Files
fastapi/docs/zh/docs/advanced/settings.md
Sebastián Ramírez 376e108580 🌐 Update translations for zh (update-outdated) (#14843)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Motov Yurii <109919500+YuriiMotov@users.noreply.github.com>
Co-authored-by: Yurii Motov <yurii.motov.monte@gmail.com>
2026-02-08 11:39:41 +01:00

11 KiB
Raw Blame History

设置和环境变量

在许多情况下,你的应用可能需要一些外部设置或配置,例如密钥、数据库凭据、电子邮件服务的凭据等。

这些设置中的大多数是可变的(可能会改变),例如数据库 URL。并且很多可能是敏感的比如密钥。

因此,通常会将它们提供为由应用程序读取的环境变量。

/// tip | 提示

要理解环境变量,你可以阅读环境变量{.internal-link target=_blank}。

///

类型和验证

这些环境变量只能处理文本字符串,因为它们在 Python 之外,并且必须与其他程序及系统的其余部分兼容(甚至与不同的操作系统,如 Linux、Windows、macOS

这意味着,在 Python 中从环境变量读取的任何值都是 str 类型,任何到不同类型的转换或任何验证都必须在代码中完成。

Pydantic 的 Settings

幸运的是Pydantic 提供了一个很好的工具来处理来自环境变量的这些设置:Pydantic: Settings management

安装 pydantic-settings

首先,确保你创建并激活了虚拟环境{.internal-link target=_blank},然后安装 pydantic-settings 包:

$ pip install pydantic-settings
---> 100%

当你用以下方式安装 all 扩展时,它也会被一并安装:

$ pip install "fastapi[all]"
---> 100%

创建 Settings 对象

从 Pydantic 导入 BaseSettings 并创建一个子类,这与创建 Pydantic 模型非常相似。

与 Pydantic 模型一样,用类型注解声明类属性,也可以指定默认值。

你可以使用与 Pydantic 模型相同的验证功能和工具,例如不同的数据类型,以及使用 Field() 进行附加验证。

{* ../../docs_src/settings/tutorial001_py39.py hl[2,5:8,11] *}

/// tip | 提示

如果你想要一个可以快速复制粘贴的示例,请不要使用这个示例,使用下面最后一个示例。

///

当你创建该 Settings 类的实例(此处是 settings 对象Pydantic 会以不区分大小写的方式读取环境变量,因此,大写变量 APP_NAME 仍会用于属性 app_name

接着它会转换并验证数据。因此,当你使用该 settings 对象时,你将获得你声明的类型的数据(例如 items_per_user 将是 int)。

使用 settings

然后你可以在应用中使用新的 settings 对象:

{* ../../docs_src/settings/tutorial001_py39.py hl[18:20] *}

运行服务器

接下来,运行服务器,并把配置作为环境变量传入,例如你可以设置 ADMIN_EMAILAPP_NAME

$ ADMIN_EMAIL="deadpool@example.com" APP_NAME="ChimichangApp" fastapi run main.py

<span style="color: green;">INFO</span>:     Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)

/// tip | 提示

要为单个命令设置多个环境变量,只需用空格分隔它们,并把它们都放在命令前面。

///

然后,admin_email 设置将为 "deadpool@example.com"

app_name 将为 "ChimichangApp"

items_per_user 会保持默认值 50

在另一个模块中放置设置

你可以把这些设置放在另一个模块文件中,就像你在Bigger Applications - Multiple Files{.internal-link target=_blank}中看到的那样。

例如,可以有一个 config.py 文件:

{* ../../docs_src/settings/app01_py39/config.py *}

然后在 main.py 文件中使用它:

{* ../../docs_src/settings/app01_py39/main.py hl[3,11:13] *}

/// tip | 提示

你还需要一个 __init__.py 文件,就像你在Bigger Applications - Multiple Files{.internal-link target=_blank}中看到的那样。

///

在依赖项中提供设置

在某些情况下,从依赖项中提供设置可能更有用,而不是在所有地方都使用一个全局的 settings 对象。

这在测试期间尤其有用,因为可以很容易地用你自己的自定义设置覆盖依赖项。

配置文件

延续上一个示例,你的 config.py 文件可能如下所示:

{* ../../docs_src/settings/app02_an_py39/config.py hl[10] *}

注意,现在我们不再创建默认实例 settings = Settings()

主应用文件

现在我们创建一个依赖项,返回一个新的 config.Settings()

{* ../../docs_src/settings/app02_an_py39/main.py hl[6,12:13] *}

/// tip | 提示

我们稍后会讨论 @lru_cache

目前你可以把 get_settings() 当作普通函数。

///

然后我们可以在“路径操作函数”中将其作为依赖项引入,并在需要的任何地方使用它。

{* ../../docs_src/settings/app02_an_py39/main.py hl[17,19:21] *}

设置与测试

接着,在测试期间,通过为 get_settings 创建依赖项覆盖,就可以很容易地提供一个不同的设置对象:

{* ../../docs_src/settings/app02_an_py39/test_main.py hl[9:10,13,21] *}

在依赖项覆盖中,我们在创建新的 Settings 对象时为 admin_email 设置了一个新值,然后返回该新对象。

然后我们可以测试它是否被使用。

读取 .env 文件

如果你有许多设置可能经常变化,或在不同环境中不同,那么把它们放进一个文件中,然后像环境变量一样从中读取,可能非常有用。

这种做法非常常见:这些环境变量通常放在名为 .env 的文件中,该文件被称为 “dotenv”。

/// tip | 提示

以点(.)开头的文件在类 Unix 系统(如 Linux 和 macOS中是隐藏文件。

但 dotenv 文件并不一定必须是这个确切的文件名。

///

Pydantic 支持使用一个外部库来从这类文件中读取。你可以在 Pydantic Settings: Dotenv (.env) support 中阅读更多信息。

/// tip | 提示

要使其工作,你需要执行 pip install python-dotenv

///

.env 文件

你可以有一个 .env 文件,内容如下:

ADMIN_EMAIL="deadpool@example.com"
APP_NAME="ChimichangApp"

.env 中读取设置

然后更新 config.py

{* ../../docs_src/settings/app03_an_py39/config.py hl[9] *}

/// tip | 提示

model_config 属性仅用于 Pydantic 配置。你可以在 Pydantic: Concepts: Configuration 中阅读更多信息。

///

这里我们在你的 Pydantic Settings 类中定义配置项 env_file,并将其设置为我们想要使用的 dotenv 文件名。

使用 lru_cache 仅创建一次 Settings

从磁盘读取文件通常是一个代价较高(缓慢)的操作,所以你可能希望只在第一次读取,然后复用同一个设置对象,而不是为每个请求都重新读取。

但是,每次我们执行:

Settings()

都会创建一个新的 Settings 对象,并且在创建时会再次读取 .env 文件。

如果依赖项函数是这样的:

def get_settings():
    return Settings()

我们就会为每个请求创建该对象,并为每个请求读取 .env 文件。 ⚠️

但由于我们在顶部使用了 @lru_cache 装饰器,Settings 对象只会在第一次调用时创建一次。 ✔️

{* ../../docs_src/settings/app03_an_py39/main.py hl[1,11] *}

接着,对于后续请求中依赖项里对 get_settings() 的任何调用,它不会再次执行 get_settings() 的内部代码并创建新的 Settings 对象,而是会一遍又一遍地返回第一次调用时返回的那个相同对象。

lru_cache 技术细节

@lru_cache 会修改它所装饰的函数,使其返回第一次返回的相同值,而不是每次都重新计算并执行函数代码。

因此,下面的函数会针对每个参数组合执行一次。然后,当以完全相同的参数组合调用该函数时,将重复使用该参数组合先前返回的值。

例如,如果你有一个函数:

@lru_cache
def say_hi(name: str, salutation: str = "Ms."):
    return f"Hello {salutation} {name}"

你的程序可能会像这样执行:

sequenceDiagram

participant code as Code
participant function as say_hi()
participant execute as Execute function

    rect rgba(0, 255, 0, .1)
        code ->> function: say_hi(name="Camila")
        function ->> execute: 执行函数代码
        execute ->> code: 返回结果
    end

    rect rgba(0, 255, 255, .1)
        code ->> function: say_hi(name="Camila")
        function ->> code: 返回存储的结果
    end

    rect rgba(0, 255, 0, .1)
        code ->> function: say_hi(name="Rick")
        function ->> execute: 执行函数代码
        execute ->> code: 返回结果
    end

    rect rgba(0, 255, 0, .1)
        code ->> function: say_hi(name="Rick", salutation="Mr.")
        function ->> execute: 执行函数代码
        execute ->> code: 返回结果
    end

    rect rgba(0, 255, 255, .1)
        code ->> function: say_hi(name="Rick")
        function ->> code: 返回存储的结果
    end

    rect rgba(0, 255, 255, .1)
        code ->> function: say_hi(name="Camila")
        function ->> code: 返回存储的结果
    end

在我们的依赖项 get_settings() 的情况下,该函数甚至不接受任何参数,因此它始终返回相同的值。

这样,它的行为几乎就像是一个全局变量。但由于它使用了依赖项函数,我们可以在测试时很容易地覆盖它。

@lru_cachefunctools 的一部分,它属于 Python 标准库。你可以在 Python 文档中关于 @lru_cache 的章节阅读更多信息。

小结

你可以使用 Pydantic Settings 来处理应用的设置或配置,享受 Pydantic 模型的全部能力。

  • 通过使用依赖项,你可以简化测试。
  • 你可以与它一起使用 .env 文件。
  • 使用 @lru_cache 可以避免为每个请求反复读取 dotenv 文件,同时允许你在测试时进行覆盖。