.77146812050],
[0.00001628463, 1.17387558054, 5753.38488489680],
[0.00001575572, 2.84685214877, 7860.41939243920],
[0.00000924799, 5.45292236722, 11506.76976979360],
[0.00000542439, 4.56409151453, 3930.20969621960],
[0.00000472110, 3.66100022149, 5884.92684658320]
],
[
[0.00103018607, 1.10748968172, 6283.07584999140],
[0.00001721238, 1.06442300386, 12566.15169998280]
],
[
[0.00004359385, 5.78455133808, 6283.07584999140]
]
]
],
# Mars
[
[
[
[6.20347711581, 0.00000000000, 0.00000000000],
[0.18656368093, 5.05037100270, 3340.61242669980],
[0.01108216816, 5.40099836344, 6681.22485339960],
[0.00091798406, 5.75478744667, 10021.83728009940],
[0.00027744987, 5.97049513147, 3.52311834900],
[0.00010610235, 2.93958560338, 2281.23049651060],
[0.00012315897, 0.84956094002, 2810.92146160520],
[0.00008926784, 4.15697846427, 0.01725365220],
[0.00008715691, 6.11005153139, 13362.44970679920],
[0.00006797556, 0.36462229657, 398.14900340820],
[0.00007774872, 3.33968761376, 5621.84292321040],
[0.00003575078, 1.66186505710, 2544.31441988340],
[0.00004161108, 0.22814971327, 2942.46342329160],
[0.00003075252, 0.85696614132, 191.44826611160],
[0.00002628117, 0.64806124465, 3337.08930835080],
[0.00002937546, 6.07893711402, 0.06731030280],
[0.00002389414, 5.03896442664, 796.29800681640],
[0.00002579844, 0.02996736156, 3344.13554504880],
[0.00001528141, 1.14979301996, 6151.53388830500],
[0.00001798806, 0.65634057445, 529.69096509460],
[0.00001264357, 3.62275122593, 5092.15195811580],
[0.00001286228, 3.06796065034, 2146.16541647520],
[0.00001546404, 2.91579701718, 1751.53953141600],
[0.00001024902, 3.69334099279, 8962.45534991020],
[0.00000891566, 0.18293837498, 16703.06213349900],
[0.00000858759, 2.40093811940, 2914.01423582380],
[0.00000832715, 2.46418619474, 3340.59517304760],
[0.00000832720, 4.49495782139, 3340.62968035200],
[0.00000712902, 3.66335473479, 1059.38193018920],
[0.00000748723, 3.82248614017, 155.42039943420],
[0.00000723861, 0.67497311481, 3738.76143010800],
[0.00000635548, 2.92182225127, 8432.76438481560],
[0.00000655162, 0.48864064125, 3127.31333126180],
[0.00000550474, 3.81001042328, 0.98032106820],
[0.00000552750, 4.47479317037, 1748.01641306700],
[0.00000425966, 0.55364317304, 6283.07584999140],
[0.00000415131, 0.49662285038, 213.29909543800],
[0.00000472167, 3.62547124025, 1194.44701022460],
[0.00000306551, 0.38052848348, 6684.74797174860],
[0.00000312141, 0.99853944405, 6677.70173505060],
[0.00000293198, 4.22131299634, 20.77539549240],
[0.00000302375, 4.48618007156, 3532.06069281140],
[0.00000274027, 0.54222167059, 3340.54511639700],
[0.00000281079, 5.88163521788, 1349.86740965880],
[0.00000231183, 1.28242156993, 3870.30339179440],
[0.00000283602, 5.76885434940, 3149.16416058820],
[0.00000236117, 5.75503217933, 3333.49887969900],
[0.00000274033, 0.13372524985, 3340.67973700260],
[0.00000299395, 2.78323740866, 6254.62666252360]
],
[
[3340.61242700512, 0.00000000000, 0.00000000000],
[0.01457554523, 3.60433733236, 3340.61242669980],
[0.00168414711, 3.92318567804, 6681.22485339960],
[0.00020622975, 4.26108844583, 10021.83728009940],
[0.00003452392, 4.73210393190, 3.52311834900],
[0.00002586332, 4.60670058555, 13362.44970679920],
[0.00000841535, 4.45864030426, 2281.23049651060]
],
[
[0.00058152577, 2.04961712429, 3340.61242669980],
[0.00013459579, 2.45738706163, 6681.22485339960]
]
],
[
[
[0.03197134986, 3.76832042431, 3340.61242669980],
[0.00298033234, 4.10616996305, 6681.22485339960],
[0.00289104742, 0.00000000000, 0.00000000000],
[0.00031365539, 4.44651053090, 10021.83728009940],
[0.00003484100, 4.78812549260, 13362.44970679920]
],
[
[0.00217310991, 6.04472194776, 3340.61242669980],
[0.00020976948, 3.14159265359, 0.00000000000],
[0.00012834709, 1.60810667915, 6681.22485339960]
]
],
[
[
[1.53033488271, 0.00000000000, 0.00000000000],
[0.14184953160, 3.47971283528, 3340.61242669980],
[0.00660776362, 3.81783443019, 6681.22485339960],
[0.00046179117, 4.15595316782, 10021.83728009940],
[0.00008109733, 5.55958416318, 2810.92146160520],
[0.00007485318, 1.77239078402, 5621.84292321040],
[0.00005523191, 1.36436303770, 2281.23049651060],
[0.00003825160, 4.49407183687, 13362.44970679920],
[0.00002306537, 0.09081579001, 2544.31441988340],
[0.00001999396, 5.36059617709, 3337.08930835080],
[0.00002484394, 4.92545639920, 2942.46342329160],
[0.00001960195, 4.74249437639, 3344.13554504880],
[0.00001167119, 2.11260868341, 5092.15195811580],
[0.00001102816, 5.00908403998, 398.14900340820],
[0.00000899066, 4.40791133207, 529.69096509460],
[0.00000992252, 5.83861961952, 6151.53388830500],
[0.00000807354, 2.10217065501, 1059.38193018920],
[0.00000797915, 3.44839203899, 796.29800681640],
[0.00000740975, 1.49906336885, 2146.16541647520]
],
[
[0.01107433345, 2.03250524857, 3340.61242669980],
[0.00103175887, 2.37071847807, 6681.22485339960],
[0.00012877200, 0.00000000000, 0.00000000000],
[0.00010815880, 2.70888095665, 10021.83728009940]
],
[
[0.00044242249, 0.47930604954, 3340.61242669980],
[0.00008138042, 0.86998389204, 6681.22485339960]
]
]
],
# Jupiter
[
[
[
[0.59954691494, 0.00000000000, 0.00000000000],
[0.09695898719, 5.06191793158, 529.69096509460],
[0.00573610142, 1.44406205629, 7.11354700080],
[0.00306389205, 5.41734730184, 1059.38193018920],
[0.00097178296, 4.14264726552, 632.78373931320],
[0.00072903078, 3.64042916389, 522.57741809380],
[0.00064263975, 3.41145165351, 103.09277421860],
[0.00039806064, 2.29376740788, 419.48464387520],
[0.00038857767, 1.27231755835, 316.39186965660],
[0.00027964629, 1.78454591820, 536.80451209540],
[0.00013589730, 5.77481040790, 1589.07289528380],
[0.00008246349, 3.58227925840, 206.18554843720],
[0.00008768704, 3.63000308199, 949.17560896980],
[0.00007368042, 5.08101194270, 735.87651353180],
[0.00006263150, 0.02497628807, 213.29909543800],
[0.00006114062, 4.51319998626, 1162.47470440780],
[0.00004905396, 1.32084470588, 110.20632121940],
[0.00005305285, 1.30671216791, 14.22709400160],
[0.00005305441, 4.18625634012, 1052.26838318840],
[0.00004647248, 4.69958103684, 3.93215326310],
[0.00003045023, 4.31676431084, 426.59819087600],
[0.00002609999, 1.56667394063, 846.08283475120],
[0.00002028191, 1.06376530715, 3.18139373770],
[0.00001764763, 2.14148655117, 1066.49547719000],
[0.00001722972, 3.88036268267, 1265.56747862640],
[0.00001920945, 0.97168196472, 639.89728631400],
[0.00001633223, 3.58201833555, 515.46387109300],
[0.00001431999, 4.29685556046, 625.67019231240],
[0.00000973272, 4.09764549134, 95.97922721780]
],
[
[529.69096508814, 0.00000000000, 0.00000000000],
[0.00489503243, 4.22082939470, 529.69096509460],
[0.00228917222, 6.02646855621, 7.11354700080],
[0.00030099479, 4.54540782858, 1059.38193018920],
[0.00020720920, 5.45943156902, 522.57741809380],
[0.00012103653, 0.16994816098, 536.80451209540],
[0.00006067987, 4.42422292017, 103.09277421860],
[0.00005433968, 3.98480737746, 419.48464387520],
[0.00004237744, 5.89008707199, 14.22709400160]
],
[
[0.00047233601, 4.32148536482, 7.11354700080],
[0.00030649436, 2.92977788700, 529.69096509460],
[0.00014837605, 3.14159265359, 0.00000000000]
]
],
[
[
[0.02268615702, 3.55852606721, 529.69096509460],
[0.00109971634, 3.90809347197, 1059.38193018920],
[0.00110090358, 0.00000000000, 0.00000000000],
[0.00008101428, 3.60509572885, 522.57741809380],
[0.00006043996, 4.25883108339, 1589.07289528380],
[0.00006437782, 0.30627119215, 536.80451209540]
],
[
[0.00078203446, 1.52377859742, 529.69096509460]
]
],
[
[
[5.20887429326, 0.00000000000, 0.00000000000],
[0.25209327119, 3.49108639871, 529.69096509460],
[0.00610599976, 3.84115365948, 1059.38193018920],
[0.00282029458, 2.57419881293, 632.78373931320],
[0.00187647346, 2.07590383214, 522.57741809380],
[0.00086792905, 0.71001145545, 419.48464387520],
[0.00072062974, 0.21465724607, 536.80451209540],
[0.00065517248, 5.97995884790, 316.39186965660],
[0.00029134542, 1.67759379655, 103.09277421860],
[0.00030135335, 2.16132003734, 949.17560896980],
[0.00023453271, 3.54023522184, 735.87651353180],
[0.00022283743, 4.19362594399, 1589.07289528380],
[0.00023947298, 0.27458037480, 7.11354700080],
[0.00013032614, 2.96042965363, 1162.47470440780],
[0.00009703360, 1.90669633585, 206.18554843720],
[0.00012749023, 2.71550286592, 1052.26838318840]
],
[
[0.01271801520, 2.64937512894, 529.69096509460],
[0.00061661816, 3.00076460387, 1059.38193018920],
[0.00053443713, 3.89717383175, 522.57741809380],
[0.00031185171, 4.88276958012, 536.80451209540],
[0.00041390269, 0.00000000000, 0.00000000000]
]
]
],
# Saturn
[
[
[
[0.87401354025, 0.00000000000, 0.00000000000],
[0.11107659762, 3.96205090159, 213.29909543800],
[0.01414150957, 4.58581516874, 7.11354700080],
[0.00398379389, 0.52112032699, 206.18554843720],
[0.00350769243, 3.30329907896, 426.59819087600],
[0.00206816305, 0.24658372002, 103.09277421860],
[0.00079271300, 3.84007056878, 220.41264243880],
