Files
frigate/frigate/embeddings/__init__.py
Nicolas Mowen e832bb4bad Fix go2rtc init (#18708)
* Cleanup process handling

* Adjust process name
2025-08-16 10:20:33 -05:00

295 lines
10 KiB
Python

"""SQLite-vec embeddings database."""
import base64
import json
import logging
import os
import threading
from json.decoder import JSONDecodeError
from typing import Any, Union
import regex
from pathvalidate import ValidationError, sanitize_filename
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum, EmbeddingsRequestor
from frigate.config import FrigateConfig
from frigate.const import CONFIG_DIR, FACE_DIR
from frigate.data_processing.types import DataProcessorMetrics
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.models import Event
from frigate.util.builtin import serialize
from frigate.util.classification import kickoff_model_training
from frigate.util.process import FrigateProcess
from .maintainer import EmbeddingMaintainer
from .util import ZScoreNormalization
logger = logging.getLogger(__name__)
class EmbeddingProcess(FrigateProcess):
def __init__(
self, config: FrigateConfig, metrics: DataProcessorMetrics | None
) -> None:
super().__init__(name="frigate.embeddings_manager", daemon=True)
self.config = config
self.metrics = metrics
def run(self) -> None:
self.pre_run_setup(self.config.logger)
maintainer = EmbeddingMaintainer(
self.config,
self.metrics,
self.stop_event,
)
maintainer.start()
class EmbeddingsContext:
def __init__(self, db: SqliteVecQueueDatabase):
self.db = db
self.thumb_stats = ZScoreNormalization()
self.desc_stats = ZScoreNormalization()
self.requestor = EmbeddingsRequestor()
# load stats from disk
stats_file = os.path.join(CONFIG_DIR, ".search_stats.json")
try:
with open(stats_file, "r") as f:
data = json.loads(f.read())
self.thumb_stats.from_dict(data["thumb_stats"])
self.desc_stats.from_dict(data["desc_stats"])
except FileNotFoundError:
pass
except JSONDecodeError:
logger.warning("Failed to decode semantic search stats, clearing file")
try:
with open(stats_file, "w") as f:
f.write("")
except OSError as e:
logger.error(f"Failed to clear corrupted stats file: {e}")
def stop(self):
"""Write the stats to disk as JSON on exit."""
contents = {
"thumb_stats": self.thumb_stats.to_dict(),
"desc_stats": self.desc_stats.to_dict(),
}
with open(os.path.join(CONFIG_DIR, ".search_stats.json"), "w") as f:
json.dump(contents, f)
self.requestor.stop()
def search_thumbnail(
self, query: Union[Event, str], event_ids: list[str] = None
) -> list[tuple[str, float]]:
if query.__class__ == Event:
cursor = self.db.execute_sql(
"""
SELECT thumbnail_embedding FROM vec_thumbnails WHERE id = ?
""",
[query.id],
)
row = cursor.fetchone() if cursor else None
if row:
query_embedding = row[0]
else:
# If no embedding found, generate it and return it
data = self.requestor.send_data(
EmbeddingsRequestEnum.embed_thumbnail.value,
{"id": str(query.id), "thumbnail": str(query.thumbnail)},
)
if not data:
return []
query_embedding = serialize(data)
else:
data = self.requestor.send_data(
EmbeddingsRequestEnum.generate_search.value, query
)
if not data:
return []
query_embedding = serialize(data)
sql_query = """
SELECT
id,
distance
FROM vec_thumbnails
WHERE thumbnail_embedding MATCH ?
AND k = 100
"""
# Add the IN clause if event_ids is provided and not empty
# this is the only filter supported by sqlite-vec as of 0.1.3
# but it seems to be broken in this version
if event_ids:
sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids)))
# order by distance DESC is not implemented in this version of sqlite-vec
# when it's implemented, we can use cosine similarity
sql_query += " ORDER BY distance"
parameters = [query_embedding] + event_ids if event_ids else [query_embedding]
results = self.db.execute_sql(sql_query, parameters).fetchall()
return results
def search_description(
self, query_text: str, event_ids: list[str] = None
) -> list[tuple[str, float]]:
data = self.requestor.send_data(
EmbeddingsRequestEnum.generate_search.value, query_text
)
if not data:
return []
query_embedding = serialize(data)
# Prepare the base SQL query
sql_query = """