[0.00023990355, 4.66976924553, 110.20632121940],
[0.00016573588, 0.43719228296, 419.48464387520],
[0.00014906995, 5.76903183869, 316.39186965660],
[0.00015820290, 0.93809155235, 632.78373931320],
[0.00014609559, 1.56518472000, 3.93215326310],
[0.00013160301, 4.44891291899, 14.22709400160],
[0.00015053543, 2.71669915667, 639.89728631400],
[0.00013005299, 5.98119023644, 11.04570026390],
[0.00010725067, 3.12939523827, 202.25339517410],
[0.00005863206, 0.23656938524, 529.69096509460],
[0.00005227757, 4.20783365759, 3.18139373770],
[0.00006126317, 1.76328667907, 277.03499374140],
[0.00005019687, 3.17787728405, 433.71173787680],
[0.00004592550, 0.61977744975, 199.07200143640],
[0.00004005867, 2.24479718502, 63.73589830340],
[0.00002953796, 0.98280366998, 95.97922721780],
[0.00003873670, 3.22283226966, 138.51749687070],
[0.00002461186, 2.03163875071, 735.87651353180],
[0.00003269484, 0.77492638211, 949.17560896980],
[0.00001758145, 3.26580109940, 522.57741809380],
[0.00001640172, 5.50504453050, 846.08283475120],
[0.00001391327, 4.02333150505, 323.50541665740],
[0.00001580648, 4.37265307169, 309.27832265580],
[0.00001123498, 2.83726798446, 415.55249061210],
[0.00001017275, 3.71700135395, 227.52618943960],
[0.00000848642, 3.19150170830, 209.36694217490]
],
[
[213.29909521690, 0.00000000000, 0.00000000000],
[0.01297370862, 1.82834923978, 213.29909543800],
[0.00564345393, 2.88499717272, 7.11354700080],
[0.00093734369, 1.06311793502, 426.59819087600],
[0.00107674962, 2.27769131009, 206.18554843720],
[0.00040244455, 2.04108104671, 220.41264243880],
[0.00019941774, 1.27954390470, 103.09277421860],
[0.00010511678, 2.74880342130, 14.22709400160],
[0.00006416106, 0.38238295041, 639.89728631400],
[0.00004848994, 2.43037610229, 419.48464387520],
[0.00004056892, 2.92133209468, 110.20632121940],
[0.00003768635, 3.64965330780, 3.93215326310]
],
[
[0.00116441330, 1.17988132879, 7.11354700080],
[0.00091841837, 0.07325195840, 213.29909543800],
[0.00036661728, 0.00000000000, 0.00000000000],
[0.00015274496, 4.06493179167, 206.18554843720]
]
],
[
[
[0.04330678039, 3.60284428399, 213.29909543800],
[0.00240348302, 2.85238489373, 426.59819087600],
[0.00084745939, 0.00000000000, 0.00000000000],
[0.00030863357, 3.48441504555, 220.41264243880],
[0.00034116062, 0.57297307557, 206.18554843720],
[0.00014734070, 2.11846596715, 639.89728631400],
[0.00009916667, 5.79003188904, 419.48464387520],
[0.00006993564, 4.73604689720, 7.11354700080],
[0.00004807588, 5.43305312061, 316.39186965660]
],
[
[0.00198927992, 4.93901017903, 213.29909543800],
[0.00036947916, 3.14159265359, 0.00000000000],
[0.00017966989, 0.51979431110, 426.59819087600]
]
],
[
[
[9.55758135486, 0.00000000000, 0.00000000000],
[0.52921382865, 2.39226219573, 213.29909543800],
[0.01873679867, 5.23549604660, 206.18554843720],
[0.01464663929, 1.64763042902, 426.59819087600],
[0.00821891141, 5.93520042303, 316.39186965660],
[0.00547506923, 5.01532618980, 103.09277421860],
[0.00371684650, 2.27114821115, 220.41264243880],
[0.00361778765, 3.13904301847, 7.11354700080],
[0.00140617506, 5.70406606781, 632.78373931320],
[0.00108974848, 3.29313390175, 110.20632121940],
[0.00069006962, 5.94099540992, 419.48464387520],
[0.00061053367, 0.94037691801, 639.89728631400],
[0.00048913294, 1.55733638681, 202.25339517410],
[0.00034143772, 0.19519102597, 277.03499374140],
[0.00032401773, 5.47084567016, 949.17560896980],
[0.00020936596, 0.46349251129, 735.87651353180]
],
[
[0.06182981340, 0.25843511480, 213.29909543800],
[0.00506577242, 0.71114625261, 206.18554843720],
[0.00341394029, 5.79635741658, 426.59819087600],
[0.00188491195, 0.47215589652, 220.41264243880],
[0.00186261486, 3.14159265359, 0.00000000000],
[0.00143891146, 1.40744822888, 7.11354700080]
],
[
[0.00436902572, 4.78671677509, 213.29909543800]
]
]
],
# Uranus
[
[
[
[5.48129294297, 0.00000000000, 0.00000000000],
[0.09260408234, 0.89106421507, 74.78159856730],
[0.01504247898, 3.62719260920, 1.48447270830],
[0.00365981674, 1.89962179044, 73.29712585900],
[0.00272328168, 3.35823706307, 149.56319713460],
[0.00070328461, 5.39254450063, 63.73589830340],
[0.00068892678, 6.09292483287, 76.26607127560],
[0.00061998615, 2.26952066061, 2.96894541660],
[0.00061950719, 2.85098872691, 11.04570026390],
[0.00026468770, 3.14152083966, 71.81265315070],
[0.00025710476, 6.11379840493, 454.90936652730],
[0.00021078850, 4.36059339067, 148.07872442630],
[0.00017818647, 1.74436930289, 36.64856292950],
[0.00014613507, 4.73732166022, 3.93215326310],
[0.00011162509, 5.82681796350, 224.34479570190],
[0.00010997910, 0.48865004018, 138.51749687070],
[0.00009527478, 2.95516862826, 35.16409022120],
[0.00007545601, 5.23626582400, 109.94568878850],
[0.00004220241, 3.23328220918, 70.84944530420],
[0.00004051900, 2.27755017300, 151.04766984290],
[0.00003354596, 1.06549007380, 4.45341812490],
[0.00002926718, 4.62903718891, 9.56122755560],
[0.00003490340, 5.48306144511, 146.59425171800],
[0.00003144069, 4.75199570434, 77.75054398390],
[0.00002922333, 5.35235361027, 85.82729883120],
[0.00002272788, 4.36600400036, 70.32818044240],
[0.00002051219, 1.51773566586, 0.11187458460],
[0.00002148602, 0.60745949945, 38.13303563780],
[0.00001991643, 4.92437588682, 277.03499374140],
[0.00001376226, 2.04283539351, 65.22037101170],
[0.00001666902, 3.62744066769, 380.12776796000],
[0.00001284107, 3.11347961505, 202.25339517410],
[0.00001150429, 0.93343589092, 3.18139373770],
[0.00001533221, 2.58594681212, 52.69019803950],
[0.00001281604, 0.54271272721, 222.86032299360],
[0.00001372139, 4.19641530878, 111.43016149680],
[0.00001221029, 0.19900650030, 108.46121608020],
[0.00000946181, 1.19253165736, 127.47179660680],
[0.00001150989, 4.17898916639, 33.67961751290]
],
[
[74.78159860910, 0.00000000000, 0.00000000000],
[0.00154332863, 5.24158770553, 74.78159856730],
[0.00024456474, 1.71260334156, 1.48447270830],
[0.00009258442, 0.42829732350, 11.04570026390],
[0.00008265977, 1.50218091379, 63.73589830340],
[0.00009150160, 1.41213765216, 149.56319713460]
]
],
[
[
[0.01346277648, 2.61877810547, 74.78159856730],
[0.00062341400, 5.08111189648, 149.56319713460],
[0.00061601196, 3.14159265359, 0.00000000000],
[0.00009963722, 1.61603805646, 76.26607127560],
[0.00009926160, 0.57630380333, 73.29712585900]
],
[
[0.00034101978, 0.01321929936, 74.78159856730]
]
],
[
[
[19.21264847206, 0.00000000000, 0.00000000000],
[0.88784984413, 5.60377527014, 74.78159856730],
[0.03440836062, 0.32836099706, 73.29712585900],
[0.02055653860, 1.78295159330, 149.56319713460],
[0.00649322410, 4.52247285911, 76.26607127560],
[0.00602247865, 3.86003823674, 63.73589830340],
[0.00496404167, 1.40139935333, 454.90936652730],
[0.00338525369, 1.58002770318, 138.51749687070],
[0.00243509114, 1.57086606044, 71.81265315070],
[0.00190522303, 1.99809394714, 1.48447270830],
[0.00161858838, 2.79137786799, 148.07872442630],
[0.00143706183, 1.38368544947, 11.04570026390],
[0.00093192405, 0.17437220467, 36.64856292950],
[0.00071424548, 4.24509236074, 224.34479570190],
[0.00089806014, 3.66105364565, 109.94568878850],
[0.00039009723, 1.66971401684, 70.84944530420],
[0.00046677296, 1.39976401694, 35.16409022120],
[0.00039025624, 3.36234773834, 277.03499374140],
[0.00036755274, 3.88649278513, 146.59425171800],
[0.00030348723, 0.70100838798, 151.04766984290],
[0.00029156413, 3.18056336700, 77.75054398390]
],
[
[0.01479896629, 3.67205697578, 74.78159856730]
]
]
],
# Neptune
[
[
[
[5.31188633046, 0.00000000000, 0.00000000000],
[0.01798475530, 2.90101273890, 38.13303563780],
[0.01019727652, 0.48580922867, 1.48447270830],
[0.00124531845, 4.83008090676, 36.64856292950],
[0.00042064466, 5.41054993053, 2.96894541660],
[0.00037714584, 6.09221808686, 35.16409022120],
[0.00033784738, 1.24488874087, 76.26607127560],
[0.00016482741, 0.00007727998, 491.55792945680],
[0.00009198584, 4.93747051954, 39.61750834610],
[0.00008994250, 0.27462171806, 175.16605980020]
],
[
[38.13303563957, 0.00000000000, 0.00000000000],
[0.00016604172, 4.86323329249, 1.48447270830],
[0.00015744045, 2.27887427527, 38.13303563780]
]
],
[
[
[0.03088622933, 1.44104372644, 38.13303563780],
[0.00027780087, 5.91271884599, 76.26607127560],
[0.00027623609, 0.00000000000, 0.00000000000],
[0.00015355489, 2.52123799551, 36.64856292950],
[0.00015448133, 3.50877079215, 39.61750834610]
]
],
[
[
[30.07013205828, 0.00000000000, 0.00000000000],
[0.27062259632, 1.32999459377, 38.13303563780],
[0.01691764014, 3.25186135653, 36.64856292950],
[0.00807830553, 5.18592878704, 1.48447270830],
[0.00537760510, 4.52113935896, 35.16409022120],
[0.00495725141, 1.57105641650, 491.55792945680],
[0.00274571975, 1.84552258866, 175.16605980020]
]
]
],
]
def _CalcVsop(model, time):
spher = []
t = time.tt / 365250.0
for formula in model:
tpower = 1.0
coord = 0.0
for series in formula:
coord += tpower * sum(A * math.cos(B + C*t) for (A, B, C) in series)
tpower *= t
spher.append(coord)
# Convert spherical coordinates to ecliptic cartesian coordinates.
r_coslat = spher[2] * math.cos(spher[1])
ex = r_coslat * math.cos(spher[0])
ey = r_coslat * math.sin(spher[0])
ez = spher[2] * math.sin(spher[1])
# Convert ecliptic cartesian coordinates to equatorial cartesian coordinates.
vx = ex + 0.000000440360*ey - 0.000000190919*ez
vy = -0.000000479966*ex + 0.917482137087*ey - 0.397776982902*ez
vz = 0.397776982902*ey + 0.917482137087*ez
return Vector(vx, vy, vz, time)
def _CalcEarth(time):
return _CalcVsop(_vsop[Body.Earth], time)
# END VSOP
#----------------------------------------------------------------------------
# BEGIN CHEBYSHEV
_pluto = [
{ 'tt':-109573.500000, 'ndays':26141.000000, 'coeff':[
[-30.303124711144, -18.980368465705, 3.206649343866],
[20.092745278347, -27.533908687219, -14.641121965990],
[9.137264744925, 6.513103657467, -0.720732357468],
[-1.201554708717, 2.149917852301, 1.032022293526],
[-0.566068170022, -0.285737361191, 0.081379987808],
[0.041678527795, -0.143363105040, -0.057534475984],
[0.041087908142, 0.007911321580, -0.010270655537],
[0.001611769878, 0.011409821837, 0.003679980733],
[-0.002536458296, -0.000145632543, 0.000949924030],
[0.001167651969, -0.000049912680, 0.000115867710],
[-0.000196953286, 0.000420406270, 0.000110147171],
[0.001073825784, 0.000442658285, 0.000146985332],
[-0.000906160087, 0.001702360394, 0.000758987924],
[-0.001467464335, -0.000622191266, -0.000231866243],
[-0.000008986691, 0.000004086384, 0.000001442956],
[-0.001099078039, -0.000544633529, -0.000205534708],
[0.001259974751, -0.002178533187, -0.000965315934],
[0.001695288316, 0.000768480768, 0.000287916141],
[-0.001428026702, 0.002707551594, 0.001195955756]]
},
{ 'tt':-83432.500000, 'ndays':26141.000000, 'coeff':[
[67.049456204563, -9.279626603192, -23.091941092128],
[14.860676672314, 26.594121136143, 3.819668867047],
[-6.254409044120, 1.408757903538, 2.323726101433],
[0.114416381092, -0.942273228585, -0.328566335886],
[0.074973631246, 0.106749156044, 0.010806547171],
[-0.018627741964, -0.009983491157, 0.002589955906],
[0.006167206174, -0.001042430439, -0.001521881831],
[-0.000471293617, 0.002337935239, 0.001060879763],
[-0.000240627462, -0.001380351742, -0.000546042590],
[0.001872140444, 0.000679876620, 0.000240384842],
[-0.000334705177, 0.000693528330, 0.000301138309],
[0.000796124758, 0.000653183163, 0.000259527079],
[-0.001276116664, 0.001393959948, 0.000629574865],
[-0.001235158458, -0.000889985319, -0.000351392687],
[-0.000019881944, 0.000048339979, 0.000021342186],
[-0.000987113745, -0.000748420747, -0.000296503569],
[0.001721891782, -0.001893675502, -0.000854270937],
[0.001505145187, 0.001081653337, 0.000426723640],
[-0.002019479384, 0.002375617497, 0.001068258925]]
},
{ 'tt':-57291.500000, 'ndays':26141.000000, 'coeff':[
[46.038290912405, 73.773759757856, 9.148670950706],
[-22.354364534703, 10.217143138926, 9.921247676076],
[-2.696282001399, -4.440843715929, -0.572373037840],
[0.385475818800, -0.287872688575, -0.205914693555],
[0.020994433095, 0.004256602589, -0.004817361041],
[0.003212255378, 0.000574875698, -0.000764464370],
[-0.000158619286, -0.001035559544, -0.000535612316],
[0.000967952107, -0.000653111849, -0.000292019750],
[0.001763494906, -0.000370815938, -0.000224698363],
[0.001157990330, 0.001849810828, 0.000759641577],
[-0.000883535516, 0.000384038162, 0.000191242192],
[0.000709486562, 0.000655810827, 0.000265431131],
[-0.001525810419, 0.001126870468, 0.000520202001],
[-0.000983210860, -0.001116073455, -0.000456026382],
[-0.000015655450, 0.000069184008, 0.000029796623],
[-0.000815102021, -0.000900597010, -0.000365274209],
[0.002090300438, -0.001536778673, -0.000709827438],
[0.001234661297, 0.001342978436, 0.000545313112],
[-0.002517963678, 0.001941826791, 0.000893859860]]
},
{ 'tt':-31150.500000, 'ndays':26141.000000, 'coeff':[
[-39.074661990988, 30.963513412373, 21.431709298065],
[-12.033639281924, -31.693679132310, -6.263961539568],
[7.233936758611, -3.979157072767, -3.421027935569],
[1.383182539917, 1.090729793400, -0.076771771448],
[-0.009894394996, 0.313614402007, 0.101180677344],
[-0.055459383449, 0.031782406403, 0.026374448864],
[-0.011074105991, -0.007176759494, 0.001896208351],
[-0.000263363398, -0.001145329444, 0.000215471838],
[0.000405700185, -0.000839229891, -0.000418571366],
[0.001004921401, 0.001135118493, 0.000406734549],
[-0.000473938695, 0.000282751002, 0.000114911593],
[0.000528685886, 0.000966635293, 0.000401955197],
[-0.001838869845, 0.000806432189, 0.000394594478],
[-0.000713122169, -0.001334810971, -0.000554511235],
[0.000006449359, 0.000060730000, 0.000024513230],
[-0.000596025142, -0.000999492770, -0.000413930406],
[0.002364904429, -0.001099236865, -0.000528480902],
[0.000907458104, 0.001537243912, 0.000637001965],
[-0.002909908764, 0.001413648354, 0.000677030924]]
},
{ 'tt':-5009.500000, 'ndays':26141.000000, 'coeff':[
[23.380075041204, -38.969338804442, -19.204762094135],
[33.437140696536, 8.735194448531, -7.348352917314],
[-3.127251304544, 8.324311848708, 3.540122328502],
[-1.491354030154, -1.350371407475, 0.028214278544],
[0.361398480996, -0.118420687058, -0.145375605480],
[-0.011771350229, 0.085880588309, 0.030665997197],
[-0.015839541688, -0.014165128211, 0.000523465951],
[0.004213218926, -0.001426373728, -0.001906412496],
[0.001465150002, 0.000451513538, 0.000081936194],
[0.000640069511, 0.001886692235, 0.000884675556],
[-0.000883554940, 0.000301907356, 0.000127310183],
[0.000245524038, 0.000910362686, 0.000385555148],
[-0.001942010476, 0.000438682280, 0.000237124027],
[-0.000425455660, -0.001442138768, -0.000607751390],
[0.000004168433, 0.000033856562, 0.000013881811],
[-0.000337920193, -0.001074290356, -0.000452503056],
[0.002544755354, -0.000620356219, -0.000327246228],
[0.000534534110, 0.001670320887, 0.000702775941],
[-0.003169380270, 0.000816186705, 0.000427213817]]
},
{ 'tt':21131.500000, 'ndays':26141.000000, 'coeff':[
[74.130449310804, 43.372111541004, -8.799489207171],
[-8.705941488523, 23.344631690845, 9.908006472122],
[-4.614752911564, -2.587334376729, 0.583321715294],
[0.316219286624, -0.395448970181, -0.219217574801],
[0.004593734664, 0.027528474371, 0.007736197280],
[-0.001192268851, -0.004987723997, -0.001599399192],
[0.003051998429, -0.001287028653, -0.000780744058],
[0.001482572043, 0.001613554244, 0.000635747068],
[0.000581965277, 0.000788286674, 0.000315285159],
[-0.000311830730, 0.001622369930, 0.000714817617],
[-0.000711275723, -0.000160014561, -0.000050445901],
[0.000177159088, 0.001032713853, 0.000435835541],
[-0.002032280820, 0.000144281331, 0.000111910344],
[-0.000148463759, -0.001495212309, -0.000635892081],
[-0.000009629403, -0.000013678407, -0.000006187457],
[-0.000061196084, -0.001119783520, -0.000479221572],
[0.002630993795, -0.000113042927, -0.000112115452],
[0.000132867113, 0.001741417484, 0.000743224630],
[-0.003293498893, 0.000182437998, 0.000158073228]]
},
{ 'tt':47272.500000, 'ndays':26141.000000, 'coeff':[
[-5.727994625506, 71.194823351703, 23.946198176031],
[-26.767323214686, -12.264949302780, 4.238297122007],
[0.890596204250, -5.970227904551, -2.131444078785],
[0.808383708156, -0.143104108476, -0.288102517987],
[0.089303327519, 0.049290470655, -0.010970501667],
[0.010197195705, 0.012879721400, 0.001317586740],
[0.001795282629, 0.004482403780, 0.001563326157],
[-0.001974716105, 0.001278073933, 0.000652735133],
[0.000906544715, -0.000805502229, -0.000336200833],
[0.000283816745, 0.001799099064, 0.000756827653],
[-0.000784971304, 0.000123081220, 0.000068812133],
[-0.000237033406, 0.000980100466, 0.000427758498],
[-0.001976846386, -0.000280421081, -0.000072417045],
[0.000195628511, -0.001446079585, -0.000624011074],
[-0.000044622337, -0.000035865046, -0.000013581236],
[0.000204397832, -0.001127474894, -0.000488668673],
[0.002625373003, 0.000389300123, 0.000102756139],
[-0.000277321614, 0.001732818354, 0.000749576471],
[-0.003280537764, -0.000457571669, -0.000116383655]]
}]
def _ChebScale(t_min, t_max, t):
return (2*t - (t_max + t_min)) / (t_max - t_min)
def _CalcChebyshev(model, time):
# Search for a record that overlaps the given time value.
for record in model:
x = _ChebScale(record['tt'], record['tt'] + record['ndays'], time.tt)
if -1 <= x <= +1:
coeff = record['coeff']
pos = []
for d in range(3):
p0 = 1
sum = coeff[0][d]
p1 = x
sum += coeff[1][d] * p1
for k in range(2, len(coeff)):
p2 = (2 * x * p1) - p0
sum += coeff[k][d] * p2
p0 = p1
p1 = p2
pos.append(sum - coeff[0][d]/2)
return Vector(pos[0], pos[1], pos[2], time)
raise Error('Cannot extrapolate Chebyshev model for given Terrestrial Time: {}'.format(time.tt))
# END CHEBYSHEV
#----------------------------------------------------------------------------
# BEGIN Search
def _QuadInterp(tm, dt, fa, fm, fb):
Q = (fb + fa)/2 - fm
R = (fb - fa)/2
S = fm
if Q == 0:
# This is a line, not a parabola.
if R == 0:
# This is a HORIZONTAL line... can't make progress!
return None
x = -S / R
if not (-1 <= x <= +1):
return None # out of bounds
else:
# It really is a parabola. Find roots x1, x2.
u = R*R - 4*Q*S
if u <= 0:
return None
ru = math.sqrt(u)
x1 = (-R + ru) / (2 * Q)
x2 = (-R - ru) / (2 * Q)
if -1 <= x1 <= +1:
if -1 <= x2 <= +1:
# Two solutions... so parabola intersects twice.
return None
x = x1
elif -1 <= x2 <= +1:
x = x2
else:
return None
t = tm + x*dt
df_dt = (2*Q*x + R) / dt
return (x, t, df_dt)
def Search(func, context, t1, t2, dt_tolerance_seconds):
"""Searches for a time at which a function's value increases through zero.