SELECT
id,
distance
FROM vec_descriptions
WHERE description_embedding MATCH ?
AND k = 100
"""
# Add the IN clause if event_ids is provided and not empty
# this is the only filter supported by sqlite-vec as of 0.1.3
# but it seems to be broken in this version
if event_ids:
sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids)))
# order by distance DESC is not implemented in this version of sqlite-vec
# when it's implemented, we can use cosine similarity
sql_query += " ORDER BY distance"
parameters = [query_embedding] + event_ids if event_ids else [query_embedding]
results = self.db.execute_sql(sql_query, parameters).fetchall()
return results
def register_face(self, face_name: str, image_data: bytes) -> dict[str, Any]:
return self.requestor.send_data(
EmbeddingsRequestEnum.register_face.value,
{
"face_name": face_name,
"image": base64.b64encode(image_data).decode("ASCII"),
},
)
def recognize_face(self, image_data: bytes) -> dict[str, Any]:
return self.requestor.send_data(
EmbeddingsRequestEnum.recognize_face.value,
{
"image": base64.b64encode(image_data).decode("ASCII"),
},
)
def get_face_ids(self, name: str) -> list[str]:
sql_query = f"""
SELECT
id
FROM vec_descriptions
WHERE id LIKE '%{name}%'
"""
return self.db.execute_sql(sql_query).fetchall()
def reprocess_face(self, face_file: str) -> dict[str, Any]:
return self.requestor.send_data(
EmbeddingsRequestEnum.reprocess_face.value, {"image_file": face_file}
)
def clear_face_classifier(self) -> None:
self.requestor.send_data(
EmbeddingsRequestEnum.clear_face_classifier.value, None
)
def delete_face_ids(self, face: str, ids: list[str]) -> None:
folder = os.path.join(FACE_DIR, face)
for id in ids:
file_path = os.path.join(folder, id)
if os.path.isfile(file_path):
os.unlink(file_path)
if face != "train" and len(os.listdir(folder)) == 0:
os.rmdir(folder)
self.requestor.send_data(
EmbeddingsRequestEnum.clear_face_classifier.value, None
)
def rename_face(self, old_name: str, new_name: str) -> None:
valid_name_pattern = r"^[\p{L}\p{N}\s'_-]{1,50}$"
try:
sanitized_old_name = sanitize_filename(old_name, replacement_text="_")
sanitized_new_name = sanitize_filename(new_name, replacement_text="_")
except ValidationError as e:
raise ValueError(f"Invalid face name: {str(e)}")
if not regex.match(valid_name_pattern, old_name):
raise ValueError(f"Invalid old face name: {old_name}")
if not regex.match(valid_name_pattern, new_name):
raise ValueError(f"Invalid new face name: {new_name}")
if sanitized_old_name != old_name:
raise ValueError(f"Old face name contains invalid characters: {old_name}")
if sanitized_new_name != new_name:
raise ValueError(f"New face name contains invalid characters: {new_name}")
old_path = os.path.normpath(os.path.join(FACE_DIR, old_name))
new_path = os.path.normpath(os.path.join(FACE_DIR, new_name))
# Prevent path traversal
if not old_path.startswith(
os.path.normpath(FACE_DIR)
) or not new_path.startswith(os.path.normpath(FACE_DIR)):
raise ValueError("Invalid path detected")
if not os.path.exists(old_path):
raise ValueError(f"Face {old_name} not found.")
os.rename(old_path, new_path)
self.requestor.send_data(
EmbeddingsRequestEnum.clear_face_classifier.value, None
)
def update_description(self, event_id: str, description: str) -> None:
self.requestor.send_data(
EmbeddingsRequestEnum.embed_description.value,
{"id": event_id, "description": description},
)
def reprocess_plate(self, event: dict[str, Any]) -> dict[str, Any]:
return self.requestor.send_data(
EmbeddingsRequestEnum.reprocess_plate.value, {"event": event}
)
def reindex_embeddings(self) -> dict[str, Any]:
return self.requestor.send_data(EmbeddingsRequestEnum.reindex.value, {})
def start_classification_training(self, model_name: str) -> dict[str, Any]:
threading.Thread(
target=kickoff_model_training,
args=(self.requestor, model_name),
daemon=True,
).start()
return {"success": True, "message": f"Began training {model_name} model."}
def transcribe_audio(self, event: dict[str, any]) -> dict[str, any]:
return self.requestor.send_data(
EmbeddingsRequestEnum.transcribe_audio.value, {"event": event}
)