Certain astronomy calculations involve finding a time when an event occurs.
Often such events can be defined as the root of a function:
the time at which the function's value becomes zero.
`Search` finds the *ascending root* of a function: the time at which
the function's value becomes zero while having a positive slope. That is, as time increases,
the function transitions from a negative value, through zero at a specific moment,
to a positive value later. The goal of the search is to find that specific moment.
The search function is specified by two parameters: `func` and `context`.
The `func` parameter is a function itself that accepts a time
and a context containing any other arguments needed to evaluate the function.
The `context` parameter supplies that context for the given search.
As an example, a caller may wish to find the moment a celestial body reaches a certain
ecliptic longitude. In that case, the caller might create a type (class, tuple, whatever)
that contains a #Body member to specify the body and a numeric value to hold the target longitude.
A different function might use a completely different context type.
Every time it is called, `func` returns a `float` value or it raises an exception.
If `func` raises an exception, the search immediately fails and the exception is
propagated back to the caller.
Otherwise, the search proceeds until it either finds the ascending root or fails for some reason.
The search calls `func` repeatedly to rapidly narrow in on any ascending
root within the time window specified by `t1` and `t2`. The search never
reports a solution outside this time window.
`Search` uses a combination of bisection and quadratic interpolation
to minimize the number of function calls. However, it is critical that the
supplied time window be small enough that there cannot be more than one root
(ascedning or descending) within it; otherwise the search can fail.
Beyond that, it helps to make the time window as small as possible, ideally
such that the function itself resembles a smooth parabolic curve within that window.
If an ascending root is not found, or more than one root
(ascending and/or descending) exists within the window `t1`..`t2`,
`Search` will return `None` to indicate a normal search failure.
If the search does not converge within 20 iterations, it will raise
an #Error exception.
Parameters
----------
func : function(context, Time)
A function that takes an arbitrary context parameter and a #Time parameter.
Returns a float value. See remarks above for more details.
context : object
An arbitrary data structure needed to be passed to the function `func`
every time it is called.
t1 : float
The lower time bound of the search window.
See remarks above for more details.
t2 : float
The upper time bound of the search window.
See remarks above for more details.
dt_tolerance_seconds : float
Specifies an amount of time in seconds within which a bounded ascending root
is considered accurate enough to stop. A typical value is 1 second.
Returns
-------
#Time or `None`
If the search is successful, returns a #Time object that is within
`dt_tolerance_seconds` of an ascending root.
In this case, the returned time value will always be within the
inclusive range [`t1`, `t2`].
If there is no ascending root, or there is more than one ascending root,
the function returns `None`.
"""
dt_days = abs(dt_tolerance_seconds / _SECONDS_PER_DAY)
f1 = func(context, t1)
f2 = func(context, t2)
iter = 0
iter_limit = 20
calc_fmid = True
while True:
iter += 1
if iter > iter_limit:
raise Error('Excessive iteration in Search')
dt = (t2.tt - t1.tt) / 2.0
tmid = t1.AddDays(dt)
if abs(dt) < dt_days:
# We are close enough to the event to stop the search.
return tmid
if calc_fmid:
fmid = func(context, tmid)
else:
# We already have the correct value of fmid from the previous loop.
calc_fmid = True
# Quadratic interpolation:
# Try to find a parabola that passes through the 3 points we have sampled:
# (t1,f1), (tmid,fmid), (t2,f2).
q = _QuadInterp(tmid.ut, t2.ut - tmid.ut, f1, fmid, f2)
if q:
(q_x, q_ut, q_df_dt) = q
tq = Time(q_ut)
fq = func(context, tq)
if q_df_dt != 0.0:
dt_guess = abs(fq / q_df_dt)
if dt_guess < dt_days:
# The estimated time error is small enough that we can quit now.
return tq
# Try guessing a tighter boundary with the interpolated root at the center.
dt_guess *= 1.2
if dt_guess < dt / 10.0:
tleft = tq.AddDays(-dt_guess)
tright = tq.AddDays(+dt_guess)
if (tleft.ut - t1.ut)*(tleft.ut - t2.ut) < 0.0:
if (tright.ut - t1.ut)*(tright.ut - t2.ut) < 0.0:
fleft = func(context, tleft)
fright = func(context, tright)
if fleft < 0.0 and fright >= 0.0:
f1 = fleft
f2 = fright
t1 = tleft
t2 = tright
fmid = fq
calc_fmid = False
continue
# Quadratic interpolation attempt did not work out.
# Just divide the region in two parts and pick whichever one appears to contain a root.
if f1 < 0.0 and fmid >= 0.0:
t2 = tmid
f2 = fmid
continue
if fmid < 0.0 and f2 >= 0.0:
t1 = tmid
f1 = fmid
continue
# Either there is no ascending zero-crossing in this range
# or the search window is too wide (more than one zero-crossing).
return None
# END Search
#----------------------------------------------------------------------------
def HelioVector(body, time):
"""Calculates heliocentric Cartesian coordinates of a body in the J2000 equatorial system.
This function calculates the position of the given celestial body as a vector,
using the center of the Sun as the origin. The result is expressed as a Cartesian
vector in the J2000 equatorial system: the coordinates are based on the mean equator
of the Earth at noon UTC on 1 January 2000.
The position is not corrected for light travel time or aberration.
This is different from the behavior of #GeoVector.
If given an invalid value for `body`, or the body is `Body.Pluto` and `time` is outside
the year range 1700..2200, this function raise an exception.
Parameters
----------
body : Body
The celestial body whose heliocentric position is to be calculated:
The Sun, Moon, or any of the planets.
time : Time
The time at which to calculate the heliocentric position.
Returns
-------
#Vector
A heliocentric position vector of the center of the given body
at the given time.
"""
if body == Body.Pluto:
return _CalcChebyshev(_pluto, time)
if 0 <= body <= len(_vsop):
return _CalcVsop(_vsop[body], time)
if body == Body.Sun:
return Vector(0.0, 0.0, 0.0, time)
if body == Body.Moon:
e = _CalcEarth(time)
m = GeoMoon(time)
return Vector(e.x+m.x, e.y+m.y, e.z+m.z, time)
raise InvalidBodyError()
def GeoVector(body, time, aberration):
"""Calculates geocentric Cartesian coordinates of a body in the J2000 equatorial system.
This function calculates the position of the given celestial body as a vector,
using the center of the Earth as the origin. The result is expressed as a Cartesian
vector in the J2000 equatorial system: the coordinates are based on the mean equator
of the Earth at noon UTC on 1 January 2000.
If given an invalid value for `body`, or the body is `Body.Pluto` and the `time` is outside
the year range 1700..2200, this function will raise an exception.
Unlike #HelioVector, this function always corrects for light travel time.
This means the position of the body is "back-dated" by the amount of time it takes
light to travel from that body to an observer on the Earth.
Also, the position can optionally be corrected for
[aberration](https://en.wikipedia.org/wiki/Aberration_of_light), an effect
causing the apparent direction of the body to be shifted due to transverse
movement of the Earth with respect to the rays of light coming from that body.
Parameters
----------
body : Body
A body for which to calculate a heliocentric position: the Sun, Moon, or any of the planets.
time : Time
The date and time for which to calculate the position.
aberration : bool
A boolean value indicating whether to correct for aberration.
Returns
-------
#Vector
A geocentric position vector of the center of the given body.
"""
if body == Body.Moon:
return GeoMoon(time)
if body == Body.Earth:
return Vector(0.0, 0.0, 0.0, time)
if not aberration:
# No aberration, so calculate Earth's position once, at the time of observation.
earth = _CalcEarth(time)
# Correct for light-travel time, to get position of body as seen from Earth's center.
ltime = time
for iter in range(10):
h = HelioVector(body, ltime)
if aberration:
# Include aberration, so make a good first-order approximation
# by backdating the Earth's position also.
# This is confusing, but it works for objects within the Solar System
# because the distance the Earth moves in that small amount of light
# travel time (a few minutes to a few hours) is well approximated
# by a line segment that substends the angle seen from the remote
# body viewing Earth. That angle is pretty close to the aberration
# angle of the moving Earth viewing the remote body.
# In other words, both of the following approximate the aberration angle:
# (transverse distance Earth moves) / (distance to body)
# (transverse speed of Earth) / (speed of light).
earth = _CalcEarth(ltime)
geo = Vector(h.x-earth.x, h.y-earth.y, h.z-earth.z, time)
if body == Body.Sun:
# The Sun's heliocentric coordinates are always (0,0,0). No need to correct.
return geo
ltime2 = time.AddDays(-geo.Length() / _C_AUDAY)
dt = abs(ltime2.tt - ltime.tt)
if dt < 1.0e-9:
return geo
ltime = ltime2
raise Error('Light-travel time solver did not converge: dt={}'.format(dt))
def Equator(body, time, observer, ofdate, aberration):
"""Calculates equatorial coordinates of a celestial body as seen by an observer on the Earth's surface.
Calculates topocentric equatorial coordinates in one of two different systems:
J2000 or true-equator-of-date, depending on the value of the `ofdate` parameter.
Equatorial coordinates include right ascension, declination, and distance in astronomical units.
This function corrects for light travel time: it adjusts the apparent location
of the observed body based on how long it takes for light to travel from the body to the Earth.
This function corrects for *topocentric parallax*, meaning that it adjusts for the
angular shift depending on where the observer is located on the Earth. This is most
significant for the Moon, because it is so close to the Earth. However, parallax corection
has a small effect on the apparent positions of other bodies.
Correction for aberration is optional, using the `aberration` parameter.
Parameters
----------
body : Body
The celestial body to be observed. Not allowed to be `Body.Earth`.
time : Time
The date and time at which the observation takes place.
observer : Observer
A location on or near the surface of the Earth.
ofdate : bool
Selects the date of the Earth's equator in which to express the equatorial coordinates.
If `True`, returns coordinates using the equator and equinox of date.
If `False`, returns coordinates converted to the J2000 system.
aberration : bool
If `True`, corrects for aberration of light based on the motion of the Earth
with respect to the heliocentric origin.
If `False`, does not correct for aberration.
Returns
-------
#EquatorialCoordinates
Equatorial coordinates in the specified frame of reference.
"""
gc_observer = _geo_pos(time, observer)
gc = GeoVector(body, time, aberration)
j2000 = [
gc.x - gc_observer[0],
gc.y - gc_observer[1],
gc.z - gc_observer[2]
]
if not ofdate:
return _vector2radec(j2000)
temp = _precession(0, j2000, time.tt)
datevect = _nutation(time, 0, temp)
return _vector2radec(datevect)
@enum.unique
class Refraction(enum.IntEnum):
"""Selects if/how to correct for atmospheric refraction.
Some functions allow enabling or disabling atmospheric refraction
for the calculated apparent position of a celestial body
as seen by an observer on the surface of the Earth.
Values
------
Airless: No atmospheric refraction correction.
Normal: Recommended correction for standard atmospheric refraction.
JplHorizons: Used only for compatibility testing with JPL Horizons online tool.
"""
Airless = 0
Normal = 1
JplHorizons = 2
class HorizontalCoordinates:
"""Coordinates of a celestial body as seen by a topocentric observer.
Contains horizontal and equatorial coordinates as seen by an observer
on or near the surface of the Earth (a topocentric observer).
All coordinates are optionally corrected for atmospheric refraction.
Attributes
----------
azimuth : float
The compass direction laterally around the observer's horizon,
measured in degrees.
North is 0 degrees, east is 90 degrees, south is 180 degrees, etc.
altitude : float
The angle in degrees above (positive) or below (negative) the observer's horizon.
ra : float
The right ascension in sidereal hours.
dec : float
The declination in degrees.
"""
def __init__(self, azimuth, altitude, ra, dec):
self.azimuth = azimuth
self.altitude = altitude
self.ra = ra
self.dec = dec
def Horizon(time, observer, ra, dec, refraction):
"""Calculates the apparent location of a body relative to the local horizon of an observer on the Earth.
Given a date and time, the geographic location of an observer on the Earth, and
equatorial coordinates (right ascension and declination) of a celestial body,
this function returns horizontal coordinates (azimuth and altitude angles) for the body
relative to the horizon at the geographic location.
The right ascension `ra` and declination `dec` passed in must be *equator of date*
coordinates, based on the Earth's true equator at the date and time of the observation.
Otherwise the resulting horizontal coordinates will be inaccurate.
Equator of date coordinates can be obtained by calling #Equator, passing in
`True` as its `ofdate` parameter. It is also recommended to enable
aberration correction by passing in `True` for the `aberration` parameter.
This function optionally corrects for atmospheric refraction.
For most uses, it is recommended to pass `Refraction.Normal` in the `refraction` parameter to
correct for optical lensing of the Earth's atmosphere that causes objects
to appear somewhat higher above the horizon than they actually are.
However, callers may choose to avoid this correction by passing in `Refraction.Airless`.
If refraction correction is enabled, the azimuth, altitude, right ascension, and declination
in the #HorizontalCoordinates object returned by this function will all be corrected for refraction.
If refraction is disabled, none of these four coordinates will be corrected; in that case,
the right ascension and declination in the returned object will be numerically identical
to the respective `ra` and `dec` values passed in.
Returns
-------
#HorizontalCoordinates
The horizontal coordinates (altitude and azimuth), along with
equatorial coordinates (right ascension and declination), all
optionally corrected for atmospheric refraction. See remarks above
for more details.
"""
if not (Refraction.Airless <= refraction <= Refraction.JplHorizons):
raise Error('Invalid refraction type: ' + str(refraction))
latrad = math.radians(observer.latitude)
lonrad = math.radians(observer.longitude)
decrad = math.radians(dec)
rarad = math.radians(ra * 15.0)
sinlat = math.sin(latrad)
coslat = math.cos(latrad)
sinlon = math.sin(lonrad)
coslon = math.cos(lonrad)
sindc = math.sin(decrad)
cosdc = math.cos(decrad)
sinra = math.sin(rarad)
cosra = math.cos(rarad)
uze = [coslat*coslon, coslat*sinlon, sinlat]
une = [-sinlat*coslon, -sinlat*sinlon, coslat]
uwe = [sinlon, -coslon, 0.0]
angle = -15.0 * _sidereal_time(time)
uz = _spin(angle, uze)
un = _spin(angle, une)
uw = _spin(angle, uwe)
p = [cosdc*cosra, cosdc*sinra, sindc]
pz = p[0]*uz[0] + p[1]*uz[1] + p[2]*uz[2]
pn = p[0]*un[0] + p[1]*un[1] + p[2]*un[2]
pw = p[0]*uw[0] + p[1]*uw[1] + p[2]*uw[2]
proj = math.sqrt(pn*pn + pw*pw)
az = 0.0
if proj > 0.0:
az = math.degrees(-math.atan2(pw, pn))
if az < 0:
az += 360
if az >= 360:
az -= 360
zd = math.degrees(math.atan2(proj, pz))
hor_ra = ra
hor_dec = dec
if refraction != Refraction.Airless:
zd0 = zd
# http://extras.springer.com/1999/978-1-4471-0555-8/chap4/horizons/horizons.pdf
# JPL Horizons says it uses refraction algorithm from
# Meeus "Astronomical Algorithms", 1991, p. 101-102.
# I found the following Go implementation:
# https://github.com/soniakeys/meeus/blob/master/v3/refraction/refract.go
# This is a translation from the function "Saemundsson" there.
# I found experimentally that JPL Horizons clamps the angle to 1 degree below the horizon.
# This is important because the 'refr' formula below goes crazy near hd = -5.11.
hd = 90.0 - zd
if hd < -1.0:
hd = -1.0
refr = (1.02 / math.tan(math.radians(hd+10.3/(hd+5.11)))) / 60.0
if refraction == Refraction.Normal and zd > 91.0:
# In "normal" mode we gradually reduce refraction toward the nadir
# so that we never get an altitude angle less than -90 degrees.
# When horizon angle is -1 degrees, zd = 91, and the factor is exactly 1.
# As zd approaches 180 (the nadir), the fraction approaches 0 linearly.
refr *= (180.0 - zd) / 89.0
zd -= refr
if refr > 0.0 and zd > 3.0e-4:
zdrad = math.radians(zd)
sinzd = math.sin(zdrad)
coszd = math.cos(zdrad)
zd0rad = math.radians(zd0)
sinzd0 = math.sin(zd0rad)
coszd0 = math.cos(zd0rad)
pr = [(((p[j] - coszd0 * uz[j]) / sinzd0)*sinzd + uz[j]*coszd) for j in range(3)]
proj = math.sqrt(pr[0]*pr[0] + pr[1]*pr[1])
if proj > 0:
hor_ra = math.degrees(math.atan2(pr[1], pr[0])) / 15
if hor_ra < 0:
hor_ra += 24
if hor_ra >= 24:
hor_ra -= 24
else:
hor_ra = 0
hor_dec = math.degrees(math.atan2(pr[2], proj))
return HorizontalCoordinates(az, 90.0 - zd, hor_ra, hor_dec)
class EclipticCoordinates:
"""Ecliptic angular and Cartesian coordinates.
Coordinates of a celestial body as seen from the center of the Sun (heliocentric),
oriented with respect to the plane of the Earth's orbit around the Sun (the ecliptic).
Attributes
----------
ex : float
Cartesian x-coordinate: in the direction of the equinox along the ecliptic plane.
ey : float
Cartesian y-coordinate: in the ecliptic plane 90 degrees prograde from the equinox.
ez : float
Cartesian z-coordinate: perpendicular to the ecliptic plane. Positive is north.
elat : float
Latitude in degrees north (positive) or south (negative) of the ecliptic plane.
elon : float
Longitude in degrees around the ecliptic plane prograde from the equinox.
"""
def __init__(self, ex, ey, ez, elat, elon):
self.ex = ex
self.ey = ey
self.ez = ez
self.elat = elat
self.elon = elon
def _RotateEquatorialToEcliptic(pos, obliq_radians):
cos_ob = math.cos(obliq_radians)
sin_ob = math.sin(obliq_radians)
ex = +pos[0]
ey = +pos[1]*cos_ob + pos[2]*sin_ob
ez = -pos[1]*sin_ob + pos[2]*cos_ob
xyproj = math.sqrt(ex*ex + ey*ey)
if xyproj > 0.0:
elon = math.degrees(math.atan2(ey, ex))
if elon < 0.0:
elon += 360.0
else:
elon = 0.0
elat = math.degrees(math.atan2(ez, xyproj))
return EclipticCoordinates(ex, ey, ez, elat, elon)
def SunPosition(time):
"""Calculates geocentric ecliptic coordinates for the Sun.
This function calculates the position of the Sun as seen from the Earth.
The returned value includes both Cartesian and spherical coordinates.
The x-coordinate and longitude values in the returned object are based
on the *true equinox of date*: one of two points in the sky where the instantaneous
plane of the Earth's equator at the given date and time (the *equatorial plane*)
intersects with the plane of the Earth's orbit around the Sun (the *ecliptic plane*).
By convention, the apparent location of the Sun at the March equinox is chosen
as the longitude origin and x-axis direction, instead of the one for September.
`SunPosition` corrects for precession and nutation of the Earth's axis
in order to obtain the exact equatorial plane at the given time.
This function can be used for calculating changes of seasons: equinoxes and solstices.
In fact, the function #Seasons does use this function for that purpose.
Parameters
----------
time : Time
The date and time for which to calculate the Sun's position.
Returns
-------
#EclipticCoordinates
The ecliptic coordinates of the Sun using the Earth's true equator of date.
"""
# Correct for light travel time from the Sun.
# Otherwise season calculations (equinox, solstice) will all be early by about 8 minutes!
adjusted_time = time.AddDays(-1.0 / _C_AUDAY)
earth2000 = _CalcEarth(adjusted_time)
sun2000 = [-earth2000.x, -earth2000.y, -earth2000.z]
# Convert to equatorial Cartesian coordinates of date.
stemp = _precession(0.0, sun2000, adjusted_time.tt)
sun_ofdate = _nutation(adjusted_time, 0, stemp)
# Convert equatorial coordinates to ecliptic coordinates.
true_obliq = math.radians(adjusted_time._etilt().tobl)
return _RotateEquatorialToEcliptic(sun_ofdate, true_obliq)
def Ecliptic(equ):
"""Converts J2000 equatorial Cartesian coordinates to J2000 ecliptic coordinates.
Given coordinates relative to the Earth's equator at J2000 (the instant of noon UTC
on 1 January 2000), this function converts those coordinates to J2000 ecliptic coordinates,
which are relative to the plane of the Earth's orbit around the Sun.
equ : EquatorialCoordinates
Equatorial coordinates in the J2000 frame of reference.
Returns
-------
#EclipticCoordinates
Ecliptic coordinates in the J2000 frame of reference.
"""
# Based on NOVAS functions equ2ecl() and equ2ecl_vec().
ob2000 = 0.40909260059599012 # mean obliquity of the J2000 ecliptic in radians
return _RotateEquatorialToEcliptic([equ.x, equ.y, equ.z], ob2000)
def EclipticLongitude(body, time):
"""Calculates heliocentric ecliptic longitude of a body based on the J2000 equinox.
This function calculates the angle around the plane of the Earth's orbit
of a celestial body, as seen from the center of the Sun.
The angle is measured prograde (in the direction of the Earth's orbit around the Sun)
in degrees from the J2000 equinox. The ecliptic longitude is always in the range [0, 360).
Parameters
----------
body : Body
A body other than the Sun.
time : Time
The date and time at which the body's ecliptic longitude is to be calculated.
Returns
-------
`float`
An angular value in degrees indicating the ecliptic longitude of the body.
"""
if body == Body.Sun:
raise InvalidBodyError()
hv = HelioVector(body, time)
eclip = Ecliptic(hv)
return eclip.elon
def AngleFromSun(body, time):
"""Returns the angle between the given body and the Sun, as seen from the Earth.
This function calculates the angular separation between the given body and the Sun,
as seen from the center of the Earth. This angle is helpful for determining how
easy it is to see the body away from the glare of the Sun.
Parameters
----------
body : Body
The celestial body whose angle from the Sun is to be measured.
Not allowed to be `Body.Earth`.
time : Time
The time at which the observation is made.
Returns
-------
`float`
A numeric value indicating the angle in degrees between the Sun
and the specified body as seen from the center of the Earth.
"""
if body == Body.Earth:
raise EarthNotAllowedError()
sv = GeoVector(Body.Sun, time, True)
bv = GeoVector(body, time, True)
return _AngleBetween(sv, bv)
def LongitudeFromSun(body, time):
"""Returns a body's ecliptic longitude with respect to the Sun, as seen from the Earth.
This function can be used to determine where a planet appears around the ecliptic plane
(the plane of the Earth's orbit around the Sun) as seen from the Earth,
relative to the Sun's apparent position.
The angle starts at 0 when the body and the Sun are at the same ecliptic longitude
as seen from the Earth. The angle increases in the prograde direction
(the direction that the planets orbit the Sun and the Moon orbits the Earth).
When the angle is 180 degrees, it means the Sun and the body appear on opposite sides
of the sky for an Earthly observer. When `body` is a planet whose orbit around the
Sun is farther than the Earth's, 180 degrees indicates opposition. For the Moon,
it indicates a full moon.
The angle keeps increasing up to 360 degrees as the body's apparent prograde
motion continues relative to the Sun. When the angle reaches 360 degrees, it starts
over at 0 degrees.
Values between 0 and 180 degrees indicate that the body is visible in the evening sky
after sunset. Values between 180 degrees and 360 degrees indicate that the body
is visible in the morning sky before sunrise.
Parameters
----------
body : Body
The celestial body for which to find longitude from the Sun.
time : Time
The date and time of the observation.
Returns
-------
`float`
An angle in degrees in the range [0, 360).
"""
if body == Body.Earth:
raise EarthNotAllowedError()
sv = GeoVector(Body.Sun, time, True)
se = Ecliptic(sv)
bv = GeoVector(body, time, True)
be = Ecliptic(bv)
return _NormalizeLongitude(be.elon - se.elon)
class ElongationEvent:
"""Contains information about the visibility of a celestial body at a given date and time.
See the #Elongation function for more detailed information about the members of this class.
See also #SearchMaxElongation for how to search for maximum elongation events.
Attributes
----------
time : Time
The date and time of the observation.
visibility : Visibility
Whether the body is best seen in the morning or the evening.
elongation : float
The angle in degrees between the body and the Sun, as seen from the Earth.
ecliptic_separation : float
The difference between the ecliptic longitudes of the body and the Sun, as seen from the Earth.
"""
def __init__(self, time, visibility, elongation, ecliptic_separation):
self.time = time
self.visibility = visibility
self.elongation = elongation
self.ecliptic_separation = ecliptic_separation
class Visibility(enum.IntEnum):
"""Indicates whether a body (especially Mercury or Venus) is best seen in the morning or evening.
Values
------
Morning : The body is best visible in the morning, before sunrise.
Evening : The body is best visible in the evening, after sunset.
"""
Morning = 0
Evening = 1
def Elongation(body, time):
"""Determines visibility of a celestial body relative to the Sun, as seen from the Earth.
This function returns an #ElongationEvent object, which provides the following
information about the given celestial body at the given time:
- `visibility` is an enumerated type that specifies whether the body is more
easily seen in the morning before sunrise, or in the evening after sunset.
- `elongation` is the angle in degrees between two vectors: one from the center
of the Earth to the center of the Sun, the other from the center of the Earth
to the center of the specified body. This angle indicates how far away the body
is from the glare of the Sun. The elongation angle is always in the range [0, 180].
- `ecliptic_separation` is the absolute value of the difference between the body's
ecliptic longitude and the Sun's ecliptic longitude, both as seen from the center
of the Earth. This angle measures around the plane of the Earth's orbit, and ignores
how far above or below that plane the body is.
The ecliptic separation is measured in degrees and is always in the range [0, 180].
Parameters
----------
body : Body
The celestial body whose visibility is to be calculated.
time : Time
The date and time of the observation.
Returns
-------
#ElongationEvent
"""
angle = LongitudeFromSun(body, time)
if angle > 180.0:
visibility = Visibility.Morning
esep = 360.0 - angle
else:
visibility = Visibility.Evening
esep = angle
angle = AngleFromSun(body, time)
return ElongationEvent(time, visibility, angle, esep)
def _rlon_offset(body, time, direction, targetRelLon):
plon = EclipticLongitude(body, time)
elon = EclipticLongitude(Body.Earth, time)
diff = direction * (elon - plon)
return _LongitudeOffset(diff - targetRelLon)
def SearchRelativeLongitude(body, targetRelLon, startTime):
"""Searches for when the Earth and another planet are separated by a certain ecliptic longitude.
Searches for the time when the Earth and another planet are separated by a specified angle
in ecliptic longitude, as seen from the Sun.
A relative longitude is the angle between two bodies measured in the plane of the
Earth's orbit (the ecliptic plane). The distance of the bodies above or below the ecliptic
plane is ignored. If you imagine the shadow of the body cast onto the ecliptic plane,
and the angle measured around that plane from one body to the other in the direction
the planets orbit the Sun, you will get an angle somewhere between 0 and 360 degrees.
This is the relative longitude.
Given a planet other than the Earth in `body` and a time to start the search in `startTime`,
this function searches for the next time that the relative longitude measured from the
planet to the Earth is `targetRelLon`.
Certain astronomical events are defined in terms of relative longitude between
the Earth and another planet:
- When the relative longitude is 0 degrees, it means both planets are in the same
direction from the Sun. For planets that orbit closer to the Sun (Mercury and Venus),
this is known as *inferior conjunction*, a time when the other planet becomes very
difficult to see because of being lost in the Sun's glare.
(The only exception is in the rare event of a transit, when we see the silhouette
of the planet passing between the Earth and the Sun.)
- When the relative longitude is 0 degrees and the other planet orbits farther from the Sun,
this is known as *opposition*. Opposition is when the planet is closest to the Earth,
and also when it is visible for most of the night, so it is considered the best time
to observe the planet.
- When the relative longitude is 180 degrees, it means the other planet is on the opposite
side of the Sun from the Earth. This is called *superior conjunction*. Like inferior
conjunction, the planet is very difficult to see from the Earth.
Superior conjunction is possible for any planet other than the Earth.
Parameters
----------
body : Body
A planet other than the Earth. If `body` is not a planet, or if it is `Body.Earth`, an error occurs.
targetRelLon : float
The desired relative longitude, expressed in degrees. Must be in the range [0, 360).
startTime : Time
The date and time at which to begin the search.
Returns
-------
#Time
The date and time of the relative longitude event.
"""
if body == Body.Earth:
raise EarthNotAllowedError()
if body == Body.Moon or body == Body.Sun:
raise InvalidBodyError()
syn = _SynodicPeriod(body)
direction = +1 if _IsSuperiorPlanet(body) else -1
# Iterate until we converge on the desired event.
# Calculate the error angle, which will be a negative number of degrees,
# meaning we are "behind" the target relative longitude.
error_angle = _rlon_offset(body, startTime, direction, targetRelLon)
if error_angle > 0.0:
error_angle -= 360.0 # force searching forward in time
time = startTime
iter = 0
while iter < 100:
# Estimate how many days in the future (positive) or past (negative)
# we have to go to get closer to the target relative longitude.
day_adjust = (-error_angle/360.0) * syn
time = time.AddDays(day_adjust)
if abs(day_adjust) * _SECONDS_PER_DAY < 1.0:
return time
prev_angle = error_angle
error_angle = _rlon_offset(body, time, direction, targetRelLon)
if abs(prev_angle) < 30.0 and prev_angle != error_angle:
# Improve convergence for Mercury/Mars (eccentric orbits)
# by adjusting the synodic period to more closely match the
# variable speed of both planets in this part of their respective orbits.
ratio = prev_angle / (prev_angle - error_angle)
if 0.5 < ratio < 2.0:
syn *= ratio
iter += 1
raise NoConvergeError()
def _neg_elong_slope(body, time):
dt = 0.1
t1 = time.AddDays(-dt/2.0)
t2 = time.AddDays(+dt/2.0)
e1 = AngleFromSun(body, t1)
e2 = AngleFromSun(body, t2)
return (e1 - e2)/dt
def SearchMaxElongation(body, startTime):
if body == Body.Mercury:
s1 = 50.0
s2 = 85.0
elif body == Body.Venus:
s1 = 40.0
s2 = 50.0
else:
raise InvalidBodyError()
syn = _SynodicPeriod(body)
iter = 1
while iter <= 2:
plon = EclipticLongitude(body, startTime)
elon = EclipticLongitude(Body.Earth, startTime)
rlon = _LongitudeOffset(plon - elon) # clamp to (-180, +180]
# The slope function is not well-behaved when rlon is near 0 degrees or 180 degrees
# because there is a cusp there that causes a discontinuity in the derivative.
# So we need to guard against searching near such times.
if rlon >= -s1 and rlon < +s1:
# Seek to the window [+s1, +s2].
adjust_days = 0.0
# Search forward for the time t1 when rel lon = +s1.
rlon_lo = +s1
# Search forward for the time t2 when rel lon = +s2.
rlon_hi = +s2
elif rlon > +s2 or rlon < -s2:
# Seek to the next search window at [-s2, -s1].
adjust_days = 0.0
# Search forward for the time t1 when rel lon = -s2.
rlon_lo = -s2
# Search forward for the time t2 when rel lon = -s1.
rlon_hi = -s1
elif rlon >= 0.0:
# rlon must be in the middle of the window [+s1, +s2].
# Search BACKWARD for the time t1 when rel lon = +s1.
adjust_days = -syn / 4.0
rlon_lo = +s1
rlon_hi = +s2
# Search forward from t1 to find t2 such that rel lon = +s2.
else:
# rlon must be in the middle of the window [-s2, -s1].
# Search BACKWARD for the time t1 when rel lon = -s2.
adjust_days = -syn / 4.0
rlon_lo = -s2
# Search forward from t1 to find t2 such that rel lon = -s1.
rlon_hi = -s1
t_start = startTime.AddDays(adjust_days)
t1 = SearchRelativeLongitude(body, rlon_lo, t_start)
if t1 is None:
return None
t2 = SearchRelativeLongitude(body, rlon_hi, t1)
if t2 is None:
return None
# Now we have a time range [t1,t2] that brackets a maximum elongation event.
# Confirm the bracketing.
m1 = _neg_elong_slope(body, t1)
if m1 >= 0.0:
raise InternalError() # there is a bug in the bracketing algorithm!
m2 = _neg_elong_slope(body, t2)
if m2 <= 0.0:
raise InternalError() # there is a bug in the bracketing algorithm!
# Use the generic search algorithm to home in on where the slope crosses from negative to positive.
tx = Search(_neg_elong_slope, body, t1, t2, 10.0)
if tx is None:
return None
if tx.tt >= startTime.tt:
return Elongation(body, tx)
# This event is in the past (earlier than startTime).
# We need to search forward from t2 to find the next possible window.
# We never need to search more than twice.
startTime = t2.AddDays(1.0)
iter += 1
def _sun_offset(targetLon, time):
ecl = SunPosition(time)
return _LongitudeOffset(ecl.elon - targetLon)
def SearchSunLongitude(targetLon, startTime, limitDays):
t2 = startTime.AddDays(limitDays)
return Search(_sun_offset, targetLon, startTime, t2, 1.0)
def MoonPhase(time):
return LongitudeFromSun(Body.Moon, time)
def _moon_offset(targetLon, time):
angle = MoonPhase(time)
return _LongitudeOffset(angle - targetLon)
def SearchMoonPhase(targetLon, startTime, limitDays):
# To avoid discontinuities in the _moon_offset function causing problems,
# we need to approximate when that function will next return 0.
# We probe it with the start time and take advantage of the fact
# that every lunar phase repeats roughly every 29.5 days.
# There is a surprising uncertainty in the quarter timing,
# due to the eccentricity of the moon's orbit.
# I have seen up to 0.826 days away from the simple prediction.
# To be safe, we take the predicted time of the event and search
# +/-0.9 days around it (a 1.8-day wide window).
# But we must return None if the final result goes beyond limitDays after startTime.
uncertainty = 0.9
ya = _moon_offset(targetLon, startTime)
if ya > 0.0:
ya -= 360.0 # force searching forward in time, not backward
est_dt = -(_MEAN_SYNODIC_MONTH * ya) / 360.0
dt1 = est_dt - uncertainty
if dt1 > limitDays:
return None # not possible for moon phase to occur within the specified window
dt2 = min(limitDays, est_dt + uncertainty)
t1 = startTime.AddDays(dt1)
t2 = startTime.AddDays(dt2)
return Search(_moon_offset, targetLon, t1, t2, 1.0)
class MoonQuarter:
def __init__(self, quarter, time):
self.quarter = quarter
self.time = time
def SearchMoonQuarter(startTime):
angle = MoonPhase(startTime)
quarter = int(1 + math.floor(angle / 90.0)) % 4
time = SearchMoonPhase(90.0 * quarter, startTime, 10.0)
if time is None:
# The search should never fail. We should always find another lunar quarter.
raise InternalError()
return MoonQuarter(quarter, time)
def NextMoonQuarter(mq):
# Skip 6 days past the previous found moon quarter to find the next one.
# This is less than the minimum possible increment.
# So far I have seen the interval well contained by the range (6.5, 8.3) days.
time = mq.time.AddDays(6.0)
next_mq = SearchMoonQuarter(time)
# Verify that we found the expected moon quarter.
if next_mq.quarter != (1 + mq.quarter) % 4:
raise InternalError()
return next_mq
class IlluminationInfo:
def __init__(self, time, mag, phase, helio_dist, geo_dist, gc, hc, ring_tilt):
self.time = time
self.mag = mag
self.phase_angle = phase
self.phase_fraction = (1.0 + math.cos(math.radians(phase))) / 2.0
self.helio_dist = helio_dist
self.geo_dist = geo_dist
self.gc = gc
self.hc = hc
self.ring_tilt = ring_tilt
def _MoonMagnitude(phase, helio_dist, geo_dist):
# https://astronomy.stackexchange.com/questions/10246/is-there-a-simple-analytical-formula-for-the-lunar-phase-brightness-curve
rad = math.radians(phase)
mag = -12.717 + 1.49*abs(rad) + 0.0431*(rad**4)
moon_mean_distance_au = 385000.6 / _KM_PER_AU
geo_au = geo_dist / moon_mean_distance_au
mag += 5.0 * math.log10(helio_dist * geo_au)
return mag
def _SaturnMagnitude(phase, helio_dist, geo_dist, gc, time):
# Based on formulas by Paul Schlyter found here:
# http://www.stjarnhimlen.se/comp/ppcomp.html#15
# We must handle Saturn's rings as a major component of its visual magnitude.
# Find geocentric ecliptic coordinates of Saturn.
eclip = Ecliptic(gc)
ir = math.radians(28.06) # tilt of Saturn's rings to the ecliptic, in radians
Nr = math.radians(169.51 + (3.82e-5 * time.tt)) # ascending node of Saturn's rings, in radians
# Find tilt of Saturn's rings, as seen from Earth.
lat = math.radians(eclip.elat)
lon = math.radians(eclip.elon)
tilt = math.asin(math.sin(lat)*math.cos(ir) - math.cos(lat)*math.sin(ir)*math.sin(lon-Nr))
sin_tilt = math.sin(abs(tilt))
mag = -9.0 + 0.044*phase
mag += sin_tilt*(-2.6 + 1.2*sin_tilt)
mag += 5.0 * math.log10(helio_dist * geo_dist)
ring_tilt = math.degrees(tilt)
return (mag, ring_tilt)
def _VisualMagnitude(body, phase, helio_dist, geo_dist):
# For Mercury and Venus, see: https://iopscience.iop.org/article/10.1086/430212
c0 = c1 = c2 = c3 = 0
if body == Body.Mercury:
c0 = -0.60; c1 = +4.98; c2 = -4.88; c3 = +3.02
elif body == Body.Venus:
if phase < 163.6:
c0 = -4.47; c1 = +1.03; c2 = +0.57; c3 = +0.13
else:
c0 = +0.98; c1 = -1.02
elif body == Body.Mars:
c0 = -1.52; c1 = +1.60
elif body == Body.Jupiter:
c0 = -9.40; c1 = +0.50
elif body == Body.Uranus:
c0 = -7.19; c1 = +0.25
elif body == Body.Neptune:
c0 = -6.87
elif body == Body.Pluto:
c0 = -1.00; c1 = +4.00
else:
raise InvalidBodyError()
x = phase / 100.0
mag = c0 + x*(c1 + x*(c2 + x*c3))
mag += 5.0 * math.log10(helio_dist * geo_dist)
return mag
def Illumination(body, time):
if body == Body.Earth:
raise EarthNotAllowedError()
earth = _CalcEarth(time)
if body == Body.Sun:
gc = Vector(-earth.x, -earth.y, -earth.z, time)
hc = Vector(0.0, 0.0, 0.0, time)
phase = 0.0 # placeholder value; the Sun does not have a phase angle.
else:
if body == Body.Moon:
# For extra numeric precision, use geocentric moon formula directly.
gc = GeoMoon(time)
hc = Vector(earth.x + gc.x, earth.y + gc.y, earth.z + gc.z, time)
else:
# For planets, heliocentric vector is most direct to calculate.
hc = HelioVector(body, time)
gc = Vector(hc.x - earth.x, hc.y - earth.y, hc.z - earth.z, time)
phase = _AngleBetween(gc, hc)
geo_dist = gc.Length() # distance from body to center of Earth
helio_dist = hc.Length() # distance from body to center of Sun
ring_tilt = None # only reported for Saturn
if body == Body.Sun:
mag = -0.17 + 5.0*math.log10(geo_dist / _AU_PER_PARSEC)
elif body == Body.Moon:
mag = _MoonMagnitude(phase, helio_dist, geo_dist)
elif body == Body.Saturn:
mag, ring_tilt = _SaturnMagnitude(phase, helio_dist, geo_dist, gc, time)
else:
mag = _VisualMagnitude(body, phase, helio_dist, geo_dist)
return IlluminationInfo(time, mag, phase, helio_dist, geo_dist, gc, hc, ring_tilt)
def _mag_slope(body, time):
# The Search() function finds a transition from negative to positive values.
# The derivative of magnitude y with respect to time t (dy/dt)
# is negative as an object gets brighter, because the magnitude numbers
# get smaller. At peak magnitude dy/dt = 0, then as the object gets dimmer,
# dy/dt > 0.
dt = 0.01
t1 = time.AddDays(-dt/2)
t2 = time.AddDays(+dt/2)
y1 = Illumination(body, t1)
y2 = Illumination(body, t2)
return (y2.mag - y1.mag) / dt
def SearchPeakMagnitude(body, startTime):
# s1 and s2 are relative longitudes within which peak magnitude of Venus can occur.
s1 = 10.0
s2 = 30.0
if body != Body.Venus:
raise InvalidBodyError()
iter = 1
while iter <= 2:
# Find current heliocentric relative longitude between the
# inferior planet and the Earth.
plon = EclipticLongitude(body, startTime)
elon = EclipticLongitude(Body.Earth, startTime)
rlon = _LongitudeOffset(plon - elon)
# The slope function is not well-behaved when rlon is near 0 degrees or 180 degrees
# because there is a cusp there that causes a discontinuity in the derivative.
# So we need to guard against searching near such times.
if -s1 <= rlon < +s1:
# Seek to the window [+s1, +s2].
adjust_days = 0.0
# Search forward for the time t1 when rel lon = +s1.
rlon_lo = +s1
# Search forward for the time t2 when rel lon = +s2.
rlon_hi = +s2
elif rlon >= +s2 or rlon < -s2:
# Seek to the next search window at [-s2, -s1].
adjust_days = 0.0
# Search forward for the time t1 when rel lon = -s2.
rlon_lo = -s2
# Search forward for the time t2 when rel lon = -s1.
rlon_hi = -s1
elif rlon >= 0:
# rlon must be in the middle of the window [+s1, +s2].
# Search BACKWARD for the time t1 when rel lon = +s1.
syn = _SynodicPeriod(body)
adjust_days = -syn / 4
rlon_lo = +s1
# Search forward from t1 to find t2 such that rel lon = +s2.
rlon_hi = +s2
else:
# rlon must be in the middle of the window [-s2, -s1].
# Search BACKWARD for the time t1 when rel lon = -s2.
syn = _SynodicPeriod(body)
adjust_days = -syn / 4
rlon_lo = -s2
# Search forward from t1 to find t2 such that rel lon = -s1.
rlon_hi = -s1
t_start = startTime.AddDays(adjust_days)
t1 = SearchRelativeLongitude(body, rlon_lo, t_start)
t2 = SearchRelativeLongitude(body, rlon_hi, t1)
# Now we have a time range [t1,t2] that brackets a maximum magnitude event.
# Confirm the bracketing.
m1 = _mag_slope(body, t1)
if m1 >= 0.0:
raise InternalError()
m2 = _mag_slope(body, t2)
if m2 <= 0.0:
raise InternalError()
# Use the generic search algorithm to home in on where the slope crosses from negative to positive.
tx = Search(_mag_slope, body, t1, t2, 10.0)
if tx is None:
# The search should have found the ascending root in the interval [t1, t2].
raise InternalError()
if tx.tt >= startTime.tt:
return Illumination(body, tx)
# This event is in the past (earlier than startTime).
# We need to search forward from t2 to find the next possible window.
# We never need to search more than twice.
startTime = t2.AddDays(1.0)
iter += 1
# We should have found the peak magnitude in at most 2 iterations.
raise InternalError()
class HourAngleEvent:
def __init__(self, time, hor):
self.time = time
self.hor = hor
def SearchHourAngle(body, observer, hourAngle, startTime):
if body == Body.Earth:
raise EarthNotAllowedError()
if hourAngle < 0.0 or hourAngle >= 24.0:
raise Error('Invalid hour angle.')
iter = 0
time = startTime
while True:
iter += 1
# Calculate Greenwich Apparent Sidereal Time (GAST) at the given time.
gast = _sidereal_time(time)
ofdate = Equator(body, time, observer, True, True)
# Calculate the adjustment needed in sidereal time to bring
# the hour angle to the desired value.
delta_sidereal_hours = math.fmod(((hourAngle + ofdate.ra - observer.longitude/15) - gast), 24.0)
if iter == 1:
# On the first iteration, always search forward in time.
if delta_sidereal_hours < 0.0:
delta_sidereal_hours += 24.0
else:
# On subsequent iterations, we make the smallest possible adjustment,
# either forward or backward in time.
if delta_sidereal_hours < -12.0:
delta_sidereal_hours += 24.0
elif delta_sidereal_hours > +12.0:
delta_sidereal_hours -= 24.0
# If the error is tolerable (less than 0.1 seconds), stop searching.
if abs(delta_sidereal_hours) * 3600.0 < 0.1:
hor = Horizon(time, observer, ofdate.ra, ofdate.dec, Refraction.Normal)
return HourAngleEvent(time, hor)
# We need to loop another time to get more accuracy.
# Update the terrestrial time (in solar days) adjusting by sidereal time.
delta_days = (delta_sidereal_hours / 24.0) * _SOLAR_DAYS_PER_SIDEREAL_DAY
time = time.AddDays(delta_days)
@enum.unique
class Direction(enum.IntEnum):
"""Indicates whether a body is rising above or setting below the horizon.
Specifies the direction of a rising or setting event for a body.
For example, `Direction.Rise` is used to find sunrise times,
and `Direction.Set` is used to find sunset times.
Values
------
Rise: First appearance of a body as it rises above the horizon.
Set: Last appearance of a body as it sinks below the horizon.
"""
Rise = +1
Set = -1
class _peak_altitude_context:
def __init__(self, body, direction, observer, body_radius_au):
self.body = body
self.direction = direction
self.observer = observer
self.body_radius_au = body_radius_au
def _peak_altitude(context, time):
# Return the angular altitude above or below the horizon
# of the highest part (the peak) of the given object.
# This is defined as the apparent altitude of the center of the body plus
# the body's angular radius.
# The 'direction' parameter controls whether the angle is measured
# positive above the horizon or positive below the horizon,
# depending on whether the caller wants rise times or set times, respectively.
ofdate = Equator(context.body, time, context.observer, True, True)
# We calculate altitude without refraction, then add fixed refraction near the horizon.
# This gives us the time of rise/set without the extra work.
hor = Horizon(time, context.observer, ofdate.ra, ofdate.dec, Refraction.Airless)
alt = hor.altitude + math.degrees(context.body_radius_au / ofdate.dist)
return context.direction * (alt + _REFRACTION_NEAR_HORIZON)
def SearchRiseSet(body, observer, direction, startTime, limitDays):
if body == Body.Earth:
raise EarthNotAllowedError()
elif body == Body.Sun:
body_radius = _SUN_RADIUS_AU
elif body == Body.Moon:
body_radius = _MOON_RADIUS_AU
else:
body_radius = 0.0
if direction == Direction.Rise:
ha_before = 12.0 # minimum altitude (bottom) happens BEFORE the body rises.
ha_after = 0.0 # maximum altitude (culmination) happens AFTER the body rises.
elif direction == Direction.Set:
ha_before = 0.0 # culmination happens BEFORE the body sets.
ha_after = 12.0 # bottom happens AFTER the body sets.
else:
raise Error('Invalid value for direction parameter')
context = _peak_altitude_context(body, direction, observer, body_radius)
# See if the body is currently above/below the horizon.
# If we are looking for next rise time and the body is below the horizon,
# we use the current time as the lower time bound and the next culmination
# as the upper bound.
# If the body is above the horizon, we search for the next bottom and use it
# as the lower bound and the next culmination after that bottom as the upper bound.
# The same logic applies for finding set times, only we swap the hour angles.
time_start = startTime
alt_before = _peak_altitude(context, time_start)
if alt_before > 0.0:
# We are past the sought event, so we have to wait for the next "before" event (culm/bottom).
evt_before = SearchHourAngle(body, observer, ha_before, time_start)
time_before = evt_before.time
alt_before = _peak_altitude(context, time_before)
else:
# We are before or at the sought ebvent, so we find the next "after" event (bottom/culm),
# and use the current time as the "before" event.
time_before = time_start
evt_after = SearchHourAngle(body, observer, ha_after, time_before)
alt_after = _peak_altitude(context, evt_after.time)
while True:
if alt_before <= 0.0 and alt_after > 0.0:
# Search between the "before time" and the "after time" for the desired event.
event_time = Search(_peak_altitude, context, time_before, evt_after.time, 1.0)
if event_time is not None:
return event_time
# We didn't find the desired event, so use the "after" time to find the next "before" event.
evt_before = SearchHourAngle(body, observer, ha_before, evt_after.time)
evt_after = SearchHourAngle(body, observer, ha_after, evt_before.time)
if evt_before.time.ut >= time_start.ut + limitDays:
return None
time_before = evt_before.time
alt_before = _peak_altitude(context, evt_before.time)
alt_after = _peak_altitude(context, evt_after.time)
class SeasonInfo:
def __init__(self, mar_equinox, jun_solstice, sep_equinox, dec_solstice):
self.mar_equinox = mar_equinox
self.jun_solstice = jun_solstice
self.sep_equinox = sep_equinox
self.dec_solstice = dec_solstice
def _FindSeasonChange(targetLon, year, month, day):
startTime = Time.Make(year, month, day, 0, 0, 0)
time = SearchSunLongitude(targetLon, startTime, 4.0)
if time is None:
# We should always be able to find a season change.
raise InternalError()
return time
def Seasons(year):
mar_equinox = _FindSeasonChange(0, year, 3, 19)
jun_solstice = _FindSeasonChange(90, year, 6, 19)
sep_equinox = _FindSeasonChange(180, year, 9, 21)
dec_solstice = _FindSeasonChange(270, year, 12, 20)
return SeasonInfo(mar_equinox, jun_solstice, sep_equinox, dec_solstice)
def _MoonDistance(time):
return _CalcMoon(time).distance_au
def _distance_slope(direction, time):
dt = 0.001
t1 = time.AddDays(-dt/2.0)
t2 = time.AddDays(+dt/2.0)
dist1 = _MoonDistance(t1)
dist2 = _MoonDistance(t2)
return direction * (dist2 - dist1) / dt
@enum.unique
class ApsisKind(enum.IntEnum):
"""Represents whether a satellite is at a closest or farthest point in its orbit.
An apsis is a point in a satellite's orbit that is closest to,
or farthest from, the body it orbits (its primary).
`ApsisKind` is an enumerated type that indicates which of these
two cases applies to a particular apsis event.
Values
------
Pericenter: The satellite is at its closest point to its primary.
Apocenter: The satellite is at its farthest point from its primary.
Invalid: A placeholder for an undefined, unknown, or invalid apsis.
"""
Pericenter = 0
Apocenter = 1
Invalid = 2
class Apsis:
def __init__(self, time, kind, dist_au):
self.time = time
self.kind = kind
self.dist_au = dist_au
self.dist_km = dist_au * _KM_PER_AU
def SearchLunarApsis(startTime):
increment = 5.0 # number of days to skip on each iteration
t1 = startTime
m1 = _distance_slope(+1, t1)
iter = 0
while iter * increment < 2.0 * _MEAN_SYNODIC_MONTH:
t2 = t1.AddDays(increment)
m2 = _distance_slope(+1, t2)
if m1 * m2 <= 0.0:
# There is a change of slope polarity within the time range [t1, t2].
# Therefore this time range contains an apsis.
# Figure out whether it is perigee or apogee.
if m1 < 0.0 or m2 > 0.0:
# We found a minimum-distance event: perigee.
# Search the time range for the time when the slope goes from negative to positive.
apsis_time = Search(_distance_slope, +1, t1, t2, 1.0)
kind = ApsisKind.Pericenter
elif m1 > 0.0 or m2 < 0.0:
# We found a maximum-distance event: apogee.
# Search the time range for the time when the slope goes from positive to negative.
apsis_time = Search(_distance_slope, -1, t1, t2, 1.0)
kind = ApsisKind.Apocenter
else:
# This should never happen. It should not be possible for both slopes to be zero.
raise InternalError()
if apsis_time is None:
# We should always be able to find a lunar apsis!
raise InternalError()
dist = _MoonDistance(apsis_time)
return Apsis(apsis_time, kind, dist)
# We have not yet found a slope polarity change. Keep searching.
t1 = t2
m1 = m2
iter += 1
# It should not be possible to fail to find an apsis within 2 synodic months.
raise InternalError()
def NextLunarApsis(apsis):
skip = 11.0 # number of days to skip to start looking for next apsis event
time = apsis.time.AddDays(skip)
next = SearchLunarApsis(time)
# Verify that we found the opposite apsis from the previous one.
if apsis.kind not in [ApsisKind.Apocenter, ApsisKind.Pericenter]:
raise Error('Parameter "apsis" contains an invalid "kind" value.')
if next.kind + apsis.kind != 1:
raise InternalError()
return next